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Purpose: To evaluate clinical applicability of fibroglandular tissue (FGT) segmentation on routine T1 weighted
breast MRI and compare FGT quantification with radiologist assessment.
Methods: FGT was segmented on 232 breasts and quantified, and was assessed qualitatively by four breast

Results: FGT segmentation was successful in all 232 breasts. Agreement between radiologists and quantified FGT
was moderate to substantial (kappa = 0.52-0.67); lower quantified FGT was associated with disagreement be-
tween radiologists and quantified FGT (P < 0.002).

Conclusions: FGT segmentation was successful using routine T1 weighted breast MRL Radiologists were less con-
sistent with quantified results in breasts with lower quantified FGT.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Fibroglandular tissue (FGT) is the breast parenchyma that can en-
hance after contrast administration on magnetic resonance imaging
(MRI). FGT thus represents the region of clinical interest during breast
MRI interpretation. The fraction of breast tissue containing FGT
correlates with mammographic breast density [1,2], an independent
risk factor for developing breast cancer [3-7], and is recommended to
be included in breast MRI reports [8]. Clinical evaluation of breast FGT
fraction from high-resolution T1 weighted MRI is performed using a
standardized 4-point qualitative scale (a-d) [8] and requires the radiol-
ogist to visually integrate information from dozens of slices. As such,
qualitative FGT assessment is subject to intra- and inter-reader variabil-
ity [7]. Quantitative, automated FGT segmentation may be useful for
providing an accurate, reproducible measure of FGT. Further, FGT
segmentation is an essential first step for automated quantification of
background parenchymal enhancement on breast MRI, which has also
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been proposed as a potential imaging biomarker of breast cancer risk
and response to therapy [6,7,9].

FGT segmentation first requires isolation of the breasts from the
chest, which can be achieved using contour-based [10-13], region-
based [14-16], or atlas-based [17-19] methods. Following whole breast
segmentation, the key challenge of accurate separation of FGT and
breast adipose tissue on routinely acquired T1 weighted sequences is
the variable signal of commercial breast coils [20,21] (Fig. 1). Signal var-
iability often results in misclassification of adipose tissue located distant
from the coil as FGT. Separation of FGT from fat thus typically entails
sophisticated non-uniformity correction (NUC) followed by two-class
tissue separation. Various methods for automatic separation of FGT
and fat have been reported, but with limitations. Some authors recom-
mend acquiring phase-shifted data using Dixon techniques [22-24];
however, adding scan time to acquire this additional sequence is not
ideal in the clinical routine, and accuracy of Dixon methods can be
affected by degree of T1 weighting and MR sequence selection [22].
Atlas-aided fuzzy C-means methods require development of a prior
likelihood atlas and are applied two-dimensionally due to the variable
amount and complex distribution of FGT in the breast [25]. Lastly, con-
clusions from studies of hierarchical support vector machines [23] and
adaptive thresholding [26] are limited by validation in small numbers
of cases (4 and 20, respectively).

We have developed an automated software tool for 3-D separation
of FGT and breast adipose tissue that does not require additional se-
quences or scan time. The main step involves an NUC algorithm that
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Fig. 1. Typical signal non-uniformities in clinical T1 weighted breast magnetic resonance imaging. Breast tissue located adjacent to coil elements (red arrows) shows brighter signal
compared with breast tissue located further from coil elements (blue arrows). Such signal non-uniformities can result in misclassification of adipose tissue located distant from the coil

as fibroglandular tissue.

accounts for coil-specific 3-D distributions of non-uniformities present
in the acquired images, which pose challenges for existing post-process-
ing algorithms [27]. Specifically, we hypothesized that initial optimiza-
tion of NUC parameters using images of breast phantoms would allow
for successful FGT segmentation using only a single clinically acquired
T1 weighted sequence. The objective of this study was to evaluate the
clinical applicability of FGT segmentation using this technique on rou-
tine T1 weighted breast MRI. Quantified FGT was also compared with
radiologist qualitative FGT assessment to evaluate the clinical need for
FGT quantification.

