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Abstract
In large clinical centers a small subset of patients present with hydrocephalus that requires surgical treatment. We aimed 
to develop a screening tool to detect such cases from the head MRI with performance comparable to neuroradiologists. We 
leveraged 496 clinical MRI exams collected retrospectively at a single clinical site from patients referred for any reason. 
This diagnostic dataset was enriched to have 259 hydrocephalus cases. A 3D convolutional neural network was trained on 16 
manually segmented exams (ten hydrocephalus) and subsequently used to automatically segment the remaining 480 exams 
and extract volumetric anatomical features. A linear classifier of these features was trained on 240 exams to detect cases of 
hydrocephalus that required treatment with surgical intervention. Performance was compared to four neuroradiologists on 
the remaining 240 exams. Performance was also evaluated on a separate screening dataset of 451 exams collected from a 
routine clinical population to predict the consensus reading from four neuroradiologists using images alone. The pipeline 
was also tested on an external dataset of 31 exams from a 2nd clinical site. The most discriminant features were the Magnetic 
Resonance Hydrocephalic Index (MRHI), ventricle volume, and the ratio between ventricle and brain volume. At match-
ing sensitivity, the specificity of the machine and the neuroradiologists did not show significant differences for detection of 
hydrocephalus on either dataset (proportions test, p > 0.05). ROC performance compared favorably with the state-of-the-
art (AUC 0.90–0.96), and replicated in the external validation. Hydrocephalus cases requiring treatment can be detected 
automatically from MRI in a heterogeneous patient population based on quantitative characterization of brain anatomy with 
performance comparable to that of neuroradiologists.
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Introduction

Hydrocephalus is a common neurological disorder result-
ing from abnormal accumulation of cerebrospinal fluid 
(CSF) with a global prevalence of 85 per 100,000 people 
across all ages [1]. Hydrocephalus usually manifests with Yu Huang and Raquel Moreno contributed equally as co-first 
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abnormal ventricular enlargement on brain imaging, either 
resulting from an obstructing mass lesion in the ventricles 
blocking CSF outflow (obstructive hydrocephalus) or from 
impaired CSF resorption (communicating hydrocephalus). 
This paper focuses on heterogeneous disorders grouped in 
communicating hydrocephalus, which includes normal pres-
sure hydrocephalus (NPH) where ventricles slowly enlarge 
without increased intraventricular pressure. We use the term 
“hydrocephalus” to refer to all forms of communicating 
hydrocephalus, including but not limited to NPH. In large 
clinical centers patients are referred to brain MRI for a vari-
ety of reasons. A small subset of patients present with radio-
graphic appearance of hydrocephalus, which may require 
treatment. However, accurate detection of hydrocephalus 
in this heterogenous group is challenging due to the wide 
spectrum of imaging results, overlap between normal and 
pathologically dilated ventricles, and highly variable signs 
and symptoms. The correct detection often requires a com-
bination of imaging and clinical abnormalities with a high 
degree of suspicion.

Imaging attempts to standardize the diagnosis of hydro-
cephalus have included measurements of ventricular size 
such as the callosal angle and Evans’ index [2–6]. These 
manual 2D measurements are unavoidably time-consuming, 
less precise, and potentially less accurate than automated 
volumetric measurements [4, 7, 8]. We propose that auto-
mated 3D segmentation allows for accurate quantification 
of anatomical features and can assist in routine screening 
for hydrocephalus requiring treatment. Unfortunately, cur-
rently available neuroimaging software such as statistical 
parametric mapping (SPM) [9] and FMRIB software library 
(FSL) [10] are not specifically designed for patients with 
substantial intracranial pathology such as brain tumors. In 
our experience they have produced disappointing segmenta-
tion results in these patients. FreeSurfer [11, 12] provides 
adequate segmentations in the presence of abnormal ventri-
cles, but typically takes hours to compute [4]. Recently, deep 
learning methods have achieved great success in medical 
image segmentation, especially in applications where con-
ventional software fails due to atypical anatomy [13–15].

