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 ABSTRACT   

Dynamic contrast enhanced (DCE) MRI has emerged as a reliable and diagnostically useful functional imaging 
technique. DCE protocol typically lasts 3-15 minutes and results in a time series of N volumes. For automated analysis, 
it is important that volumes acquired at different times be spatially coregistered. We have recently introduced a novel 
4D, or volume time series, coregistration tool based on a user-specified target volume of interest (VOI). However, the 
relationship between coregistration accuracy and target VOI size has not been investigated. In this study, coregistration 
accuracy was quantitatively measured using various sized target VOIs. Coregistration of 10 DCE-MRI mouse head 
image sets were performed with various sized VOIs targeting the mouse brain. Accuracy was quantified by measures 
based on the union and standard deviation of the coregistered volume time series. Coregistration accuracy was 
determined to improve rapidly as the size of the VOI increased and approached the approximate volume of the target 
(mouse brain). Further inflation of the VOI beyond the volume of the target (mouse brain) only marginally improved 
coregistration accuracy. The CPU time needed to accomplish coregistration is a linear function of N that varied 
gradually with VOI size. From the results of this study, we recommend the optimal size of the VOI to be slightly 
overinclusive, approximately by 5 voxels, of the target for computationally efficient and accurate coregistration. 
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1. INTRODUCTION  
A multitude of medical imaging coregistration algorithms have been developed, each with advantages for a specific 
application1. Although a variety of options including different models, methods, and strategies can be selected and 
compared, the size of the target region is not commonly appreciated or emphasized. The target VOI size can have a 
significant impact on the accuracy and efficiency of a coregistration algorithm. In order to evaluate the size of the target 
region on coregistration accuracy, a reliable and robust measurement of coregistration accuracy needs to be identified.  

DCE-MRI is a functional imaging technique consisting of a volume time series, or 4D data. Accurate coregistration is 
needed for automated quantitative functional analysis. However, there is still no validated measure for easy assessment 
of the accuracy of the alignment of N volumes. Intersection-based accuracy measures, such as the Dice similarity 
coefficient, have been widely accepted and used, but have intrinsic issues. These measures are non-linear and saturate 
quickly if one object in the series is completely misaligned. As a result, the overall degree of misalignment cannot be 
adequately ascertained since one pertubation may completely trump the alignment of the entire series. Additionally, the 
Dice similarity coefficient was originally derived for the ecologic association between two different species2, which may 
not ideally extend to imaging data with greater than two series.  

In this study, we propose new measures of coregistration accuracy based on the union and standard deviation of 
misaligned objects, and use these measures to compare the effect of target VOI size to coregistration accuracy of DCE-
MRI mouse head images.  
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2. METHODOLOGY 
2.1 Simulation 

New measures to assess registration accuracy based on union and standard deviation (defined below) of misaligned 
objects were validated through simulation of 100 cases consisting of groups of 10 line segments, each of which were 
randomly aligned. These were compared to the Dice similarity coefficient (DSC)2:  

 

   
DSC( X ,Y ) =

2 X Y∩
X + Y

 (1) 

where X and Y represent two samples, the numerator represents the intersection of the two samples, and the denominator 
represents the union of the two samples. A DSC of 1 indicates perfect alignment and 0 indicates no overlap. Simulations 
were performed using MATLAB and the linearity of each measure was evaluated using Pearson’s coefficient.  

2.2 DCE-MRI mouse head 

Ten cases of C57Bl6 wild type mouse brains were used for analysis based on MRI protocol by Bertrand et al3. Briefly, a 
solution of MnCl2 in saline (1.5µL of 5M MnCl2) was administered under anesthesia (5% isoflurane) into one nostril of 
the mouse using a micropipette under microscopic control. The instillation led to manganese (Mn) uptake in the nasal 
epithelium. Mn then propagated along the olfactory tract to accumulate transiently in high concentration and to appear 
by its presence as a hyperintensity using a T1-weighted sequence. In each imaging time course, mice were scanned once 
prior to Mn administration followed by 8 repeated acquisitions over 7 days to generate 9 three-dimensional (3D) whole 
mouse head datasets. Each mouse head MRI dataset was acquired under 15 minutes using a 3D-T1 SPGR sequence 
(TR/TE/FA = 15ms/4ms/18°, 128×128×64 matrix, field of view = 19.2×19.2×9.6mm, averages = 6 leading to a 150µm 
isotropic resolution). 