2. Material and methods

This study was approved by the Institutional Review Board and com-
pliant with the Health Insurance Portability and Accountability Act. Pa-
tients were retrospectively selected for inclusion and written informed
consent was waived.

2.1. Phantoms

2.1.1. Assembly and imaging

Four pairs of breast phantoms were assembled using 0.1 mM
manganese chloride to represent FGT and canola oil (Crisco, The J.M.
Smucker Company, Orrville, OH, USA) to represent adipose tissue. The
0.1 mM dilution was chosen to mimic contrast between FGT and fat
on human breast MRI acquired with a clinical T1 weighted sequence
(see below for parameters). The manganese chloride and canola oil
were either freely poured or contained in 80 cm® Mylar pouches
(MylarFoil MiniPouch, IMPAK Corporation, Los Angeles, CA, USA) within
a one-gallon resealable plastic bag (Ziploc, S.C. Johnson & Son, Racine,
WI, USA). The total volume of each breast phantom was either
1106 cm? or 1346 cm?>.

Axial T1 weighted, non-contrast, 3-D volumetric scans of the four
breast phantom pairs were obtained without fat saturation using a ded-
icated seven-element surface breast coil (Sentinelle, Invivo, Gainesville,
FL, USA) on a 3 Tesla magnet (MAGNETOM Trio, A Tim System, Siemens
Medical Solutions, Erlangen, Germany) with clinical acquisition param-
eters (repetition time/echo time = 4.74 ms/1.79 ms, field-of-view
320 mm?, matrix 448 x 358, slice thickness 1.10 mm). Each phantom
pair was scanned three times. At each acquisition, the bags were
rearranged in different positions to assess whether quantification was
morphologically dependent. MR images were divided in the midline,
resulting in 24 individual phantom breast volumes (Fig. 2).

2.1.2. Non-uniformity correction
NUC for FGT segmentation was predicated on the previously report-
ed BiCal technique [28]. The algorithm represents the multiplicative bias

field as a slowly varying function whose logarithm is represented as the
linear combination of 3-D Legendre polynomials. The key steps are 1)
exclusion of image “edges,” or regions of rapid signal transition, and 2)
constrained smoothing of remaining areas prior to model fitting. The
key parameters are the smoothing radius, R, and the maximum degree
of Legendre polynomials, L.

Four phantom breast volumes with variable amounts of FGT and fat
were selected as training volumes to optimize BiCal parameters (R, L)
for T1 weighted breast examinations. Using locally developed software
(FireVoxel, New York University Medical Center, New York, NY, USA),
the operator placed a total of 240 pairs of regions of interest (ROIs) in
the training data to sample signal uniformity and tissue contrast. Each
pair consisted of one circular 6 mm diameter ROI placed on FGT and a
similar ROI placed on nearby fat. The two ROIs were placed within
25 mm of one another to estimate signal contrast that is minimally con-
taminated by non-uniformity artifacts. For each tested set of BiCal pa-
rameters, we computed the variability of signal in each tissue type and
the distribution of contrast between FGT and fat. We used the fraction
of falsely classified voxels at the optimal cutoff as the metric to minimize
signal variability while preserving tissue contrast. The optimized phan-
tom-derived parameters (R = 45 mm, L = 10) were validated on all 24
phantom breast volumes (Fig. 3) and then applied to patient MRI
exams.

2.1.3. Signal intensity histogram thresholding

After NUC and exclusion of background air and surface voxels con-
taminated with partial volume artifact, the signal intensity histogram
was well approximated as the linear sum of two Gaussian probability
distributions. Each histogram was decomposed as the linear combina-
tion of two peaks, with a lower intensity peak representing FGT voxels
and a higher intensity peak representing fat voxels. A signal intensity
threshold, T, was computed for each histogram as the value where the
two signal distributions intersected (Fig. 3) and was used to quantify tis-
sue volumes. Estimated volumes were recorded for comparison with
known values.

