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A B S T R A C T

Introduction: Pharmacokinetic parameters derived from dynamic contrast-enhanced MRI (DCE-MRI) data are
sensitive to acquisition and post-processing techniques, which makes it difficult to compare results obtained
using different methods. In particular, one of the most important factors affecting estimation of model para-
meters is how to convert MRI signal intensities to contrast agent concentration. The purpose of our study was to
quantitatively compare a linear signal-to-concentration conversion (LC) as an approximation and a non-linear
conversion (NLC) based on the MRI signal equation, in terms of the accuracy and precision of the pharmaco-
kinetic parameters in T1-weighted DCE-MRI.
Materials and methods: Numerical simulation studies were conducted to compare LC and NLC in terms of the
accuracy and precision in contrast kinetic parameter estimation, and to evaluate their dependency on flip angle
(FA), pre-contrast T1 (T10) and arterial input function (AIF). In addition, the effect of the conversion method on
the diagnostic accuracy was evaluated with 36 breast lesions (19 benign and 17 malignant).
Results: The transfer rate (Ktrans) estimated using LC and measured AIF (mAIF) were up to 38% higher than the
true Ktrans values, while the LC Ktrans estimates with the presumed AIF (pAIF) were up to 7% lower than the true
Ktrans values, when FA=45°. When using a small FA, such as 12°, the LC Ktrans with pAIF had least sensitivity to
the error in T10 compared to the Ktrans estimated using LC with mAIF, and NLC with pAIF or mAIF. The breast
DCE-MRI study showed that both LC and NLC Ktrans were significantly different (p < 0.05) between the ma-
lignant and benign lesions. The effect size between benign and malignant values as measured by Cohen's d was
1.06 for LC Ktrans and 1.02 for NLC Ktrans.
Conclusion: The present study results show that, when precontrast T1 measurement is not available and a low FA
is used for DCE-MRI, the uncertainty in the contrast kinetic parameter estimation can be reduced by using the LC
method with pAIF, without compromising the diagnostic accuracy.

1. Introduction

T1-weighted dynamic contrast-enhanced magnetic resonance ima-
ging (DCE-MRI) has been used for quantitative measurement of the
tumor microcirculation environment [1–6]. DCE-MRI data are often
used to estimate contrast kinetic model parameters, such as the volume
transfer constant (Ktrans), the extracellular volume fraction (ve), and the
exchange rate constant Kep (Ktrans/ve), as tumor biomarkers [2,7–11].
However, due to measurement variability, it remains challenging to
compare contrast kinetic parameters from different DCE-MRI studies

[12,13]. One of the major factors that influences the contrast kinetic
parameters is conversion of MRI signal to the concentration of contrast
agent (CA). The relationship between signal and CA concentration de-
pends on MRI scan parameters, such as flip angle (FA) and repetition
time (TR), as well as pre-contrast longitudinal relaxation time T1 (T10)
[14–16].

Most routine clinical DCE-MRI exams do not include actual FA or T1

measurements, because it is not trivial to perform accurate B1 and T1

mapping of a large volume of interest in a relatively short time. In the
absence of measured FA (i.e., B1+ field inhomogeneity) and T10 values,
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particularly in clinical scans, the DCE-MRI data are converted to the
concentration values using the assumption of linearity between signal
enhancement and concentration. In computed tomography, it is valid to
assume a linear relationship between Hounsfield Units and iodine
concentration [17,18]. It is also reasonable to do so in other nuclear
medicine imaging modalities, such as single-photon emission computed
tomography and positron emission tomography, where the signal is
measured from the tracers directly. However, in MRI, the relationship
between signal intensity and CA concentration approaches linearity
only for a low concentration level and limited range of image acquisi-
tion parameters [15,19].

Although it is generally known that the differences in signal con-
version methods can affect pharmacokinetic parameter estimations, the
effect of these conversions on the estimation of pharmacokinetic model
parameters has not been studied in a wide range of contrast kinetic
values and scan parameters. Heilmann et al. [20] demonstrated that the
application of a linear approach led to inaccurate estimates of kinetic
parameters including Kep. In contrast, a recent study with 17 patients
showed that linear conversion may be acceptable for quantification of
model-free hepatic perfusion parameters when a relatively large FA of
45° was used [21]. Further comprehensive study on the effect of signal-
to-concentration conversion method can be helpful in comparing DCE-
MRI studies with different scan parameters and assumptions in data
analysis.

