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Introduction

Kidney volume is an important measure for the early detec-
tion and monitoring of many renal diseases, including dia-
betic nephropathy, renal artery stenosis, graft assessment, 
and polycystic kidney disease [1]. While the mechanisms 
of volume changes are different in each disease, in most 
cases, progressive disease is characterized by eventual 
loss of parenchymal volume. In diabetic nephropathy, ini-
tial renal hypertrophy has been observed, particularly in 
patients with type 1 diabetes [2], and has been linked to 
poorer outcomes [3]. In patients with renovascular disease, 
volume is reduced with significant renal artery stenosis. 
Importantly, renal volume correlates significantly more 
closely with measured single-kidney glomerular filtra-
tion rate (GFR) than traditional 2D bipolar measurements 
[4], and can potentially predict how patients will respond 
to revascularization [5]. Increased renal volume, on the 
other hand, is a highly sensitive and specific marker of 
acute interstitial rejection for renal allografts [6]. Progres-
sion of polycystic kidney disease leads to the enlargement 
of kidney volume due to cyst formation [7], with higher 
volumes inversely related to GFR [8]. Renal volumes have 
potential application to kidney donor work-up, where they 
have shown stronger correlation with true measured GFR 
than serum GFR estimation [9]. Renal segmentation is also 
essential for functional renal assessment (renal perfusion 
and filtration) in dynamic contrast imaging [10].

MRI is an attractive modality for both structural and 
functional renal assessment [11]. MRI provides good tissue 
contrast without ionizing radiation exposure, and allows a 
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highly flexible choice of protocols to probe not only single-
kidney volume, but glomerular filtration, perfusion, oxygen 
content, and water diffusion parameters as well.

Fast T1-weighted (T1-W) gradient echo and 2D fast 
spin echo are the primary sequences used by radiologists 
to assess kidney disease. Dynamic functional imaging, 
which uses gadolinium contrast, is attractive for volu-
metric analysis, as it provides exquisite signal contrast. 
One drawback of segmentation from dynamic contrast-
enhanced (DCE) images is that such DCE protocols 
emphasize temporal resolution at the cost of spatial reso-
lution. To maximize segmentation accuracy, voxel size 
should be as small as possible. Modern technology allows 
an isotropic 1.5–2.0-mm T1-W renal acquisition within a 
single breath-hold. This is important in order to minimize 
motion artifacts that reduce image quality. Another well-
known drawback to the use of contrast media, especially 
in patients with kidney insufficiency, is the potential 
nephrotoxic effect.

Despite providing a detailed depiction of a kidney, a 
fully automated renal segmentation from non-contrast MRI 
remains a challenge. The key difficulty is due to the close-
ness in gray level of the adjacent liver, spleen, vertebrae, 
and parts of the gastrointestinal tract that may be in con-
tact with the kidney (Fig. 1). The problem increases in thin 

patients because the fat surrounding the kidney is almost 
completely lacking. A recent study by Will et al. [12] dem-
onstrates that borders between the kidney and the surround-
ing organs (spleen, gastrointestinal tract) can be identified 
with the use of a sophisticated post-processing algorithm 
and the assumption of the convexity for the kidney. How-
ever, this method requires the acquisition and co-registra-
tion of two complementary (T1-W and T2-W) data sets in 
separate breath-holds.

We have developed a semi-automated approach in which 
the human observer separates the kidney from the liver, 
spleen, and intestines. A unique aspect of our tool is that 
it is largely insensitive to inter-observer differences. The 
user input is effectively ignored over the ~90 % of the kid-
ney surface that is not adjacent to the surrounding organs 
of similar signal. Briefly, the user draws over-inclusive 
approximate contours around the kidney on selected slices, 
focusing on separating organs immediately adjacent to the 
kidney. After this 1–2-min interaction, the program per-
forms a sequence of automated steps that include non-uni-
formity correction, sampling of pure kidney signal, thresh-
olding, and 3D binary morphology.

This segmentation technique was applied to non-contrast 
MRIs of healthy individuals and patients diagnosed with 
various stages of type 1 diabetes (T1DM). These patients 
were chosen because T1DM kidneys present with a wide 
range of volume, depending on the severity of diabetic 
nephropathy.