Previous machine learning efforts to diagnose hydroceph-
alus using MRI exams have compared NPH with healthy 
volunteers or NPH within specific patient populations (e.g., 
Alzheimer’s disease (AD)). In these specific populations and 
using small datasets (< 100 patients), accuracies of over 90% 
have been reported [4, 7, 8, 16, 17]. However, these meth-
ods have not been tested in a broader clinical population 
with heterogeneous conditions typically observed in general 
neuroradiology practice. Here we focus instead on screening 
for hydrocephalus that requires treatment in a broad patient 
population that was referred for MRI brain scans for any 
reason at our cancer center. Thus, the purpose of this study 
was to design a machine algorithm — with performance 

equivalent to neuroradiologists in a heterogeneous patient 
population — to identify hydrocephalus requiring treat-
ment versus all other conditions (i.e., normal and abnormal 
brains, including mild hydrocephalus that does not require 
treatment). The use-case for our automated evaluation of the 
head MRI is to facilitate routine quantitative screening for 
hydrocephalus and to detect those patients that may require 
surgical intervention. Such a screening tool could be used to 
triage and prioritize scans for reading by radiologists similar 
to the approach proposed for acute stroke and hemorrhage 
[18, 19]. We hypothesized that a properly trained 3D deep 
convolutional neural network (CNN) will generate accurate 
segmentation of the ventricles and other brain tissues, pro-
vide volumetric features, and thereby enable accurate ana-
tomical quantification and detection of hydrocephalus. The 
advantage of this approach is that detection is based on a 
set of readily interpretable anatomical features rather than 
relying on a black-box CNN. As such, radiologists using this 
automated screening tool could readily interpret, validate, 
and report the reasons for a given diagnosis.

Materials and Methods

Patients and Datasets

This retrospective single-center study was approved by the 
local Institutional Review Board and Privacy Board and 
written informed consent was waived. All handling of retro-
spective data complied with United States Health Insurance 
Portability and Accountability Act (HIPAA) regulations. 
We first queried a de-identified database housing 25,595 
consecutive brain MRI exams performed over a 15-year 
period (2004–2019) in patients referred for any reason to 
our institution, which is an NCI-Designated Comprehensive 
Cancer Center. The study leveraged two separate datasets: an 
enriched Diagnosis Dataset with clinical and imaging diag-
nosed hydrocephalus requiring treatment and a Screening 
Dataset with imaging diagnosed hydrocephalus. The symp-
toms of the patients with hydrocephalus requiring treatment 
in the Diagnosis Dataset are summarized in Table 1, and the 
symptoms of all patients in the Screening Dataset are sum-
marized in Table 2.

Diagnostic Dataset

To train a pipeline for automated machine detection, a Diag-
nosis Dataset was created with patients who underwent clini-
cal brain MRI exams. This dataset was enriched to include 
a group of 259 hydrocephalus patients requiring treatment 
and 237 non-hydrocephalus patients. The age range of all 
patients in both groups was 2–90 years (mean, 54) for 225 
men and 2–89 years (mean, 55) for 271 women. To create 
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this dataset, our de-identified database was searched for 
all patients who underwent ventricular draining or shunt-
ing < 100 days after brain MRI from 2004 to 2019. From 
these patients, we excluded those without both a clinical 
diagnosis of hydrocephalus based on chart review by an 
experienced neuro-oncologist (R5, 8 years of experience, 
blinded to imaging results) and an imaging diagnosis of 
hydrocephalus based on imaging review by an experienced 
neuroradiologist (R1, 7 years of experience, blinded to clini-
cal symptoms) using established imaging criteria [20]. As 
a result, a total 259 patients were found to have had clinical 
and imaging diagnoses of hydrocephalus who then required 
surgical treatment; the age range of this patient group was 
4–90 years (mean, 54) in 120 men and 2–89 years (mean, 
56) in 139 women. To achieve an approximate 1:1 class bal-
ance, we next randomly selected 237 age- and sex-matched 
non-hydrocephalus patients who had no hydrocephalus or 

focal abnormalities on their MRI scans, had no classic clini-
cal signs or symptoms consistent with hydrocephalus, and 
did not undergo surgical treatment for hydrocephalus; the 
age range of this group was 2–85 (mean, 54) in 105 men and 
2–87 (mean, 54) in 132 women.