2.2. Patients

2.2.1. Patients and MRI exam

All axial breast MRIs performed between 7/2/4/2015 - the first date
of axial breast MRI acquisition at our institution - and 11/30/2015 were
reviewed. Patients with negative or benign MRI results were included.
For the purposes of this study, patients with a possible breast cancer
or a history of breast cancer were excluded. As part of clinical protocol,
both breasts were imaged using the same dedicated breast coil, 3 Tesla
magnet, and T1 weighted parameters used for phantom imaging.
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Fig. 2. T1 weighted images of breast phantoms. Breast phantoms with variable amounts of phantom fibroglandular tissue (FGT; blue arrows) and phantom fat (red arrows) were used for
derivation of optimal non-uniformity correction parameters. Top left (a) = 14.5% FGT: 160 cm® FGT in pouches, 946 cm® fat freely poured. Top right (b) = 29.7% FGT: 400 cm® FGT in
pouches, 946 cm? fat freely poured. Bottom left (c) = 70.3% FGT: 946 cm® FGT freely poured, 400 cm® fat in pouches. Bottom right (d) = 85.5%: 946 cm® FGT freely poured, 160 cm?
fat in pouches.

Fig. 3. Phantom breast before and after non-uniformity correction (NUC), with a signal intensity histogram after NUC. The left image (a) shows a representative slice of a phantom breast
before NUC. The right image (b) shows the same image after NUC. Inset: the signal intensity histogram of the corrected image is well approximated by a bi-Gaussian probability
distribution. The automatically identified threshold between the fibroglandular tissue signal peak (blue) and the fat signal peak (red) is indicated by T and was used to quantify tissue
volumes.
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2.2.2. Whole breast segmentation

A single radiologist drew two-dimensional contours in the axial
plane every fifteenth slice (on average ten contours per case) to sepa-
rate the breasts from the chest wall, following the same pre-defined
borders for each case (sternoclavicular joints superiorly, inframammary
folds inferiorly, lateral margins of sternum medially, anterior margins of
latissimus dorsi muscle anteriorly). Contouring every fifteenth slice
allowed for faster segmentation as compared with more frequent
contouring, while preserving anatomic accuracy after the contours
were automatically filled and interpolated to yield whole breast
masks. Interpolation between filled contours P and Q was achieved by
constructing all possible line segments connecting pairs of voxels across
Pand Q, and then intersecting each segment with the intermediate slice.
Partial volume reduction and skin removal were applied to the whole
breast masks using a 1.5 mm morphologic erosion operator within our
in-house software (FireVoxel). The resulting 3-D breast ROI was
reviewed and divided in the midline. No manual correction of breast
segmentation was performed.

2.2.3. FGT segmentation and quantification

Optimized phantom-derived BiCal NUC and signal intensity histo-
gram segmentation were applied to all 232 breasts. The resulting FGT
and adipose masks were visually reviewed to assess for successful seg-
mentation; no manual correction of FGT segmentation was performed.
Percent FGT was calculated as (absolute FGT volume / total breast vol-
ume) x 100. Automated FGT segmentation is illustrated in Fig. 4.

2.2.4. Radiologist FGT assessment

Blinded to quantitative results, four breast imagers (R1-R4) with 2—
8 years experience (YG 2, KP 6, AM 7, and CC 8 years) independently
and qualitatively graded FGT on the T1 weighted images for 232 breasts
on a 4-point scale in accordance with the 2013 Breast Imaging-
Reporting and Data System lexicon (up to 25% = a; 26-50% = b; 51-
75% = c; >75% = d) [8]. Readers established consensus FGT reads,
which were only used for receiver operating characteristic (ROC)-
based conversion of percent FGT to reader scoring of a-d.

2.3. Statistical analysis

Quantification of breast phantoms was compared with known com-
position by calculating absolute errors for calculated percent FGT. Coef-
ficients of variation and intra-class correlation coefficients were
computed to assess the repeatability of percent FGT measurement
after re-positioning.

