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Alzheimer’s disease (AD) is known to be associated with loss of cholinergic neurons in the nucleus basalis
of Meynert, located in the posterior basal forebrain. Structural changes of septal nuclei, located in the
anterior basal forebrain, have not been well studied in AD. Using a validated algorithm, we manually
traced septal nuclei on high-resolution coronal magnetic resonance imaging (MRI) in 40 subjects with
mild cognitive impairment (MCI) or AD, 89 healthy controls, and 18 subjects who were cognitively
normal at the time of MRI but went on to develop AD an average of 2.8 years later. We found that
cognitively normal subjects destined to develop AD in the future had enlarged septal nuclei as compared
to both healthy controls and patients with current MCI or AD. To our knowledge, this is the first time a
brain structure has been found to be enlarged in association with risk of AD. Further research is needed
to determine if septal enlargement reflects neuroplastic compensation, amyloid deposition, inflamma-
tion, or another process and to determine whether it can serve as an early MRI biomarker of AD.

� 2018 Elsevier Inc. All rights reserved.
1. Introduction

Based on autopsy and neuroimaging studies, Alzheimer’s dis-
ease (AD) is associated with loss of cholinergic neurons in the nu-
cleus basalis of Meynert (NBM), located in the posterior basal
forebrain (BF) (Teipel et al., 2005; Whitehouse et al., 1981). NBM
atrophy occurs early in the course of AD (Grothe et al., 2012)
resulting in a cortical cholinergic deficit that can be partially
ameliorated with cholinergic medication; this is the rationale for
the use of acetylcholinesterase inhibitors to treat symptoms of AD.

The role of anterior BF structures in AD, in particular the septal
region, has been less studied. The human septal region is located
under and contiguous with the septum pellucidum and contains
well-developed nuclei including the ventrolateral, dorsolateral,
intermediolateral, septofimbrial, and medially, the vertical limb of
the diagonal band of Broca (Andy and Stephan, 1968; Mai et al.,
2004). Septal nuclei are strongly interconnected with hippocampi
via the fimbria/fornix and are critical for generating the
ealth, 145 East 32nd Street,
212 263 3270.
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hippocampal theta rhythm needed for learning and memory
(Buzsaki, 2002; Gu and Yakel, 2011; Hangya et al., 2009; Huerta and
Lisman, 1993; Stewart and Fox, 1990; Winson, 1978). Septal lesions
impair memory in animals (Baxter et al., 2013; Winson, 1978) and
humans (Alexander and Freedman, 1984; Fujii et al., 2002). Larger
septal volume has been associated with better contextual memory
in young healthy subjects (Butler et al., 2012). One might expect
that septal atrophy, like NBM atrophy, would be an early finding in
the development of AD. However, there are hints that this is not the
case: autopsy studies demonstrate preserved septal cholinergic cell
bodies (Mufson et al., 1989; Vogels et al., 1990) with increased
cholinergic innervation of the hippocampus in early AD (DeKosky
et al., 2002; Geddes et al., 1985; Hyman et al., 1987). Neuro-
imaging studies that divide the BF into anterior and posterior
divisions show atrophy in early AD only in the posterior BF and
NBM, with relative preservation of the anterior BF structure until
the late stages of AD (Grothe et al., 2012; Kerbler et al., 2015;
Kilimann et al., 2014).

Complicating assessment of the human septal region using
neuroimaging is the fact that they are small (w290 mm3) (Butler
et al., 2014) and in a location at the base of the brain, in between
the ventricles that can be prone to artifacts in magnetic resonance
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imaging (MRI) studies, especially those that use automated pro-
cessing. Septal nuclei are not included in any of the standard
neuroanatomical parcellation schemes typically used to interpret
human neuroimaging studies (Fischl et al., 2002; Tzourio-Mazoyer
et al., 2002). To address this issue, we developed a manual tracing
algorithm based on histology to accurately measure septal nuclei
volume in vivo using MRI (Butler et al., 2014). Here, we used this
tracing algorithm to measure septal volume in healthy controls,
patients with current MCI or AD, and participants who were clini-
cally normal at the time of MRI but later went on to develop AD.