Screening Dataset

To evaluate machine performance as an automated triage 
tool in a more realistic patient cohort, a Screening Dataset 
was created with 451 randomly selected brain MRI exams 
from the remaining 25,099 exams from the same time 
period of 2004–2019. This excluded cases requiring treat-
ment to emulate a screening population where patients have 
not yet gone through clinical follow-up to evaluate hydro-
cephalus. It did, however, include 15 cases who had previ-
ously been treated with surgical shunting. The remaining 
N = 436 patients had no prior clinical or imaging diagnosis 
of hydrocephalus. In this cohort, the reference standard (or 
“ground truth”) was the majority reading from three radi-
ologists examining the images based on established criteria 
for hydrocephalus [20] (see below). Both machine and radi-
ologists were evaluated using this reference. The use-case 
for this imaging-only evaluation is rapid triage that does 
not require clinical information. Currently routine imaging 
evaluation of volumetric features is not feasible, but could be 
facilitated by an automated tool. The age range of patients in 
this was 1–95 years (mean, 53) for 185 men and 4–90 years 
(mean, 57) for 266 women (see Fig. 1). The Screening Data-
set had a similar incidence of hydrocephalus as that expected 
in a general clinical population (1–6%) [21, 22].

External Dataset

To test our pipeline, an external dataset was obtained from 
a 2nd clinical site. This dataset consists of 31 brain MRI 
exams from 15 NPH patients (9 males; ages 56–84) and 
16 healthy controls (4 males; ages 47–78). All NPH cases 
here had been shunted and were confirmed to benefit from 
the shunting procedure. All the NPH cases and most of the 
healthy controls were previously reported in [7].

Automated Machine Detection of Hydrocephalus

Figure 2 shows the steps of the pipeline for automated 
machine detection of clinical and imaging diagnoses of 
hydrocephalus that then required treatment: (1) preprocess-
ing, (2) tissue segmentation by a deep CNN, (3) automated 
quantification of volumetric features, and (4) logistic regres-
sion to detect hydrocephalus requiring treatment. Preproc-
essing consists of harmonizing the resolution and orientation 
by resampling MRIs and aligning the tissue probability map 
(TPM) to individual MRIs (Fig. S1). The deep CNN, known 

Table 1   Symptomatology of the patients with clinical and imaging 
hydrocephalus requiring treatment (N = 259) patients in the Diagnosis 
Dataset

*Some patients had more than one symptom

Symptom N = 259 (%)*

“Classic Triad” 52 (20.1)
Gait disturbance 163 (62.9)
Urinary urgency/incontinence 62 (23.9)
Cognitive impairment 150 (57.9)
Headaches 128 (49.4)
Nausea/vomiting 72 (27.8)

Table 2   Symptomatology of all patients in the Screening Dataset

None of these patients had hydrocephalus requiring treatment
*Some patients had more than one symptom

Symptom Total N = 516 (%)*

Aseptic meningitis 1 (0.2)
Brain metastases 141 (27.3)
CNS infection 4 (0.8)
CNS lymphoma 18 (3.5)
Cognitive impairment 8 (1.6)
CNS vascular abnormality 14 (2.7)
Encephalopathy 1 (0.2)
Epilepsy 72 (14.0)
CNS tumors 154 (29.8)
Headaches 31 (6.0)
CNS hemorrhage 6 (1.2)
Leptomeningeal disease 23 (4.5)
Multiple sclerosis 2 (0.4)
Radiation necrosis 13 (2.5)
Screening 81 (15.7)
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as MultiPrior [15], was trained with 3D manual segmen-
tation labels for the ventricles, extraventricular CSF, gray 
and white matter, air cavities, skull, and other soft tissue 
(Fig. 3), using 16 MRI exams (10 hydrocephalus, 6 non-
hydrocephalus; 13 female, ages 7–76) from the Diagnosis 
Dataset and another four scans of normal head anatomy from 
our previous study [23] (for 6 exams we had separate manual 
segmentations for axial scans, yielding a total of 26 manual 
segmentations; see Training of the Segmentation Network 
in Supplement). The trained CNN was subsequently used 
to automatically segment the remaining 480 exams in the 
Diagnosis Dataset, the 451 exams in the Screening Dataset, 
and the 31 exams in the External Dataset. Subsequently, 
nine anatomic features were extracted automatically from 
the 3D segmentation (Figs. 3, S3; see Feature Extraction 
from Segmentation Data in Supplement): ventricle volume 
(VV), ratio of ventricle over extraventricular CSF volume 
(RVC), ratio of ventricle to brain volume (RVB), volume of 
the temporal horns (VH), Evans’ index (EI) [4], Magnetic 

Resonance Hydrocephalic Index (MRHI) [8], and three 
features (E3a, E3c, E2c) generalizing the concept of callosal 
angle [4]. Feature selection was performed to identify the 
subset of ten features (nine anatomical features plus age) 
providing the best training-set performance on a subset con-
sisting of 240 exams in the Diagnosis Dataset (see Fig. 1 
and Feature Selection in Supplement). Finally, the logistic 
regression classifier was tested on a separate subset of 240 
exams, which were also read by four neuroradiologists to 
compare performance (see below).