For patient MRIs, within-subject correlations were accounted for in
each aspect of statistical analysis. Inter-reader agreement was assessed
using the linear weighted kappa coefficient (k) with 95% confidence in-
tervals (CI). k < 0.0 was interpreted as poor agreement, 0.0 < k <0.20 as
slight agreement, 0.20 < k < 0.40 as fair agreement, 0.40 < k < 0.60 as
moderate agreement, and k> 0.60 as substantial agreement [29]. Spear-
man correlation (r) was performed to assess the relationship between
reader FGT and quantified percent FGT. r > 0.70 was considered strong,
0.30 <1 <0.70 moderate, and r < 0.30 weak.

Three sequential ROC analyses of the 4-point consensus qualitative
reads were performed to convert quantitative semi-automated percent
FGT results to 4-point ordinal assessments; reader scoring of a-d was
recoded to 1-4 for this portion of the analysis. An initial ROC analysis
identified the threshold of percent FGT that optimally discriminated be-
tween reader scores of 1 and those greater than 1. The data were then
pared by removing reader scores of 1, and the ROC analysis was repeat-
ed to identify the threshold of percent FGT that best discriminated be-
tween reader scores of 2 and those greater than 2, and then again to
differentiate between scores of 3 and 4.

Agreement between individual readers and converted percent FGT
was then assessed using the linear weighted kappa coefficient (k) as
above. Mann-Whitney tests were performed to assess whether the
level of quantified percent FGT impacted the frequency of concordance
and discordance between readers and semi-automated quantification.
All statistical tests were conducted at the two-sided 5% significance
level using SAS 9.3 software (SAS Institute, Cary, NC).

3. Results
3.1. Phantom FGT segmentation

For 24 phantom breast volumes overall, mean absolute error for per-
cent FGT was 2.1 4 0.7%. Tests of intra-phantom percent FGT quantifica-
tion repeatability demonstrated a coefficient of variation of 0.74% and
an intra-class correlation coefficient of 0.99. Quantified percent FGT
compared with known percent FGT for all 24 phantom breast volumes
is shown in Fig. 5.

3.2. Patient FGT segmentation

Between 7/24/2015 and 11/27/2015, 369 consecutive, unique pa-
tients (ages 23-83 years, mean 53 years) underwent axial breast MR
Of these 369 patients, 116 (31.4%) patients (ages 23-81 years, mean
49 years) met the inclusion criteria of no history of breast cancer and

Fig. 4. Automated fibroglandular tissue (FGT) segmentation. The left image (a) shows a representative T1 weighted image of a human breast following separation from the chest, division
in the midline, and non-uniformity correction. The right image (b) shows the same image after application of the signal intensity threshold for FGT segmentation and generation of a FGT

mask shown in green. The accompanying adipose tissue mask is shown in yellow.
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Fig. 5. Quantified percent fibroglandular tissue (FGT) of breast phantoms as compared
with known values. Each of the four pairs of breast phantoms was scanned in three
different positions, for a total of 12 scans. Division of images in the midline resulted in
24 phantom breast volumes (six for each FGT composition). For all 24 phantom breast
volumes, the mean absolute error for percent FGT compared with known values was
2.1 + 0.7%. The coefficient of variation was 0.74% and the intra-class correlation
coefficient was 0.99, indicating good reproducibility.

negative or benign MRI results. Indications for MRI included screening
in 89/116 (76.7%; BRCA1 positive in 11, BRCA2 positive in 14, family his-
tory of breast cancer in 56, history of atypia in 5, and history of lobular
carcinoma in situ in 3 patients), follow-up of prior findings assessed as
probably benign on screening MRI in 15/116 (12.9%), and problem solv-
ing in 12/116 (10.3%) patients.