2.3 4D Coregistration 

For 4D coregistration, let i ∈ [1…N] be the time index and Ti,j the transformation that maps the coordinates of source 
volume i into the target volume j. T was restricted to a rigid body transform defined by its 3 translational and 3 rotational 
parameters, and computed to maximize signal cross-correlation between the target and the transformed source. 
Optimization was done in two stages: S1) an exhaustive search over a discrete grid of translational and rotational 
parameters distributed in the 6-dimensional parameter space; and S2) an iterative search for a local maximum of cross-
correlation, initialized at the most promising grid points from stage S1. Coregistration was done using a radial algorithm 
with target g whereby all volumes were transformed to time point g by computing T1,g T2,g, T3,g  … The organ to be 
registered was specified interactively on a single time point (see Figure 1) using a target VOI. The initial target VOI (0 
voxels inflation) was drawn manually by visual inspection to closely approximate the volume of the mouse brain. The 
morphology of this initial VOI was subsequently isotropically deflated/inflated in increments of 5 voxels to establish 
various sized target VOIs. 

The coregistration software (FireVoxel) is written in C++ and uses Microsoft Foundation Class and Intel Threading 
Building Blocks libraries. The program features multi-core processor parallelism. All tests were performed on a desktop 
computer equipped with a Core i5-2400 3.10 GHz quad core processor. Data analysis was performed using MATLAB. 
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Figure 1. Various target VOIs of the mouse brain (T1-weighted MRI with 150µm isotropic resolution). Although the image 
and VOI are three-dimensional, only a single volume slice is shown for simplicity. Initial target VOI (0 voxels) closely 
approximates the volume of the mouse brain. Numbers in yellow represent isotropic deflation/inflation of the initial target 
VOI in increments of 5 voxels.  

 

2.4 Registration accuracy 

Registration accuracy can be quantified if the organ of interest is segmented at each time point. Let Ri be a 3D binary 
mask (1 = on, 0 = off) constructed from unregistered volumes at time i. Masks Ri were manually constructed by 
visualization and were not used for coregistration. Let Ti,. denote the optimal transformation constructed from 
coregistration. We construct transformed binary masks R′i by voxel subsampling, application of Ti,., nearest-neighbor 
interpolation, and thresholding the results at a level > 0.5. Two linear indices were used to quantify coregistration 
accuracy. We define index A (0 = perfect alignment and increasing values indicating greater misalignment) as the 
volume of the union of transformed masks R′i subtracted by the ideal union (perfect alignment) represented by the 
maximum volume of a single untransformed mask Ri: 

 
   
A = union − ideal union =Vol  Ri

'

i=1

N

∪ − max Vol  Ri( )  (2) 
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We define index B (0 = perfect alignment and increasing values indicating greater misalignment) as the ideal standard 
deviation (perfect alignment) represented by the maximum standard deviation of a single untransformed mask Ri 
multiplied by N and subtracted by the standard deviation of the sum of the transformed masks R′i: 

 
  
B = ideal stdev − stdev = max stdev N × Ri( )( )− stdev Ri

'

i=1

N

∑⎛⎝⎜
⎞
⎠⎟

 (3) 

3. RESULTS 
3.1 New accuracy measures 

New measures to assess coregistration accuracy based on union (index A) and standard deviation (index B) were 
validated using 100 cases of randomly aligned groups of 10 line segments (see Figure 2A). Intersection-based accuracy 
measures, such as the Dice similarity coefficient, are nonlinear and saturate quickly as the average misalignment d of 
each line segment increases (see Figure 2B). As a result, measures like the Dice similarity coefficient are volatile to 
single stray objects; one grossly misaligned object can bias the measure and exaggerate the overall misalignment of the 
group even if the remaining objects in the group are in near-perfect alignment.  

In contrast to intersection-based measures, both union-based (index A) and standard deviation-based (index B) measures 
do not saturate and follow a strong linear relationship (see Figure 2C and D), where 0 represents perfect alignment and 
increasing values indicate a greater degree of overall misalignment. The negative sign in index B (see Equation 3) 
reflects the relationship of decreasing standard deviation with increasing misalignment (see Figure 3). With these 
measures, the overall alignment of the group is less influenced by single stray objects.  

Both index A and index B demonstrated strong linear relationships with average misalignment. Index B was consistently 
found to have a stronger linear relationship, as determined by the greater Pearson’s correlation coefficient, compared to 
index A based on 50 iterations of 100 cases of randomly aligned groups of 10 line segments (see Figure 2E). Therefore, 
index B is systemically more robust than index A and has a better correlation with misregistration.  
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Figure 2. Simulations of line segments with random displacements d in position. A) One example case of misaligned line 
segments. B) Dice similarity coefficient (intersection divided by union) of 100 example cases to average displacement d of 
each case. C&D) Linear fit of 100 example cases to union (index A) and standard deviation (index B) measures to average 
displacement d of each case, respectively. E) Pearson’s correlation coefficient (R) from linear fit of 50 iterations of 100 
example cases. 
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Figure 3. Sample cases demonstrating decreasing standard deviation with increasing misalignment. A) Example case of 
misaligned line segments with average displacement of 1.2 pixels. B) Histogram of A resulting in standard deviation of 4.3 
pixels. C) Example case of misaligned line segments with increased average displacement of 3.9 pixels. D) Histogram of C 
resulting in standard deviation of 3.3 pixels.  