Renal segmentation is simplified by the fact that the 
kidney is immediately surrounded by a variable-thickness 
layer of perirenal fat. In addition, fatty tissue is present in 
the center of the kidney. Since hydrogen nuclei in water 
and fat have different resonance frequencies, the fat signal 
can be effectively suppressed (Fig. 1). We have applied this 
method to both T1-W and fat-suppressed data to examine 
whether fat suppression facilitates the task of kidney seg-
mentation. To assess the accuracy of this segmentation 
technique, we used kidney reference masks constructed 
manually by a radiologist experienced in renal anatomy 
and renal disease. We measured inter-observer reliability of 
the segmentation and monitored the processing time. The 
accuracy of the segmentation tool was compared with a 
recently developed and publicly available tool, Robust Sta-
tistics Segmenter (RSS), based on the evolution of active 
contours [13].

Materials and methods

Study subjects

After procurement of informed consent and ethics insti-
tutional approval, abdominal images obtained from ten 

Fig. 1   A representative axial slice through the kidney before (top) 
and after (bottom) fat suppression. Note adjacent organs and skeletal 
muscle with MR signal similar to the kidney



Magn Reson Mater Phy	

1 3

healthy volunteers (5 men, 5 women; mean age 43 years, 
range 28–63) and ten T1DM patients recruited to a study 
of early diabetic kidney disease (6  men, 4 women; mean 
age 50  years, range 29–74) were selected for volumetric 
analysis. A total of 40 kidneys (20 left, 20 right) were used. 
Images were de-identified prior to analysis, with readers 
blinded to patient identity and renal function.

MRI protocol

All images were acquired on 3T MRI (Skyra, Siemens, 
Erlangen, Germany) equipped with an 18-channel body 
phased-array coil anteriorly and 32-channel spine coil 
posteriorly. The anterior and posterior coil elements 
were selected by the radiographer to ensure optimal coil 
coverage for the region of interest. Volumetric interpo-
lated breath-hold examination (VIBE) imaging was per-
formed with a breath-hold at end-expiration: repetition 
time (TR) 3.8 ms, echo time (TE) 1.2 (out of phase) and 
2.5 (in phase) ms, flip angle (FA) 9°, field of view (FOV) 
384 × 384 × 208 mm, true voxel size 2 × 2 × 3.8 mm3 
interpolated to 2  ×  2  ×  2  mm3, acceleration factor 3 
(GRAPPA), acquisition time 20  s. Integrated with VIBE 
is the Dixon technique based on chemical shift, or the dif-
ference in resonance frequencies between fat- and water-
bound protons. Separate fat-only and water-only images 
were calculated by the system.

Blanket segmentation procedure

The segmentation process begins with the observer trac-
ing over-inclusive kidney contours on a small subset of 
slices. Tracing was done on every s-th slice in the axial 

direction. An example of s = 10 is shown in Fig. 2 (see 
figure caption for details). Over-inclusive tracing is 
accomplished using an electronic paintbrush controlled 
by a computer mouse. Tracing is the only manual step 
in the segmentation process. To measure inter-observer 
reproducibility of the workflow, three independent 
observers independently drew the contours. The observ-
ers had 13, 5, and 1  year (R1, R2, R3) of experience 
with renal anatomy and abdominal imaging. Bland–Alt-
man plots were used to analyze the agreement between 
pairs of observers.

The contours were morphologically filled [14] and inter-
polated in the z direction to yield the over-inclusive region 
we refer to as the “blanket” (Fig. 3). Interpolation of renal 
mask Mstart on slice zstart and mask Mend on slice zend is 
accomplished by constructing a list L[i] of all possible line 
segments connecting TRUE voxels from Mstart to TRUE 
voxels in Mend. For each slice m between zstart and zend, 
we initialize the interpolated mask to FALSE. For each i, 
we then compute the coordinates (k, l) of the intersection of 
segment L[i] with the plane of slice m; we then set voxel (k, 
l, m) to TRUE.

The desired properties of the blanket are that (1) the 
entire kidney is included, and (2) the liver, spleen, intes-
tines, and tissue with signal intensity similar to that of the 
kidney are excluded. The goal of the subsequent segmenta-
tion process is to automatically trim from the blanket other 
non-renal tissue: perirenal and pelvic fat, collecting system, 
and blood vessels.