Hence, the purpose of our study was to compare linear signal in-
tensity-to-concentration conversion (LC) and non-linear conversion
(NLC) methods in terms of the accuracy and precision in contrast ki-
netic parameter estimation, and to evaluate their dependency on the

image acquisition parameters such as FA and T10. In addition, we
sought to evaluate the effect of including the arterial input function
(AIF) in the conversion process as in when the AIF is measured, as
opposed to the case of not-including the AIF for the conversion when
the AIF is assumed to be known, for instance using a population-based
AIF already defined in concentration. Finally, we investigated the effect
of the signal-to-concentration conversion method on pharmacokinetic
parameters derived on malignant and benign lesions for breast DCE-
MRI exams.

2. Methods

2.1. Signal to concentration conversion

In this study, we consider two methods, LC and NLC, to convert T1-
weighted MRI signal intensity S(t) to CA concentration C(t). For the LC
method, the conversion was performed assuming a linear relationship
between the S(t) and C(t):

⎜ ⎟= ⎛
⎝

− ⎞
⎠

C(t) 1
r T

S(t)
S

1
1 10 0 (1)

where S0 is the average pre-contrast signal level, r1 is the longitudinal
relaxivity, and T10 is the tissue or blood T1 before CA injection [6,22].

For the NLC method, we assume the data acquisition is conducted
with a spoiled gradient echo sequence (SPGR). The signal equation of
SPGR includes the imaging parameters (TR and FA= α) and T10 of the
tissue of interest [23]. In the NLC method, the CA concentration is es-
timated using the following equation, in the fast water exchange limit

Fig. 1. Effect of (A) T1 and (B) FA on signal enhancement ratios and concentration for NLC method. (C) Lesion signal enhancement curve (D) lesion time con-
centration curve (solid line= LC, dashed line=NLC).
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regime:
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where T1(t) can be directly derived using the SPGR signal equation:
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where M0 is the fully relaxed signal for a 90° pulse when TR≫ T10. It is
assumed that TE is short enough such that the T2* effect is negligible.
The complex transverse magnetization signal measured in MRI can be
described as

= + + +S S t n i S t(t) ( ( ) ) ( ( ) n )n x x y y (4)

where Sx(t) and Sy(t) are the x and y- component of S(t) in the trans-
verse plane, and nx and ny are the measurement noise. The magnitude of
Sn(t), |Sn(t)|, is typically used for DCE-MRI data analysis. Although
|Sn(t)| includes noise as in Eq. (4), Eq. (3) is often used to estimate T1(t)
by assuming S(t)~ |Sn(t)|:

= −

− − −( ) ( )
T (t) TR

ln A ln A cos(α)
1 |S(t)|

S
|S(t)|

S0 0 (5)

where A= (1− cos (α)e−TR)/(1− e−TR). The degree of non-linearity
of the NLC method, Eqs. (2)–(5)., depends on tissue T10 and FA as
shown in Fig. 1A and B, respectively, when noise is negligible. The error
introduced by the assumption of negligible noise in this conversion is
then nonlinearly propagated to estimation of CA concentration using
Eq. (2). Note that the same assumption is used for the LC method in Eq.
(1) where the noise introduced in S(t) is linearly propagated to C(t). In
this study, we assessed how the noise affects estimation of contrast
kinetic parameters when using LC and NLC methods, in addition to the
main focus of this study to assess the effect of T1 and flip angle in the LC
and NLC methods.

The difference between these two conversion methods is evaluated
in terms of contrast kinetic model parameters. For this purpose, we used
the generalized kinetic model (GKM), also known as the Tofts model,
which is one of the simplest and most widely used contrast kinetic
models. GKM is expressed as

∫= −C(t) K C (u) exp(K (t u)/v )dutrans
0

t
p

trans
e (6)

where Cp(t) is the contrast concentration in the plasma, Ktrans the vo-
lume transfer coefficient reflecting vascular permeability and plasma
flow, and ve the extravascular extracellular space volume fraction [13].
Both Ktrans and ve were estimated by fitting the GKM to the measured
data:

∑= −{K , v } arg min (C (t) C(t))trans
e t m

2
(7)

where Cm(t) is the measured contrast concentration and C(t) is the
predicted contrast concentration by Eq. (6). Fitting was performed
using the Nelder-Mead simplex method [24], a multi-dimensional un-
constrained nonlinear minimization, provided in Matlab (The Math-
works, Inc., Natick, MA), with maximum number of iterations= 3000
and termination tolerance on the cost function value and para-
meter= 1e−4.