In the Screening Dataset, the majority consensus readings 
by four neuroradiologists was used as the ground truth for 
training and testing (using leave-one-out). Retraining was 
necessary as this population was significantly different from 
that of the Diagnostic Dataset, and importantly, the labels 
differed significantly. Leave-one-out cross validation was 
necessary because there was only a very small number of 
hydrocephalus cases, and splitting the data in half as we did 
for the Diagnostic Dataset would have severely impacted 

Fig. 1   Number of exams used 
in training and testing. Note that 
for the Screening Dataset there 
is overlap between the train-
ing set and testing set, as the 
training was performed using 
leave-one-out cross validation; 
i.e., for each test exam a differ-
ent classifier was trained on the 
training data leaving out the one 
test exam

Fig. 2   Flowchart of the auto-
mated pipeline for machine 
detection of hydrocephalus
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statistical power. Due to the class imbalance in this dataset, 
cost-sensitive learning by weighted maximum likelihood 
was applied for training the logistic regression classifier 
[24], with a cost of 5 assigned to the positive cases based 
on the prevalence of hydrocephalus in a clinical population 
(1–6%) [21, 22].

For the External Dataset, the same features were extracted 
from the segmentation, and the logistic regression classi-
fier trained with the Diagnosis Dataset was applied on this 
dataset to predict the clinically confirmed NPH.

Radiologist Readings of Hydrocephalus

In order to compare the performance of the machine with 
that of neuroradiologists based on imaging alone, four neu-
roradiologists (R1–R4 with 7, 7, 20, and 6 years of experi-
ence, respectively) independently reviewed a subset of 240 
randomly selected exams (120 hydrocephalus, 120 non-
hydrocephalus; Fig. 1) from the Diagnosis Dataset while 

being blinded to the clinical labels and other demographic 
information (e.g., age). Cases were reviewed by each neu-
roradiologist over 1–2-h periods over 2 weeks. Neuroradi-
ologists reviewed six different slices in the brain (Fig. 4): 
one sagittal midline slice, two coronal slices at the level 
of the third ventricle and of the posterior commissure, and 
three axial slices at the level of the body, left, and right tem-
poral horns of the lateral ventricles. Diagnosis was based 
on subjective evaluation of established imaging criteria for 
hydrocephalus [20] including appearance, shape, and extent 
of ventricles.

For the Screening Dataset, R1–R3 independently read all 
451 exams. R4 provided an independent reading only when 
the R1–R3 reads were not unanimous. During testing, to pre-
vent bias, these majority readings excluded the neuroradiolo-
gist being evaluated (e.g., to evaluate R1, the diagnosis was 
the majority vote from R2–R4). With this construct, we were 
able to evaluate performance by majority for each of R1–R3 
while avoiding some of the biases of consensus reads [25].

Fig. 3   Segmentation for two patients and representative volumetric 
features for all patients. A–C Segmentation for a non-hydrocephalus 
patient (NH) and hydrocephalus patients (H) from the Diagnosis 
Dataset, showing a sagittal, axial, and coronal views for the same 
two patients. D Distribution of three representative features extracted 
from these segmentations. Each point represents a patient (red: 
hydrocephalus, blue: non-hydrocephalus). Features are ratio of ven-
tricle over extraventricular CSF volume (RVC), volume of the tempo-

ral horns (VH), and ratio of ventricle area over area of bounding box 
averaged over multiple coronal slices (E2c; boxes are white rectangle 
in panels C1 and C2). Correlation coefficients between each pair of 
features are noted (*p < 0.05). Histograms of each feature are shown 
on the diagonal, with red and blue indicating hydrocephalus and non-
hydrocephalus, respectively. Separability of each feature measured in 
Cohen’s d is also noted on the diagonal (**p < 0.001, Wilcoxon rank 
sum test, N = 240)
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Outcome Measures and Statistical Methods