Segmentation of each pair of breasts from the chest wall was the
only non-automatic step in FGT segmentation and averaged approx-
imately 7 min per case. After saving breast masks as image files, the
remaining steps were fully automatic and 232 volumes were ana-
lyzed as a single batch processing job at a rate of <1 min per breast
on a desktop computer. Visual inspection of the 232 processed
volumes demonstrated anatomically successful FGT segmentation
in all cases.
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3.3. Agreement for patient FGT

Inter-reader agreement for FGT across all reader pairs was substan-
tial (k = 0.69). The distribution of quantified percent FGT as a function
of individual reader assessment is shown in Fig. 6. Spearman correla-
tions between reader FGT and quantified percent FGT were strong
(R1r=0.85,R2r = 0.84,R3r = 0.84, R4 r = 0.81; P < 0.001 for all 4
correlations). Sequential ROC analyses of consensus reads indicated
that reader FGT was best predicted by semi-automated percent FGT
<9.1 =a,9.1-13.4 = b, 13.5-26.1 = ¢,>26.1 = d. Agreement between
reader FGT and converted semi-automated FGT among the 232 breasts
was moderate to substantial [R1 k = 0.67 (95% CI1 0.61-0.73); R2 k =
0.60 (95% CI = 0.54-0.67); R3 k = 0.62 (95% CI 0.55-0.69); R4 k =
0.52 (95% CI 0.46-0.58)]. Lower levels of quantified percent FGT
were associated with decreased frequency of concordance between
readers and semi-automated quantification for all 4 readers (P < 0.002)
(Table 1).

4. Discussion

Breast MRI poses unique challenges for FGT segmentation due to
variability in breast size, morphology, distribution of FGT, and signal
non-uniformities. We have developed a phantom-validated, semi-auto-
mated FGT segmentation technique that can be performed on routine
clinical T1 weighted breast MRI without the added scan time required
by Dixon techniques [22-24]. Breast phantoms helped to optimize the
key NUC step and showed accurate and reproducible results for FGT seg-
mentation. The clinical robustness of this technique was demonstrated
by successful FGT segmentation of 232 breasts imaged over a 4 month
time period without manual correction. These attributes of the method
for FGT segmentation reported here are favorable for integration into
clinical workflows. Comparison between quantified FGT and radiologist
qualitative FGT assessment suggests a need for incorporation of FGT
quantification into clinical practice.

The FGT segmentation method described in this study includes only
one non-automatic step, namely the use of semi-automated chest wall
contouring to first isolate the breasts from the chest, as in several
other studies [10-13]. Fully automated chest wall detection algorithms
are being evaluated to automate this step, but with noteworthy

a b ¢ d a b ¢
Reader 1 Reader 2

d

a b c d a b ¢ d
Reader 3 Reader 4

Reader FGT

Fig. 6. Distribution of quantified percent fibroglandular tissue (FGT) as a function of individual reader assessment of FGT. Each box indicates the median percent FGT and interquartile range
(IQR) corresponding to each level of reader qualitative assessment. Whiskers extend 1.5 x IQR above and below. Readers did not discriminate levels of quantified percent FGT into discrete
groups, indicating intra-reader variability. Variation between the readers' sets of four boxplots (a-d) indicates inter-reader variability.



124 A.C. Pujara et al. / Clinical Imaging 42 (2017) 119-125

Table 1

Lower percent fibroglandular tissue (FGT) in cases of discordance between readers and converted percent FGT.
Reader Concordant cases Discordant cases P

n® (%) Mean % FGT =+ SD” n® (%) Mean % FGT =+ SD”

Reader 1 147/232 (63.4) 252 + 19.5 85/232 (36.6) 14.1 + 8.1 <0.001
Reader 2 133/232 (57.3) 243 £+ 193 99/232 (42.7) 169 + 125 0.002
Reader 3 136/232 (58.6) 274 + 194 96/232 (41.4) 124 + 65 <0.001
Reader 4 114/232 (49.1) 252 4+ 18.7 118/232 (50.9) 17.3 + 145 <0.001

a

conversion of percent FGT to reader scoring.
b SD = standard deviation.

limitations. Wu et al. reported an automated processing time of about
4.5 min for 56-slice sequences [12]; in our study, semi-automated
chest wall contouring of T1 weighted sequences that routinely consisted
of nearly three times as many slices (>150 slices) took approximately
7 min per case. In a study of 14 patients, Rosado-Toro et al. described
a technique for automated whole breast segmentation that used Radial
Gradient and Spin Echo sequences not routinely acquired in clinical
breast MRI [30]. In addition, inaccuracies in chest wall detection using
automated techniques have been reported due to low image contrast
or extreme FGT [10,31,32]. van der Welden et al. reported fully auto-
mated whole breast segmentation in a study of patients with unilateral
breast cancer; however, manual correction of erroneous breast masks
had to be performed [33]. Thus, the combination of fast, clinically trans-
latable, and accurate isolation of the breasts from the chest wall without
user intervention remains a challenge.