2. Materials and methods

2.1. Participant selection

All subjects were recruited by the Center for Brain Health (CBH)
at the NYU School of Medicine for institutional review
boardeapproved longitudinal studies of aging, cognitive decline,
and AD risk factors. A convenience sample was selected from the
CBH data set to include all participants scanned on the same 1.5-T
MRI, aged older than 55 years and diagnosed as MCI or AD at any
time point, as well as a random sample of normal participants. The
purpose of this selection strategy was to “enrich” the sample with
participants with current or futureMCI/AD, which constitutes a low
proportion of the CBH data set. Later, we excluded MCI subjects
who did not eventually decline to AD to avoid diagnostic uncer-
tainty and heterogeneity inherent to the diagnosis of MCI. Each
subject had an MRI (see acquisition protocol below).

2.2. Participant assessment

All participants underwent medical, psychiatric, and neurolog-
ical assessments, as well as routine blood tests, electrocardiogram,
and detailed neuropsychological testing that included the
MinieMental Status Examination (Folstein et al., 1975) and Clinical
Dementia Rating scale (Morris, 1993) as well as other elements of
the National Alzheimer’s Coordinating Center (NACC) Uniform Data
Set Neuropsychological Test Battery. A diagnosis of normal, MCI, or
AD dementia was made in accord with standard criteria (Albert
et al., 2011; McKhann et al., 2011) by an experienced clinician
based on the diagnostic interview with the participant and his/her
study partner and review of all available information including
cognitive test scores and neuroimaging.

2.3. MRI acquisition

MRI was performed on the same quality-controlled high-reso-
lution 1.5-T GE scanner between 1994 and 2013. The scanner did
not undergo hardware or software upgrades during this time
period. The examination included a T1-weighted spoiled gradient
echo sequence with repetition time ¼ 35 ms, time to echo ¼ 2 ms,
flip angle ¼ 60�, number of excitations ¼ 1, voxel size ¼ 0.8 � 0.8 �
1.6 mm, field of view ¼ 200 mm, and matrix ¼ 256 � 192 � 124,
reconstructed as 256 � 256. Although the examination also
included Fluid-attenuated inversion recovery (FLAIR), T2-weighted,
and diffusion-weighted sequences, only T1-weighed data were
used for septal nuclei volumetric analysis.

2.4. MRI analysis

Tracing was performed on de-identified T1 MRIs by 5 inde-
pendent tracers. After a training period during which tracers
reached consensus on septal boundaries in a set of training scans,
each tracer traced between 30 and 60 scans. All tracers traced a
random subset of 11 scans (different than the training scans) to
evaluate interrater reliability. After tracing was completed, it was
found that 1 tracer had not accurately followed the tracing rules,
and another had traced scans from only 1 of the 3 diagnostic cat-
egories, so their scans were excluded from further analysis.

2.5. Diagnostic classification of scans

Scans were divided into 3 categories as follows: For subjects
with a diagnosis of AD at any time point, a scan obtained at least 1
year before the diagnosis of MCI/AD, when the participant was
cognitively normal, was selected for analysis if available. This group
was deemed “future AD” (n ¼ 18). Scans from AD patients obtained
after a diagnosis of MCI or AD had been made were deemed “cur-
rent MCI/AD” (n ¼ 40). This group included 5 participants scanned
at the time they were diagnosed with MCI who later declined to AD
and 35 participants scanned after they had been diagnosed with
AD. Normal participants had at least 1 year of follow-up and were
diagnosed as normal at all time points (n ¼ 89.). For participants
with more than 1 MRI scan that qualified for the aforementioned
categories, the earliest scan was selected.