Segmentation performance of the deep CNN was measured 
in Dice score [26]. Differences of individual volumetric fea-
tures between hydrocephalus and non-hydrocephalus were 
measured in Cohen’s d as (m1 − m2)/s, where m1 and m2 are 
the means of the two datasets and s is the pooled standard 
deviation [27]. These differences were tested for signifi-
cance using the Wilcoxon rank sum test (Fig. 3D, diagonal 
panels). Performance of the machine and of neuroradiolo-
gists was measured using receiver operating characteristic 
(ROC) curves and precision-recall curves (Fig. 5), with 
95% confidence intervals (CIs) generated using the boot-
strap method with 1000 replications [28]. Comparison of 
specificity between the machine and neuroradiologists was 
performed by selecting a point on the ROC curves that 
matched neuroradiologist sensitivity. Difference in speci-
ficity between the machine and neuroradiologists was then 
evaluated using a test of proportions [29]. The same was 
done using the precision-recall curves, for the compari-
son of precision at a given level of recall. To establish the 
strength of the null hypothesis, we calculated the Bayes fac-
tor (BF) defined as BF = P(D|M1)/P(D|M2), where M1 and 
M2 are the models under null and alternative hypothesis of 
the test of proportions and D is the observed data [30]. This 
was done specifically for this test of proportions using pro-
portionBF() in the BayesFactor package in R [31]. To quan-
tify the differences between neuroradiologist readings and 
the clinical truth labels, we computed the inter-rater agree-
ment using Cohen’s Kappa [32] (Fig. 6) on the 240 exams 
in the Diagnosis Dataset reviewed by the neuroradiologists.

Results

Segmentation Network Performance

First we evaluated the performance of the segmentation with 
the deep CNN using 3D manual segmentations as ground 
truth. Seven-fold cross validation in the training set (N = 26 
scans) achieved an averaged Dice score of 0.92 for gray mat-
ter, 0.93 for white matter, 0.83 for extraventricular CSF, 0.78 
for ventricles, 0.90 for skull, 0.98 for scalp, and 0.81 for air 
cavities. Representative head segmentations on two patients 
from the Diagnosis Dataset are shown in Fig. 3. In the hydro-
cephalus patient, the deep network correctly identified the 
enlarged ventricles (Fig. 3A2 and C2, yellow) and temporal 
horns (Fig. 3B2, light orange). Compared with SPM, the 
CNN better captured atypical anatomy (see Fig. S5; train-
ing set average Dice score: CNN = 0.92, SPM = 0.64, N = 16 
sagittal scans).

Statistics of Individual Volumetric Features

Three representative features extracted from volumet-
ric segmentations of the Diagnosis Dataset are shown 
in Fig. 3D. These features were significantly correlated 
with one another (p < 0.05, N = 240), and all differed sig-
nificantly between hydrocephalus and non-hydrocephalus 
(p < 0.001, Wilcoxon rank sum test, N = 240). Statistics for 
the complete set of features are shown in Fig. S3. The most 
discriminant features were the MRHI [8], ventricle volume 
(VV), and the ratio of ventricle to brain volume (RVB) (see 

Fig. 4   Representative 
T1-weighted post-contrast 
images provided to neuroradi-
ologists to make an imaging 
diagnosis of hydrocephalus 
requiring treatment. This is an 
example for a single exam
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Figs. 3D and S3 for the feature separability measured by 
Cohen’s d).

Feature selection revealed that the best training-set 
performance was achieved when these six features from 
segmentation were used (see Fig. S4; Feature Selection 
in Supplement): ventricle volume (VV), ratio of ventricle 
over extraventricular CSF volume (RVC), ratio of ventricle 
to brain volume (RVB), volume of the temporal horns (VH), 
MRHI [8], and callosal angle [4] as implemented by E3a. 

Remarkably, age in this cohort did not contribute to improv-
ing discrimination despite known effects [22].

Machine Vs Neuroradiologist Performance Using 
ROC Curve Analysis

On the test set (N = 240) of the Diagnosis Dataset, the 
machine gave an ROC with an area under the curve (AUC) 
of 0.91 (95% CI: 0.86–0.94; Fig. 5A). On these same exams, 
the four neuroradiologists (stars in Fig. 5A) achieved accura-
cies of 85.4%, 86.3%, 82.9%, and 85.8%, respectively (with 
a sensitivity of 0.83, 0.79, 0.78, and 0.78, and a specificity 
of 0.88, 0.93, 0.88, and 0.94, respectively). When selecting 
a classification threshold with the same sensitivity as that 
of each of the neuroradiologists, the machine achieved a 
specificity of 0.86, 0.90, 0.91, and 0.91, respectively, which 
were not significantly different from that of the neurora-
diologists (proportion test, p = 0.56, 0.35, 0.53, and 0.33, 
respectively; N = 240), although Bayes factors in favor of 
the null hypothesis were weak (BF = 2.37, 1.26, 1.99, and 
1.13, respectively).