Following breast segmentation, the phantom-based technique for
FGT segmentation in this study was fully automated. Direct comparison
of FGT segmentation results with other methods is difficult due to dif-
ferences in MRI data sets, yet technical considerations warrant mention.
In our study, BiCal NUC and signal intensity histogram segmentation of
232 breasts from clinical T1 weighted breast MRI required on average 1
min per breast. Wu et al. used an atlas-aided fuzzy C-means method to
automatically segment FGT on 120 breasts. Processing time was approx-
imately 30 s for each 56-slice case [12,25], but this approach requires
the development of a learned FGT likelihood atlas. In a study by
Gubern-Mérida et al. with 100 cases, the authors used an expectation-
maximization algorithm to automatically segment FGT and noted
oversegmentation of FGT in large breasts due to incomplete bias field
correction [17]. Wang et al. described the use of hierarchical support
vector machines for automated FGT segmentation, however the tech-
nique incorporated non-clinical Dixon sequences and was validated in
only 4 cases [23].

In our study, ROC analyses of consensus reads were used to convert
quantified percent FGT to reader scoring. The resulting thresholds
(percent FGT 9.1 = a,9.1-13.4 = b, 13.5-26.1 = ¢, >26.1 = d) were
similar to the mean percent FGT corresponding to reader assessment
in a recent study of breast MRI FGT segmentation (a = 4.6%, b = 8.7%,
¢ = 18.1%, d = 37.4%) [34], as well as thresholds used for automated
mammographic breast density assessment [35-37]. Subsequent
comparison between converted percent FGT and individual reader as-
sessment showed strong correlations and moderate to substantial
agreement, suggesting reader consistency with quantified results.
However, the overlapping ranges of percent FGT for each level of reader
assessment in Fig. 6, and the variations between the readers' sets of
overlapping ranges indicate intra- and inter-reader variability, respec-
tively. Further, reader concordance with percent FGT was less frequent
at lower levels of percent FGT (Table 1). A reference for comparison of
these results could not be found in the literature, yet these individual
reader inconsistencies in grading FGT suggest a need for standardized,
quantitative FGT assessment.

The current study has some limitations. First, results were based
on the T1 weighted breast MRI protocol and coil design of a single in-
stitution. Adjustments to phantom-derived NUC parameters may

n = number of cases out of 232 total in which reader qualitative assessment of FGT was concordant or discordant with percent FGT after receiver operating characteristic-based

initially be necessary for use with different acquisition parameters.
Second, phantom studies showed that quantified percent FGT was
overestimated by 2.1 £ 0.7%, likely due to partial volume effects at
the interfaces of phantom FGT and phantom adipose tissue [38].
Third, whole breast segmentation was semi-automated and was
the rate limiting step. Fourth, determination of segmentation success
on clinical images was subjective. Further development of the cur-
rent breast and FGT segmentation techniques is ongoing to achieve
full automation.

5. Conclusions

In this study, we report a phantom-validated workflow for FGT seg-
mentation on routine T1 weighted breast MRI that, after initial training,
demonstrated high accuracy and precision across a wide spectrum of
FGT composition. Clinical application of this method of FGT segmenta-
tion was successful in 232 processed breasts. Qualitative radiologist
FGT assessment showed intra- and inter-reader variability, and consis-
tency with quantified FGT varied with the level of quantified FGT.
These findings suggest a need for incorporation of FGT quantification
into the clinical routine, which can be achieved without added scan
time and may be useful for breast cancer risk estimation and personal-
ized screening protocols.
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