3.2 Optimal target VOI size 

The accuracy of coregistration based on union (index A) and standard deviation (index B) measures were found to 
rapidly improve with VOIs approaching the approximate volume of the mouse brain, or 0 voxels inflation. Further 
inflation of the VOI beyond 0 voxels displayed little to no improvement in coregistration accuracy (see Figure 4). 
Although both index A and index B were lowest, or had the greatest accuracy, with coregistration performed using a VOI 
with 5 voxels inflation, the improvement in accuracy was not statistically significant compared to 0 voxels or 10 voxels 
inflation. 

The CPU time needed to accomplish coregistration is a linear function of N that was also found to increase linearly (R = 
0.99) with target VOI size. For N=9, volume raster 128×128×64, and similarity measure set to signal cross-correlation, 
the average CPU time ranged from 4.9 sec with -15 voxels inflation to 32.0 sec with 15 voxels inflation on a 
conventional workstation. 
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Figure 4. Relationship of registration accuracy versus target VOI size. Decreasing values of index A and index B indicate 
greater accuracy. A) Registration accuracy measured by index A with target VOI size. B) Registration accuracy measured by 
index B with target VOI size. Both index A and index B rapidly decrease with VOI size approaching the volume of the target 
(mouse brain at 0 voxels inflation). Accuracy remains relatively constant with further inflation of the VOI beyond 0 voxels. 

4. CONCLUSION 
New measures based on union (index A) and standard deviation (index B) are presented to provide an easy assessment of 
coregistration accuracy. The strong linearities of the measures are useful in providing insight into the amount of work 
performed for translating and/or rotating objects during coregistration. These measures are also less volatile to single 
stray misaligned objects compared to competing intersection-based measures, with index B having a better correlation 
with misregistration than index A. With these advantages, different coregistration algorithms may be more effectively 
compared to each other.  

Index A and index B are not without limitations. One limitation is that the ideal union or ideal standard deviation of a 
sample needs to be known a priori, which are required to set these measures to begin at 0 for perfect alignment. 
Oftentimes, knowing these in advance may be technically challenging or cumbersome. However, the continued 
development and improvement of automated segmentation algorithms can greatly aid in this process. Another limitation, 
specific to index B, is its sensitivity to the extent of the background region. Enlarging the encompassing background 
with empty space, or padding with zeroes, will invariably alter the standard deviation. Ideal accuracy measures should be 
insensitive to the number of time points, thus care must be taken to keep the extent of the background region as 
consistent as possible across multiple time points in order to maintain robustness. Additionally, these simulations were 
performed with line segments along one dimension and further validation will be needed using randomly aligned 3D 
objects in order to derive a more robust standard deviation measure to be invariant across different DCE-MRI protocols.  

Inflation of the target VOI improves coregistration accuracy. However, this improvement is marginal beyond the 
approximate volume of the target. A VOI that does not encompass the target will likely be susceptible to large errors in 
coregistration accuracy. In contrast, a VOI that is overinclusive of the target is marginally more accurate but is also 
computationally more demanding. Increasing the target VOI allows for more information to be analyzed for greater 
accuracy at the expense of computational performance. Since processing time for coregistration was found to depend 
linearly with target VOI size, there is diminishing return in accuracy per second for every voxel of inflation beyond the 
volume of the target. Additionally, generously inflating the VOI beyond the target may lead to inclusion of erroneous or 
irrelevant data that may decrease coregistration accuracy. In this study, the brain is a relatively simple case where little 
exists beyond the calvarium. The brain also comprises the majority of the head, and is clearly defined and stationary 
relative to surrounding tissues. Therefore, the relatively constant accuracy after 0 voxels inflation is not surprising 
because the additional amount of data included in incrementally inflating the VOI beyond the brain was a fraction 
compared to the brain itself. Significant changes in accuracy were not expected with further inflation of the VOI beyond 
0 voxels because the amount of data to cause significant misregistration was simply nonexistent with our dataset. 
Nevertheless, we recommend a conservative approach and including marginally more beyond the volume of the target (5 
voxels inflation) to make the most of coregistration accuracy and computational performance. 
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DCE-MRI of the abdomen presents a more complex situation compared to DCE-MRI of the head with smaller targets in 
relation to the entire abdomen and a greater degree of surrounding signal, including other abutting organs, which may 
cause significant misregistration with inflation of the target VOI. Organs in the abdomen, such as the kidney, are also 
susceptible to movement due to respiration and are not stationary relative to surrounding tissues, making conditions 
more unpredictable. In addition, isotropic resolution may not be available due to image acquisition technique. Hence, the 
conclusions drawn from this study may not extend to other organs and further investigation of other organs is warranted. 
Future work will involve validating the results of this study with 4D coregistration using a serial algorithm as well as 
more complex voxel similarity measures, such as mutual information, and extending these results suggested by mouse 
brain DCE-MRI to the clinical setting of human DCE-MRI of the liver, spleen, and kidneys. 
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