Numerical simulation of DCE-MRI data and contrast kinetic analysis
were performed using either a presumed AIF (pAIF) that is defined in
concentration or a measured AIF (mAIF) that is converted to con-
centration using the LC or NLC method along with the tissue signal. The
population based AIF by Parker et al. [25] was used as the pAIF. For the
simulation study, the mAIF was generated by converting the pAIF to S
(t) using Eqs. (2) and (3), adding noise, and then reconverting it back to
Cp(t) such that the AIF would have the effect of noise in measurement as
well as signal-to-concentration conversion. Fig. 1C shows the time

intensity curves S(t) generated using Eqs. (2)–(4). with
Ktrans= 0.1–0.9 min−1, ve= 0.5, TR=6.8ms, and FA=12°. Fig. 1D
demonstrates that the CA concentration curves estimated from the LC
and NLC methods show substantial differences from each other. In this
study, we systematically investigated the differences between these two
methods in terms of the estimated GKM parameters.

2.2. Simulation studies

Numerical simulations were carried out to investigate: 1) the un-
certainty in contrast kinetic parameter estimation, 2) the effect of FA,
and 3) the effect of assumed T10 on the LC and NLC methods. S(t) was
generated using Eqs. (2)–(4). with a range of tissue conditions and scan
protocol depending on the goal of each simulation study as described
below. Realistic signal with Rician noise, Sn(t), was generated using the
following:

= + +S n n(t) (S(t) ) ( )n r i
2 2 (8)

where nr and ni are Gaussian random noise with zero mean and stan-
dard deviation corresponding to 10% of the average pre-contrast sig-
nals. The temporal resolution was kept at 1 s/frame in order to avoid
any influence from a low temporal resolution. The total scan time was
8.3 min with 1.3min of pre-contrast scan. For each simulation condi-
tion, the signal with noise, Sn(t), was generated 20 times in order to
measure the range of estimated GKM parameters.

Once Sn(t) was generated, it was converted to CA concentration
curves C(t) using either the LC or NLC method. Then, the GKM model
(Eq. (4)) was fit to the C(t) generated from both methods, with random
initial values. The higher the FA, the more linear the relationship be-
tween S(t) and 1/T1=R1 is as shown in Fig. 1, while the sensitivity of
perfusion sequences is higher with a smaller FA [15]. FA=45° was
used as an example of high FA that gives a near-linear relationship
between SI and R1, and FA=12° as an example of low FA cases that are
commonly used in clinical DCE-MRI exams [21,26,27]. T10 was as-
sumed to be 1660ms for the arterial blood and 1500ms for the lesion
[21,28–30]. r1= 3.9 Lmmol−1 s−1 was used for all simulations. All si-
mulation studies were conducted using the pAIF as well as the mAIF in
order to investigate the effect of including AIF in signal-to-concentra-
tion conversion.

Simulation study 1: To assess the effect of LC and NLC on the un-
certainty in contrast kinetic parameter estimation. Ktrans was varied
from 0.1 to 0.9min−1 while ve was fixed to 0.3. While keeping Ktrans

constant at 0.5min−1, ve was then varied from 0.1 to 0.5. For each
pair of true Ktrans and ve values, Ktrans and ve were estimated.
FA=45° was used for this study.
Simulation study 2: To assess the effect of FA on the LC and NLC
methods. This study was conducted using a pair of representative
Ktrans and ve values (Ktrans = 0.5 min−1 and ve= 0.3). FA was varied
from 7.5° to 85°. Ktrans and ve were estimated for each FA.
Simulation study 3: To assess the effect of the error in T10 on the LC
and NLC methods. This study was conducted using
Ktrans= 0.5 min−1 and ve= 0.3. DCE-MRI data were generated
using T10= 1500ms for the lesion, while the data analysis of the
lesion was conducted assuming the lesion T10 value to range from
700ms and 2500ms. Ktrans and ve were estimated for each presumed
T10 value. This simulation study was repeated with FA=12° and
45°.