Let Bxmin, Bxmax, Bymin, Bymax, Bzmin, and Bzmax denote the 
minimum and maximum voxel coordinates of the blanket 
along the three spatial directions. In the next step, the pro-
gram generates the bounding box defined as:

Fig. 2   Observer selects for 
processing the inferior-most 
kidney slice (slice 2 in this 
example) and processes every 
tenth slice (2, 12, 22, 32, 42, 
and 52), always ending at the 
superior-most kidney slice. The 
goal is to separate the kidney 
from adjacent organs with 
signal intensity similar to that of 
the kidney. Enlarged slice 42 is 
on the right
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Fig. 3   Over-inclusive contours 
after interior filling and z-axis 
interpolation

 where M is a 10-mm margin. All subsequent processing is 
restricted to the bounding box.

In the next step, we apply non-uniformity correction 
to the bounding box. A well-validated N3 algorithm 
is used [15]. The N3 technique iteratively estimates a 
smooth multiplicative bias field that corrupts true scan 
intensities. We set N3 to terminate at the 75th iteration 
and used 10-mm full width at half maximum (FWHM) 
for bias field smoothness—settings that have been used 
successfully in another segmentation task, the measure-
ment of urine output through changes in bladder volume 
[16]. All subsequent steps were applied to the corrected 
image.

The program next finds a small three-dimensional 
“seed” sub-region of the kidney. The seed is a box-shaped 
region, D, of fixed dimensions 6 × 6 × 12 mm, with the 
long dimension in the head–foot direction. The centroid of 
the seed is allowed to vary within 30 mm of the centroid of 
the blanket region. The seed location (Fig. 4) is selected to 
minimize the metric:

{

x, y, z : Bxmin −M < x < Bxmax +M &Bymin

−M < y < Bymax +M&Bzmin

−M < z < Bzmax +M}

over all potential seed locations, where S is the uniformity-
corrected MR signal. The average seed signal S0 is used for 
the initial intensity thresholding, generating the set V0 of 
voxels:

where S(v) is the signal intensity of voxel v, and tlow and 
thigh are dimensionless parameters determined relative to S0. 
The parameter tlow directly affects inclusion/exclusion of 
partially volumed voxels at the edge of the kidney. Its value 
tlow was obtained from:

where B0 is the representative background signal (from 
manual sampling). The goal is to retain in V0 edge vox-
els containing >50 % of renal parenchyma. For our T1-W 
VIBE sequence, we estimated tlow to be 0.55.

The next step is to apply morphologic “peel” of V0 
obtained by eroding all voxels within a given distance p 
from the boundary of V0. The result is decomposed into 
connected components. Only components that include the 

max
(x,y,z)∈D

S(x, y, z)− min
(x,y,z)∈D

S(x, y, z)

avg
(x,y,z)∈D

S(x, y, z)

V0 = { v : S0 tlow < S(v) < S0thigh},

S0 tlow = 0.5 (S0 + B0),
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seed are retained. We then apply the constrained morpho-
logic growth operation [17] that aims to enlarge the eroded 
peeled set by re-including eroded voxels that must also be 
contained in the blanket region. One of the objectives of 
applying these morphologic operators (erosion, connected 
components, dilation by g, the growth radius) is to remove 
from V0 thin structures which are presumed to be blood ves-
sels and renal collecting system. A representative resulting 
renal mask is shown in Fig. 5. The segmentation program 

(http://wp.nyu.edu/firevoxel) was implemented using the 
Visual Studio C++ compiler (Microsoft Corp, Redmond, 
WA, USA) for the Microsoft Windows operating system.

Robust Statistics Segmenter

The Robust Statistics Segmenter (RSS) algorithm, based on 
a variational framework [13], is included in the specialized 
segmentation module of the 3D Slicer 4.4 software package 

Fig. 4   Renal seed in coronal, axial, and sagittal views

Fig. 5   Final renal mask

http://wp.nyu.edu/firevoxel
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[18]. The tissue characteristics are learned from the user 
initialization (Fig.  6) and used to guide the active contour 
evolution. Briefly, RSS computes local robust statistics for 
27-voxel neighborhoods of each voxel in the seed region. 
These statistics include the intensity median, the distance 
between the first and third quartiles, and signal variance 
expressed as the median absolute deviation. The estimated 
probability density function is then used to drive the evolu-
tion of closed surfaces while minimizing a two-term energy 
functional, where the first term measures the similarity of the 
statistical features for the region and the seed, and the second 
term is the area of the surface. The output is controlled with 
three free parameters: the estimated kidney volume, intensity 
homogeneity (IH), and boundary smoothness (BS), both sca-
lars in the 0.0–1.0 range. The estimated volume was set to 
160.6 cm3, the average volume for our 40 cases.