Tracing was performed using a validated and published semi-
automated tracing algorithm implemented in FireVoxel (Mikheev
et al., 2008). As described in more detail in the study by Butler
et al., 2014, all scans were first reformatted to coronal planes
perpendicular to a line connecting the anterior and posterior
commissures. Coronal slices were traced from anterior to posterior.
The anterior septal boundary was defined as the most anterior cor-
onal slice inwhich the bilateral globus pallidus was visible and gray
matter at the base of the septum pellucidum was present. The su-
perior extent of septal nuclei was defined by the plane where the
membranous septum pellucidum widened into septal nuclei.
Lateral boundaries were defined by parallel sagittally oriented
planes through the most inferior and medial aspect of each lateral
ventricle. When a slice was anterior to the crossing fibers of the
anterior commissure, the inferior boundary was the base of the
brain. When the crossing fibers of the anterior commissure were
fully visible, they served as the inferior boundary. The posterior
boundarywas defined by the following ruledA slicewas considered
to contain septal gray matter if it met at least 2 of the following 3
criteria: (1) the T1-weighted signal intensity indicates the presence
of some gray matter (rather than pure white matter intensity); (2)
presence of the crossing fibers of the anterior commissure; and (3)
lack of cerebrospinal fluid (CSF) space in the center of the septal
region (corresponding to CSF space between columns of the fornix).
We used these boundaries and landmarks to create an overinclusive
3D region of interest (ROI). In the next step, we identified CSF voxels
as having intensity less than half the average intensity of the white
matter. The final step consists of automatic removal of CSF voxels
from the overinclusive 3D ROI, yielding the septal ROI, whose vol-
ume in cubic millimeter was calculated and recorded.

In addition, we measured the width of the lateral ventricles,
which could potentially confound septal measurement (marked
ventriculomegalymay distort/stretch the septal region; Butler et al.,
2013, 2014) and which also provides a measure reflecting overall
brain atrophy. The ventricular width was defined as the widest
distance in the left-right direction at the superior extent of the
ventricles measured on a coronal slice also containing the septal
gray matter.

2.6. Statistical analysis

General linear models were used to compare septal volume and
ventricular width between groups (normal, future AD, and current
MCI/AD.) Tracer was included as a covariate. The dependent vari-
able was residualized against age and height (a proxy for head size).



Table 1
Demographic and clinical characteristics of the participants

Controls Future AD Current MCI/AD

Agea 64.4 � 7.4b 76.1 � 7.7 76.1 � 7.7
Educationa 17 � 2.1 14.9 � 3.1 15.9 � 3.0
Sex (% female) 67.4 72.2 57.5
APOE4 allele present 24/89; 27% 2/13; 11.1% 18/40; 45%
MMSEa 29.4 � 0.9 29.4 � 1.3 20.6 � 7.5b

CDRa 0.07 � 0.17 0.00 � 0.0 1.3 � 1.0b

a Values are mean � standard deviation.
b Statistically significant difference from other 2 groups (p < .05).
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Post hoc pairwise comparisons between groups were Bonferroni
corrected for multiple comparisons. Statistical significance was
defined as a p value <0.05. Interrater reliability was assessed using
average intraclass correlation coefficient. SPSS (version 22; SPSS,
Inc., Chicago, IL) software was used for all analyses.

3. Results

3.1. Participant characteristics

Participant characteristics are presented in Table 1. Participants
differed by age at the time of scanning: patients with current MCI/
AD or those destined to develop AD in the future were older than
normal controls. As expected, current MCI/AD patients had lower
MinieMental Status Examination and higher Clinical Dementia
Rating scores than normal controls and future AD patients. In the
future AD group, there was an average of 2.8 years (standard de-
viation 1.36; range: 1.0e5.46 years) of follow-up time between MRI
and the diagnosis of MCI/AD. Normal controls were followed up for
an average of 6.5 years (standard deviation 4.4; range 1.3e21.4
years) after scanning to confirm that they remained normal.

3.2. Interrater reliability

A high degree of reliability was found between the 3 tracers. The
average measure intraclass correlation (ICC) was 0.758 (p ¼ 0.003).

3.3. Septal volume

Septal volume differed significantly by subject group (F [2,
141] ¼ 7.7; p ¼ 0.001.) Average septal volume (and standard devi-
ation) for controls was 224.4 (74.4) mm3, for future AD was 245.5
(74.1) mm3, and for current MCI/ADwas 166.2 (69.7) mm3. Pairwise
comparisons indicated that all groups differed significantly from
Fig. 1. Examples of segmented septal nuclei (pink shading) on coronal T1 MRI at the level of
the future but clinically normal at the time of scanning, and (C) a patient with current MCI/A
in the current MCI/AD patient. Abbreviations: AD, Alzheimer’s disease; MCI, mild cognitive
color in this figure legend, the reader is referred to the Web version of this article.)
each other with future AD > controls > current MCI/AD. Results
were similar when also controlling for the ventricular width. Septal
tracings in a control, a future AD patient, and a current MCI/AD
patient are shown in Fig. 1.