2.3. Breast cancer study

DCE-MRI data from 32 patients with 36 breast lesions (19 benign,
17 malignant) were included in this study to investigate the effect of
using the LC and NLC methods on differentiating malignant lesions
from benign ones. Prior Institutional Review Board approval was
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obtained for this retrospective analysis. All images were acquired on a
whole-body 3 T scanner (MAGNETOM TimTrio, Siemens Healthcare,
Erlangen, Germany) equipped with a seven element breast coil (InVivo,
FL). DCE-MRI scans were conducted using a prototype radial stack-of-
stars three-dimensional (3D) SPGR pulse sequence with golden-angle
spoke ordering for continuous data acquisition before, during, and after
contrast administration (0.1 mM/Kg body weight). Relevant imaging
parameters were: sagittal slab orientation, field of
view=280×280×144mm3, FA=12°, TE/TR=1.47/3.6 ms, and
bandwidth= 710Hz/pixel. DCE-MRI images were reconstructed with a
temporal resolution of 5 s/frame (34 spokes/frame) using the Golden-
angle Radial Acquisition Sparse and Parallel (GRASP) MRI method
[30,31]. Tumor regions of interest (ROIs) for all patients were drawn by
a board-certified breast radiologist. The pAIF used for the simulation
study was also used for the analysis of the patient data; and the kinetic
parameters Ktrans and ve were estimated and compared for both LC and
NLC methods.

2.4. Statistical analysis

The estimated contrast kinetic parameters obtained with different
signal conversion methods were compared using an unpaired t-test at
the two-sided 5% significance level. In addition, Ktrans and ve estimates
were compared with the true values that were used to generate the
DCE-MRI data and were used to determine the accuracy and precision
of each method. Accuracy was measured as percent error defined as
(│true value− estimated value│ / true value) ∗ 100 and precision was
measured as the coefficient of variation defined as (standard devia-
tion /mean value) ∗ 100. All simulations and analyses were conducted
using MatLab (The Mathworks Inc., Natick, MA).

3. Results

3.1. Simulation study

3.1.1. Simulation 1: uncertainty in parameter estimation
The goal of Simulation study 1 was to assess the uncertainty in

contrast kinetic parameter estimation associated with the signal-to-
concentration conversion method over a range of Ktrans and ve values
(Fig. 2). In all cases, the NLC provided more accurate estimates of both
Ktrans and ve than the LC method. The error with the NLC method
was<2% regardless of the AIF type (pAIF or mAIF). For the cases with
a fixed ve (0.3) and varying Ktrans (0.1–0.9 min−1) (Fig. 2A and B), the
LC Ktrans estimates with the mAIF were about 20–38% higher than the
true Ktrans values, while the LC Ktrans estimates with the pAIF were
about 3–7% lower than the true Ktrans values. There were significant
differences (p < 0.05) between all estimates made using the NLC and
LC except for Ktrans estimates made using the mAIF when
Ktrans= 0.1min−1. The difference between the LC ve estimates using
the pAIF and mAIF was substantially smaller than that in the Ktrans. For
the cases with varying Ktrans and fixed ve, the precision ranged from
1.7% to 2.9%. Ktrans estimates made using LC with mAIF were most
precise (CV=1.7%) and ve estimates made using LC with pAIF were
least precise (2.9%). There were significant differences (p < 0.05) in
precision for Ktrans estimates made with NLC and LC using the mAIF and
LC with pAIF and mAIF.

For the cases with varying ve (0.1–0.5) and a fixed Ktrans

(0.5 min−1), the LC ve estimates with the mAIF were about 1–8% higher
than the true ve values, while the LC ve estimates with the pAIF was
about 3–7% lower than the true ve values (Fig. 2C and D). Precision for
both LC and NLC methods using the pAIF and mAIF ranged from
1.9–3.2%. The LC Ktrans estimates with the mAIF were up to about 40%
higher than the true Ktrans values although its precision was compatible
with others. There were no significant differences in the precision of the
measurements for these cases with fixed Ktrans and varying ve.

3.1.2. Simulation 2: effect of flip angle
In the second simulation study, the effect of FA was investigated

using representative Ktrans and ve values (Fig. 3). When the pAIF was
used, the NLC method provided accurate estimates of both Ktrans and ve
for all FAs (error < 2.3%). The LC Ktrans estimates were not sig-
nificantly different from the true Ktrans when FA > 75°. However, as FA
decreased, the LC Ktrans estimates decreased gradually, underestimating
Ktrans by up to 67% when FA=7.5°. Similarly, the LC ve estimates were
not significantly different from the true ve when FA > 65°, but the
error increased gradually up to 55% as FA decreased to 7.5°. Precision
for both the NLC and LC methods was within 2% for FA=85°, and it
increased to 8% and 5% with FA=7.5° for the NLC and LC methods
respectively.