On the Screening Dataset, the machine achieved an AUC 
of 0.92 (95% CI: 0.80–0.96), 0.92 (95% CI: 0.83–0.96), and 
0.90 (95% CI: 0.81–0.94) in predicting the readings of the 
three neuroradiologists, respectively (Fig. 5B). There was 
no significant difference in specificity between the machine 
and the neuroradiologists at the same sensitivity (proportion 
test, p = 0.09 and BF = 0.33 for R1; p = 0.19 and BF = 0.53 
for R2; p = 0.48 and BF = 2.23 for R3; N = 451).

Fig. 5   Test-set performances 
of the machine and neuroradi-
ologists (R1–R4) in detecting 
hydrocephalus. A and D Predic-
tion of the clinical diagnosis 
of hydrocephalus requiring 
treatment in 240 exams (120 
positive) in the Diagnosis 
Dataset. B and E Prediction of 
the majority readings in the 451 
exams in the Screening Dataset; 
for each radiologist (R1–R3), 
a slightly different majority 
diagnosis serves as “ground 
truth,” hence different curves. C 
and F Prediction of the clinical 
diagnosis of hydrocephalus 
requiring treatment in 31 exams 
(15 positive) in the External 
Dataset

Fig. 6   Inter-rater agreement on 240 exams in the Diagnosis Dataset 
between the four neuroradiologists (R1–R4) and the surgical inter-
vention truth labels (Clinical)
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The discrete steps of the ROC curves in Fig. 5B reflect 
the small number of hydrocephalus cases in the Screen-
ing Dataset, with 31, 46, and 40 cases for R1, R2, and R3, 
respectively, yielding 6.8–10.2% prevalence, which is typical 
for a general neuroradiology population.

On the External Dataset, the machine achieved an AUC 
of 0.96 (95% CI: 0.77–1.00) in distinguishing between NPH 
and the healthy controls (Fig. 5C).

Machine Vs Neuroradiologist Performance Using 
Precision‑Recall Curve Analysis

On the test set of the Diagnosis Dataset, the precision-
recall curve for the machine gave an AUC of 0.90 (95% CI: 
0.84–0.94; Fig. 5D). There was no significant difference in 
precision between the machine and the neuroradiologists at 
the same recall (proportion test, p = 0.84 and BF = 2.96 for 
R1; p = 0.80 and BF = 2.38 for R2; p = 0.84 and BF = 2.95 
for R3; p = 0.79 and BF = 2.26 for R4; N = 240).

On the Screening Dataset, the precision-recall curves for 
the machine gave AUCs of 0.49 (95% CI: 0.31–0.65), 0.64 
(95% CI: 0.49–0.79), and 0.57 (95% CI: 0.42–0.73) in pre-
dicting the readings of the three neuroradiologists, respec-
tively (Fig. 5E). Similarly, there was no significant difference 
in precision between the machine and the neuroradiologists 
at the same recall (proportion test, p = 0.87 and BF = 3.47 for 
R1; p = 0.74 and BF = 1.85 for R2; p = 0.82 and BF = 2.59 
for R3; N = 451).

On the External Dataset, the precision-recall curve for the 
machine gave AUC of 0.90 (95% CI: 0.79–0.95; Fig. 5F).

Inter‑rater Agreement

On the Diagnostic Dataset, neuroradiologists agreed with 
one another more than they agreed with the clinical ground 
truth labels (Fig. 6; Cohen’s Kappa average over radiolo-
gists: κ = 0.81 vs. κ = 0.70, respectively).

Discussion

Diagnosis of hydrocephalus is often difficult due to incon-
sistent imaging abnormalities and gradual onset of clinical 
symptoms. Current methods to diagnose hydrocephalus on 
MRI scans are difficult to perform accurately and reproduc-
ibly [3, 4]. Our goal was to train a machine to automatically 
detect clinically relevant hydrocephalus that requires treat-
ment. We trained a deep network to automatically provide 
volumetric segmentations of the head even in the presence of 
atypical brain anatomy. The machine automatically extracted 
volumetric features and achieved performance comparable 
to that of neuroradiologists. Because the study was designed 
to specifically detect clinical and imaging diagnosed 

hydrocephalus requiring treatment, the individuals without 
hydrocephalus included a heterogeneous population of nor-
mal brains and abnormal brains, possibly including patients 
who may have a history of hydrocephalus but who did not 
currently require treatment.