3.4. Ventricular width

Ventricular widthda rough estimate of brain atrophydwas, as
expected, significantly greater in patients with current MCI/AD as
compared to normal controls and future AD patients (F [2, 137) ¼
8.0; p ¼ 0.001). Ventricular width did not differ between controls
and future AD patients. Average ventricular width for controls was
20.5 (6.2) mm, for future AD was 24.2 (5.4) mm, and for current
MCI/AD was 29.4 (7.6) mm.

4. Discussion

Results indicate septal enlargement in healthy controls destined
to develop AD in an average of 2.8 years. We are unaware of prior
studies demonstrating enlargement of a gray matter structure in
individuals at risk of AD. These results contrast markedly with what
is known about hippocampal volume: multiple studies have shown
that hippocampal volume declines during the transition from
normal to MCI to AD, reflecting a gradual neurodegenerative pro-
cess (De Leon et al., 1989). Our results indicate that something other
than neurodegeneration is taking place in the septal region. We
postulate that MRI-detectable septal enlargement before cognitive
decline reflects a neuroplastic compensatory process involving
cholinergic septal neurons. This explanation fits with autopsy
studies showing preserved septal cholinergic cell bodies (Mufson
et al., 1989; Vogels et al., 1990) with increased cholinergic inner-
vation of the hippocampus in early AD (DeKosky et al., 2002;
Geddes et al., 1985; Hyman et al., 1987). Our unique finding of
enlargement of a gray matter structure before cognitive decline
may relate to the unique propensity of BF cholinergic neurons to
express receptors for nerve growth factor throughout life (Chao and
Hempstead, 1995) and to enlarge via a nerve growth
factoremediated process in response to various hippocampal pa-
thologies (Conner et al., 2009; Hagg et al., 1989; Higgins et al., 1989;
Pearson et al., 1984, 1987; Stroessner-Johnson et al., 1992). Other
potential explanations for septal enlargement include deposition of
amyloid in the septal region, which occurs early in AD (Arendt et al.,
1988), inflammation (Schliebs, 2005), or neuronal enlargement due
to cell cycle dysregulation with polyploidy and failed replication
(Atwood and Bowen, 2015).
the anterior commissure in (A) a normal control, (B) a subject destined to develop AD in
D. Note larger septal region in the future AD subject and virtually no septal gray matter
impairment; MRI, magnetic resonance imaging. (For interpretation of the references to
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This study has several limitations: manual tracing is a labor
intensive process that requires significant training and may not
be suitable for large-scale studies. Our suboptimal interrater
reliability (ICC ¼ 0.758) and the fact that results from 1 of our 5
tracers had to be discarded reflect this challenge. Tracing the
septum in AD patients was especially challenging because the
septal region was in many cases so atrophied as to be untrace-
able (see Fig. 1.). Despite the limitations of our manual tracing
protocol, we believe it is the only currently available method
for assessing the septal region in older and AD subjects
because we have found that automated measurement of the
septal region using SPM, which is accurate in younger subjects
(Butler et al., 2014), is highly inaccurate in subjects with
significantly enlarged ventricles; these results are presented as
supplementary information. Supplementary information also
describes automated results showing reduced NBM and hippo-
campal and enlarged ventricular volume in MCI/AD patients as
compared to controls, as expected based on multiple prior
studies (e.g., De Leon et al., 1989; Kilimann et al., 2014); it is only
automated measurement of the septal region that is inaccurate,
likely because of this region’s small volume and close proximity
to the ventricles. We hope that current findings will spur further
work to optimize the measurement (automated and manual) of
this understudied region.

In conclusion, we have demonstrated septal enlargement before
development of AD. Future studies are needed to determine the
nature of this enlargement and whether it can serve as an early
biomarker predicting cognitive decline.
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