When the mAIF was used, the NLC method provided accurate esti-
mates (< 2% error) of Ktrans and ve for FAs≥ 10°; and percent error
increased to 7% for Ktrans and 9% for ve with FA=7.5°. As FA de-
creased from 85° to 7.5°, the LC Ktrans estimates increased gradually
with an overestimation of 748% when FA=7.5°. The LC ve estimates
were not significantly different from the true ve when FA > 65°, but
increased gradually overestimating ve by as much as 54% as FA de-
creased to 7.5°. Precision for the NLC method ranged from 1.8–7% for
Ktrans and 2.2–4.7% for ve estimates, and for the LC method precision
ranged from 2.8–6.4% for Ktrans and 2.2–3.7% for ve estimates. There
were no significant differences in any of the precision measurements for
varying FA.

3.1.3. Simulation 3: effect of precontrast T1
The effect of T10 was investigated in the third simulation study using

the simulation data using Ktrans= 0.5 min−1 and ve= 0.3. When the
correct T10 value (T10= 1500ms) was used, the NLC method accu-
rately estimated Ktrans and ve (< 1% error) as expected. Overall, for
both conversion methods, the error in the assumed T10 resulted in
monotonical changes in the estimated Ktrans and ve; the higher the as-
sumed T10 was, the lower the estimated Ktrans and ve (Fig. 4).

When FA=12° and the assumed T10 varied from 0.7–2.5 s, the
largest errors were seen in Ktrans estimates made using the LC with the
mAIF (Ktrans= 5.32–1.46min−1) and the smallest errors were seen in
Ktrans estimates made using LC with the pAIF
(Ktrans= 0.61–0.17min−1). The NLC with the mAIF had the greatest
variability in ve, with ve values ranging from 1.11 to 0.15, while the LC
ve with the pAIF showed the smallest changes in estimated ve values
(0.43–0.12). Hence, both Ktrans and ve estimates were least affected by
the assumed T10 when the LC method was used with the pAIF (Fig. 4A
and B).

When FA=45° was used, the change in the estimated Ktrans and ve
due to T10 was similar to that when FA=12° among the four different
methods (LC vs. NLC; pAIF vs. mAIF) (Fig. 4C and D). It was noted that
the Ktrans estimated using the LC method with the pAIF were closer to
those using the NLC methods than the Ktrans estimated using the LC
method with the mAIF.

Precision measurements for all simulations ranged from 2.3–2.7%
for FA=45° and 0.3–2.6% using the FA=12°. There were no sig-
nificant differences in any of the precision measurements for varying
T10 when FA=45°. For FA=12°, Ktrans estimates made using the LC
method with the pAIF were the most precise (0.3%) and ve measure-
ments made using NLC with mAIF were the least precise (2.6%). There
were significant differences (p < 0.05) between all measurements ex-
cept for Ktrans and ve measurements made using LC or NLC with the
pAIF.

3.2. Breast cancer study

For the 32 patients with breast lesions, the contrast kinetic model
analysis was conducted using the pAIF. Ktrans estimates were 30–35%
lower with LC than with NLC, and the ve estimates were 60–65% lower
using LC as compared to those using NLC (Fig. 5), which are consistent
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with the simulation results. A similar trend was observed with the
parametric maps. Fig. 6 shows parametric maps for one representative
patient using the NLC and LC methods. There was significant difference
(p < 0.05) between the Ktrans estimates of the patients with malignant

and benign lesions, in the cases of both LC and NLC. The effect sizes
between benign and malignant values as measured by Cohen's d were
1.06 for LC Ktrans, 1.02 for NLC Ktrans, 0.26 for LC ve, and 0.45 for NLC
ve.

Fig. 2. Ktrans and ve estimates from concentration curves generated using the LC and NLC methods with the pAIF and mAIF. (A) Ktrans and (B) ve estimates for fixed ve
(0.3) and varying true Ktrans (0.1–0.9 min−1). (C) Ktrans and (D) ve estimates for fixed Ktrans (0.5 min−1) and varying ve (0.1–0.5).