Several automated [7, 16, 17, 33, 34] and semi-automated 
methods [4, 5, 8] have been proposed for detecting hydro-
cephalus. These studies focused on distinguishing between 
NPH and healthy controls, or distinguishing hydrocephalus 
from specific disorders such as Alzheimer’s disease. Our clini-
cal dataset included a much broader, unselected population of 
patients referred for MRI brain scans, with variable patholo-
gies including brain tumors, surgical cavities, and infarcts. We 
found that discrimination was more challenging in this het-
erogeneous dataset compared with earlier studies with smaller 
datasets of < 100 cases in each group [4, 7, 8, 16, 17, 34]. 
Here we have leveraged a significantly larger dataset with a 
total of > 900 patients, including > 200 cases of hydrocephalus 
requiring shunting and > 600 cases with imaging evaluation.

The four neuroradiologists achieved a mean accuracy of 
85.2%, in line with previous studies reporting accuracies 
from 75 to 95% [4, 7, 16]. The wide range of accuracies 
reported in previous literature suggests that it is difficult to 
compare performance across studies differing in discrimina-
tion tasks, patient samples, and data quality. Here we com-
pared the machine with neuroradiologists using identical 
tasks and datasets. The machine achieved comparable per-
formance to the four neuroradiologists when using surgical 
intervention as ground truth data. Notably, the neuroradi-
ologists agreed with each other more frequently than they 
agreed with the surgical intervention label. This justifies our 
choice of training different classifiers for the two different 
tasks, namely, predicting surgical intervention labels (Diag-
nosis Dataset and External Dataset) and predicting majority 
readings (Screening Dataset). We believe that the Diagnosis 
Dataset with hydrocephalus requiring treatment represents 
the ground truth data with highest possible quality, since 
shunting provides complete confidence that hydrocepha-
lus was present and required treatment in that patient. This 
quality data is unfortunately not available for most patients. 
Thus, when evaluating performance in the Screening Dataset 
we instead had to re-train the classifier by leave-one-out with 
majority readings from neuroradiologists.

Although neuroradiologists routinely scrutinize the 
ventricles as part of their clinical interpretation, explicit 
measurements of size are not performed and cases of clini-
cally important hydrocephalus requiring treatment may be 
missed. Completely automated quantification of ventricle 
size and prediction of hydrocephalus that is significant 
enough to warrant treatment may provide a useful screen-
ing tool to prioritize cases that require emergent reads, and 
to provide a useful adjunct to neuroradiologists by increas-
ing confidence in diagnosing unsuspected hydrocephalus. 

1669Journal of Digital Imaging  (2022) 35:1662–1672

1 3



In a clinical setting we envision our pipeline to aid the 
radiologist by triaging cases and flagging only a small sub-
set for a more careful evaluation. A prospective evaluation 
would require traditional radiographic and clinical follow-
up with actual clinical course (i.e., patient then undergoes 
shunting) to determine if the machine correctly identified 
hydrocephalus requiring treatment with high sensitivity.

The data for training the segmentation network only con-
tains 16 MRI exams and another four scans of normal head 
anatomy from our previous study [23]. While we acknowledge 
that this is a small dataset, we do note that 6,000,000 voxels 
are available in a typical MRI scan of size 200 × 200 × 150 for 
training the deep CNN which has about 684,000 parameters. 
We also had neuroradiologists review the manual segmenta-
tion and seven-fold cross validation showed an average Dice 
score of 0.88. A caveat to the Dice scores reported here is that 
the truth labels were in part generated with a previous version 
of the CNN [15]. Despite the complexity of the hydrocephalus 
problem, our focus on “hydrocephalus requiring treatment” 
versus all others greatly simplified the task for the CNN as we 
mostly need the accurate segmentation of the ventricles, CSF, 
and brain. Nevertheless, larger datasets are recommended for 
training the segmentation network if they are available. For 
details on the architecture of the segmentation network and 
ablation study on the network parameters, one is referred to 
our previous work [15].