Generating kidney reference masks

An abdominal radiologist (anonymized for review) with 
11 years of experience in renal MRI generated reference 
masks by free-hand editing of each kidney on each rel-
evant slice. This tedious process used a variable-diame-
ter electronic paintbrush and an eraser, both controlled 
by the computer mouse. The expert observer used fat-
suppressed images to include in the reference masks the 

renal cortex, medulla  and renal cysts (present in 10  % 
or 4/40 of cases). The renal pelvis, ureter, renal arter-
ies, veins, lymphatic vessels and nerves  were excluded. 
The same radiologist selected four kidneys for parameter 
optimization.

Optimization of parameters

Images of four kidneys (two left, two right) were used to 
determine parameters of the algorithm that minimize the 
average absolute discrepancy D between estimated and ref-
erence volumes. Selected cases were deemed to present the 
most serious problems of separating the kidney from adja-
cent organs: spleen, liver, intestines, or posterior muscular 
wall. Optimization was performed in two stages: (1) for 
fixed s = 5, we varied thigh (in steps of 0.05) and p and g 
(in steps of 1 mm); (2) using parameters that best match the 
reference masks, we then analyzed the effect of s.

Results

Parameter optimization

The minimum error was achieved with thigh  =  1.5, 
p = 5 mm, and g = 6 mm. Figure 7 plots D for s = 5 and 

Fig. 6   A representative kidney 
(upper row) with seed (lower 
row) drawn for Robust Statistics 
Segmenter. The seed consists of 
3-mm-wide paintbrush strokes 
drawn in axial, sagittal, and 
coronal views
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a range of the two most sensitive parameters thigh and p. 
Compared with non fat-suppressed images, fat-suppression 
yielded lower error and a wider plateau of optimal param-
eters. Consequently, in what follows, we restrict our focus 
on fat-suppressed images.

The effect of slice skip factor s is shown in Fig.  8. 
Remarkably, volumetric errors increase on average by only 
0.26 % per unit increase in s for s between 4 and 10. The 
error penalty increases to 1.57 % in the range 10–14. On 
the other hand, the number of slices traced (right scale in 
the figure) decreases by an average of 1.56 per unit increase 
in s in the range 4–10, compared to 0.75 in the range 
10–14. Based on this analysis, the remainder of blanket 
segmentation results are shown for the skip factor s = 10.

For the RSS algorithm, the minimum errors were 
achieved with the combination IH = 0.55 and BS = 0.7.

Accuracy

Manual segmentation (the reference method) of 40 kid-
neys resulted in a wide range (94.6–254.5 cm3) of volumes, 
averaging 160.6 ± 38.3 cm3. There was no significant dif-
ference between the volumes of the left and right kidneys.

Figure 9 plots the volumes assessed by observers against 
the reference volume. There is a strong linear relation-
ship between the estimated and the true volumes (adjusted 
R2  =  0.97). The absolute errors in cm3 were 6.8  ±  5.2 
for reader 1 (R1), 4.7  ±  4.4 for R2, and 4.8  ±  3.1 for 
R3. The relative errors, expressed as % of true volume, 
were 4.4 % ± 3.0 % for R1, 2.9 % ± 2.3 % for R2, and 
3.1 % ± 2.7 % for R3. Figure 10 shows the segmented kid-
ney masks for a representative right and left kidney.

Segmentation using the optimized RSS algorithm failed 
in 9/20 (45 %) of cases. Failure was defined as a grossly 
inaccurate mask, with volume error >25 %. For the remain-
ing kidneys, errors were 15.4 % ± 6.4 %.

Inter‑observer agreement

The average absolute discrepancy between correspond-
ing estimates of kidney volume, i.e., |Vij−Vik|, where i 
indexes the kidneys and j, k represent different readers, 
was 3.8 ± 3.2 cm3. The relative discrepancy, |Vij−Vik|/Vi,ref, 
where Vi,ref is the reference volume, was 2.5 % ±  2.1 %. 