Fig. 3. Effect of FA used for data acquisition on estimation of Ktrans and ve using the LC and NLC methods. (True Ktrans = 0.5min−1, True ve= 0.3). (A) Estimated
Ktrans and (B) estimated ve.
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4. Discussion

Conversion of T1-weighted DCE-MRI data to CA concentration is one
of the important steps for accurate estimation of pharmacokinetic
parameters. Among many factors that can affect the signal-to-con-
centration conversion, we investigated how the accuracy and precision
of Ktrans and ve were affected using a LC method in comparison to a NLC
method based on the theoretical signal equation of SPGR pulse

sequence commonly used for DCE-MRI exams. Overall, our simulation
data shows that both Ktrans and ve estimates using LC were over-
estimated as compared to those using NLC when the mAIF was used,
while both Ktrans and ve using LC with the pAIF were underestimated.
These findings are consistent with the earlier studies that showed the
assumption of signal linearity may result in miscalculations of phar-
macokinetic parameters [20,21].

The results in this study also demonstrate that the parameter

Fig. 4. Effect of incorrect tissue T1 values on Ktrans and ve estimates using the LC and NLC methods. (A) Estimated Ktrans and (B) Estimated ve using a 12° FA (C)
estimated Ktrans and (D) estimated ve using a 45° FA.

Fig. 5. (A) Estimated Ktrans and (B) ve values using NLC and LC for 10 patients with breast lesions.
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accuracy of the LC method decreased dramatically as the FA decreased.
These findings are similar to those by Guo et al. [32], who found that,
for a spoiled gradient echo pulse sequence, the relationship between the
relaxation rate change and signal enhancement is strongly non-linear
for small FAs and approximately linear for large FAs. While a high FA
may provide more accurate kinetic parameter estimates using the LC
method [21], high FAs are not routinely used in DCE-MRI as they are
less sensitive to the T1 changes due to contrast injection [21,26,33,34].
In contrast, low FAs with the LC method are prone to error and con-
sequently they are more disposed to concentration uncertainty [35].
Hence, it would be preferred to use an intermediate FA, such as 45°, in
order to balance between the accuracy in parameter estimation and the
sensitivity to contrast enhancement.

In regards to the T10 dependence on the estimation of Ktrans and ve,
we found that there was substantial dependence of T10 in estimated
Ktrans and ve using both LC and NLC methods. The LC method over-
estimated Ktrans and ve under all conditions. The NLC method provided
accurate estimates when the correct T10 was assumed, but inaccurate
estimates for all other conditions. In a similar study using rats,
Heilmann et al. [20] found that the assumption of signal linearity re-
sulted in Kep values up to 60% higher than those measured using the
NLC approach. Similarly, Guo et al. [32] demonstrated that Ktrans is
highly dependent on T10 and it approaches the true values only when
T10 is close to the true T10 value. In our simulations, the T10 effect could
not be ignored, even at FA=45°. In cases where the T10 is not known,
we found that using the LC method with a pAIF had lower T10 de-
pendency of Ktrans and ve than other ways, including using the NLC
method.

In order to compare the effect of using the two conversion methods
on diagnostic performance, we assessed breast DCE-MRI data from 32
women and FA=12°. We found that Ktrans and ve estimated using the
LC method with pAIF were lower than those estimated using the NLC
methods with the same AIF. In spite of this, the difference between the
mean Ktrans values of malignant and benign lesions, normalized by the
standard deviation, was similar between the LC and NLC methods using
the pAIF, in which both Ktrans and ve were underestimated with the LC
method, which suggests that the findings from the present simulation
study may apply to clinical data analysis in general. In clinical DCE-MRI
studies, it is important to assess the reproducibility of measurements in
order to evaluate changes in treatment response and to improve the
specificity of DCE-MRI for cancer detection. However, most DCE-MRI
studies are based on the routine clinical data in which T10 measurement
is not available and the FA is substantially smaller than 45°. In such
cases with clinical data, our results suggest that using the LC method
with a population-based AIF may minimize the influence of T1 differ-
ences between lesions or measurements, although Ktrans would be likely

underestimated as shown in Figs. 3 and 4. Such underestimation of
Ktrans reduces the dynamic range of Ktrans which may or may not be
acceptable depending on the needs in specific applications. Further
studies are warranted to investigate if this same pattern holds true
when using DCE-MRI and also to assess the pros and cons of using
different analysis methods considered in this study in terms of differ-
entiating lesions and assessing treatment efficacy.