Clinical brain MRIs usually have anisotropic resolution 
with higher in-plane resolution. To increase robustness, we 
resampled all images to isotropic 1-mm resolution, which 
allowed us to analyze the anatomy regardless of the original 
scan orientation. We leveraged previous work on segmen-
tation of atypical head anatomy [15] to segment enlarged 
ventricles that are often misclassified by conventional neuro-
imaging software [7, 35]. Compared with other recent studies 
using deep learning for segmenting ventricles from hydro-
cephalus [35–38], our 3D deep network achieved higher Dice 
scores. Nevertheless, we recommend using higher-resolution 
isotropic MRIs whenever possible [4]. Although both sagittal 
and axial scans were used for training the deep network, we 
note that the six features for classifying hydrocephalus only 
come from segmentation of axial scans. Extracting these fea-
tures from coronal scans did not significantly affect the clas-
sification performance in the Diagnosis Dataset. Also note 
that patient age did not help to improve the performance and 
thus was not included as one of the features.

A single TPM obtained from adult heads [23] was used 
during the preprocessing using SPM. No significant failure 
was found when this TPM was applied on pediatric and geri-
atric heads, thanks to the non-linear registration algorithm 
implemented by SPM [9]. Also note that in principle, SPM 
allows one to globally rescale and re-normalize the TPM to 
account for variation of tissue volume fractions in different 
individuals [9, 39], and TPM can also be learnt from labeled 

data by being integrated as tunable parameters of the deep 
network [40, 41]. While we did not require these extra steps 
here, they could be utilized in future work for a more robust 
pipeline applicable to subjects in different age groups.

In contrast to previous studies that use semi-automated 
methods [4, 5, 8], our goal was fully automated processing to 
yield a reproducible and scalable approach. Our deep CNN 
provided volumetric segmentations within 2 min on a typical 
computer with Nvidia GeForce GTX 1080 GPU [15]. This 
is significantly faster than alternatives such as FreeSurfer, 
which can take up to 8 h to segment the ventricles in MRI 
for detecting hydrocephalus [4, 8]. The speedup potentially 
provides an efficient, fully automated tool for hydrocephalus 
detection in future population-level studies [42].

We encountered several limitations. First, the Diagno-
sis Dataset defined hydrocephalus as clinical and imaging 
evidence of hydrocephalus requiring surgical intervention. 
The decision for surgical intervention, however, is complex 
and multifactorial including data such as patient symptoms, 
comorbidities, performance status, predicted improvement 
after shunting, and life expectancy. While shunt risks are 
beyond the scope of this paper, we believe that these clini-
cal, imaging, and surgical labels provide maximal confidence 
of hydrocephalus, and our trained machine would provide 
clinically relevant information that may affect treatment deci-
sions. To better simulate real-life conditions, we tested these 
ground truth labels against majority readings of neuroradiolo-
gists for patients in both datasets. Second, we did not explic-
itly segment the temporal horns, as their posterior margins 
are arbitrarily defined, instead adopting a pragmatic estima-
tion of their volumes (details in Supplement). We found that 
this estimate correlated with the presence of hydrocephalus. 
Future work could train the network to explicitly segment the 
temporal horns to calculate their volumes more accurately. 
Similarly, future work could consider further segmenting the 
ventricular system into its components (e.g., lateral, third, 
fourth ventricles) as disproportional expansion of any com-
ponent is a sign of hydrocephalus.

An important design choice was to break up the detec-
tion problem into segmentation, quantification of anatomi-
cal features, and classification based on these features. This 
is not a new approach [4, 7, 8, 17, 33], but it does have 
the benefit of straightforward interpretation of the results. 
Also feature selection can be performed to extract the most 
relevant features from segmentation based on the training 
set. More recently, the trend in the AI literature is to have a 
single deep network provide a final output for the likelihood 
of hydrocephalus without intermediate steps [16, 43, 44]. 
This approach is algorithmically elegant and compelling in 
its simplicity. It does however defy simple interpretation of 
results as the single network remains an impenetrable black-
box to the radiologist. In contrast, the pipeline developed 
here provides segmentations that can be easily inspected, 
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and it provides numerical values and an expected distribu-
tion for each anatomical feature. With this the radiologist 
can judge the validity of the result and can document the 
reason for the diagnosis. This is important if we want the 
machine to aid and enhance the traditional workflow of 
neuroradiologists.

Conclusions

We developed an automated pipeline to rapidly diagnose 
hydrocephalus requiring treatment with performance compa-
rable to that of neuroradiologists. This model has the poten-
tial to assist the diagnosis of unsuspected hydrocephalus, and  
expedite and augment neuroradiology reads. To facilitate 
future studies of hydrocephalus and ventricle segmentation, 
we made the pre-trained network and hydrocephalus classi-
fier publicly available at https://​github.​com/​andyp​otato​hy/​
hydro​Detec​tor.
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