Fig. 7   Error in kidney volume as a function of two key parameters (plotted on the x and y axes) of the blanket method. See text for the definition 
of high threshold and erosion parameters. Left panel fat-suppressed images; right panel original T1-weighted data

Fig. 8   The effect of slice skip factor s on segmentation error (red 
dots, left axis) and on observer effort (green dots, right axis). The 
effort is expressed as the average number of slices traced. This num-
ber, multiplied by 10-15 s needed to trace one contour, yields the pro-
cessing time per kidney
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Bland–Altman plots (Fig. 11) reveal a small (~4 cm3) but 
systematic bias between R1 and the other two readers. 
Reader agreement does not depend on kidney volume. The 
range of 95 % agreement (distance between dotted lines in 
the figure) is ~14.5 cm3.

After several hours of practice, drawing of blanket 
regions of interest (ROIs) took between 10 and 15  s per 
slice. Using the protocol with s = 10, or ~7 slices per kid-
ney, this yields an average time of 1.5 min per kidney.

Discussion

Accurate renal segmentation remains a difficult task. 
Abdominal images suffer from respiratory motion arti-
facts and signal non-uniformity, and have relatively low 
signal-to-noise ratios, especially for non-contrast exams. 
While there is considerable literature on renal segmentation 
from DCE data [19–21], our focus is on static non-contrast 
exams. One key decision when setting an abdominal MR 
protocol is whether to acquire images during a breath-hold 

Fig. 9   Volume measured by three readers plotted against the true 
volume. Also shown are the regression line (solid) and the identity 
line (dashed)

Fig. 10   Examples of over- and under-segmentation errors for a 
representative right and left kidney. The top row shows the origi-
nal images in coronal and axial views. The segmentation masks are 

shown on the bottom. Red: blanket method; yellow: reference mask; 
orange: overlap of the two masks. Note over-inclusion of hilar struc-
tures in the blanket method
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or to allow for free breathing. Here we opted for a <20-s 
breath-hold protocol that yields images relatively free of 
respiratory motion and 2 × 2 × 3.8 mm3 spatial resolution.

Over most of its surface, each kidney is surrounded by 
a layer of perinephric fat that provides a bright signal on 
T1-W images. This signal can be effectively suppressed. 
Our study suggests that fat-suppressed images lend 

themselves to a more robust segmentation, i.e., are less sen-
sitive to the values of segmentation parameters (see Fig. 7) 
than original in-phase images. Several abdominal organs, 
including the liver, spleen, paraspinal muscles, and intes-
tines, have similar MR signals and are often in contact with 
the kidney surface. The area of contact is typically <10 % 
of the kidney surface. The key concept of the blanket algo-
rithm is to allow a human observer to quickly exclude these 
organs without affecting the processing of the remaining 
90 % of the surface. This idea could be applicable in other 
medical image segmentation tasks.

Our results confirm that the method is relatively fast 
and reliable. While we demonstrated high inter-observer 
agreement, with average absolute discrepancy <3 % across 
observers, Bland–Altman graphs identified the presence of 
small systematic inter-observer bias. Observer bias can be 
reduced by defining clear guidelines about blanket draw-
ing, providing an illustrated list of practical issues, and sys-
tematic training.

The level of accuracy and precision achieved in our 
study compares favorably with the few published meth-
ods for the segmentation of kidney MRI without contrast 
injection. Initial validation of a fully automated segmenta-
tion based on combined T1-W and T2-W MRI showed vol-
ume errors of 5 % ± 4.1 % [12]. A direct comparison also 
shows the blanket method to be competitive with the gener-
ally available 3D Slicer RSS algorithm [13].

The requirement to draw contours in 10 % of the slices 
is a clear limitation of the method. On the other hand, this 
approach provides flexibility, freeing the algorithm from 
assumption of organ convexity. Another limitation of this 
study is that the testing was restricted to normal and dia-
betic kidneys. Future studies are needed to assess the 
method in other renal diseases and potentially other organs.

Conclusions

We have validated a semi-automated renal segmentation 
technique that, due to its fast processing speed, high preci-
sion, and accuracy, has the potential for implementation in 
a clinical scenario. Pending further validation, the method 
could be applied for monitoring of renal status in appropri-
ate patient populations using non-contrast MRI.
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