The breast DCE-MRI data used in this study were acquired using the
GRASP method [31]. GRASP provides a high temporal resolution,
without compromising the spatial resolution that is required for
quantitative contrast kinetic analyses. The GRASP image reconstruction
is performed by minimizing both data consistency and the sparsity
constraint. Total variation along the temporal dimension is used as the
sparsity constraint which regularizes the dynamic data and allows to
achieve good image quality and temporal fidelity [30]. While this type
of compressed sensing image reconstruction method provides images
with substantially reduced noise, they are not free of noise. However,
the noise characteristics of these images from a non-linear image re-
construction, such as GRASP, are not well known and can vary de-
pending on various factors, such as the type of sparsity constraint and
the parameter estimation method. The assumption of Rician noise used
in our simulation study may not be applicable to the breast DCE-MRI
data. Hence, caution needs to be taken in comparing the simulation
study results and that from the breast GRASP DCE-MRI data. Our study
assessed the effect of T10 and FA, under the presence of noise, on the LC
and NLC methods. The assumption on T10 and the choice of FA can
introduce biases in the estimated parameters, whereas noise contributes
more to the precision. Thus, we expect that the bias from assumed T10

values and FA would be similar in both simulation and GRASP data. But
the precision found in the simulation study may not be applicable to the
data analysis result with the GRASP data. Further study is needed to
investigate the noise characteristics of advanced non-linear image re-
construction methods and its influence on estimation of contrast kinetic
model parameters.

There are other limitations to our study. First, our study was con-
ducted with the simplest contrast kinetic model; other contrast kinetic
models including the extended Tofts model [36], the Brix model [37],
the shutter-speed model [38], and the reference region model [39] were
not evaluated. Particularly, contrast kinetic models including the water
exchange effect, such as the shutter-speed model, can be very sensitive
to estimation of T1 values of tissue after contrast injection, which re-
quires accurate measurement of T10. It has not been shown whether the
LC method itself can increase or decrease the sensitivity of DCE-MRI
data to the water exchange effect. However, the requirement to use a
higher FA for the LC method would make the T1-weighted DCE-MRI
data less sensitive to the water exchange effect [40] and may allow to

Fig. 6. Parametric Maps for (A) one representative subject with breast cancer. (B) LC Ktrans and (C) LC ve. (D) NLC Ktrans and (E) NLC ve.
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estimate the perfusion parameters without the need to incorporate the
water exchange effect. Next, this study did not include the influence of
other scan conditions including scan duration and could be extended to
investigate the effect of other parameters in order to optimize the scan
protocol in future simulations. Another limitation was that we used
only one noise level. An increased noise level will reduce the precision.
However, we expect that the overall trends that we observed in this
study would not change with a higher level of noise. This study was
conducted with one type of pAIF and one temporal resolution, although
we expect that using other pAIF models and temporal resolutions would
have shown similar results. Finally, our model was also tested in one
type of cancer.

Future studies are necessary to compare the LC and NLC methods
with more clinical data from different sites such that it can be assessed
whether the LC-based kinetic parameters can be used to combine data
from multiple sites without T1 measurement. In addition, development
of a statistical estimation tool to predict the uncertainty associated with
each factor would be needed to have broad utility in studies with dif-
ferent practical limitations and to guide study design of future clinical
DCE-MRI studies. An uncertainty estimation technique based on mul-
tivariate linear error propagation can be used to calculate uncertainty
maps of pharmacokinetic parameters from the uncertainty in the input
data as demonstrated by Garpebring et al. in 2013 when the NLC
method is used [41]. It was also reported by Schabel and Parker that the
uncertainty and bias in concentration measurement in the NLC can be
minimized by selecting an optimal FA through their uncertainty and
sensitivity analysis [35]. As demonstrated by these methods, more
formal statistical estimation tools could be used to compare the ex-
pected uncertainty and bias of the contrast kinetic parameters with the
LC and the NLC methods, which are needed to find the optimal data
acquisition and analysis methods in practice for future quantitative
DCE-MRI studies.

5. Conclusion

In this study, we have shown through both simulations and in vivo
experiments that the LC and NLC approaches can provide different es-
timates of the contrast kinetic parameters Ktrans and ve. LC may provide
more accurate parameter estimates when T10 is unknown, whereas NLC
is able to provide more accurate robustness in kinetic parameter esti-
mation, in particular in situations such as low FAs. The present study
results also suggest that, when T10 is not measured and a low FA is used
as in routine clinical DCE-MRI exam, the LC method with pAIF could be
used to minimize the uncertainty introduced by an assumed T10.
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