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A B S T R A C T   

Objective: Texture features are proposed for classification and prognostication, with lacking information about 
variability. We assessed 3 T liver MRI feature variability. 
Methods: Five volunteers underwent standard 3 T MRI, and repeated with identical and altered parameters. Two 
readers placed regions of interest using 3DSlicer. Repeatability (between standard and repeat scan), robustness 
(between standard and parameter changed scan), and reproducibility (two reader variation) were computed using 
coefficient of variation (CV). 
Results: 67%, 49%, and 61% of features had good-to-excellent (CV ≤ 10%) repeatability on ADC, T1, and T2, 
respectively, least frequently for first order (19–35%). 22%, 19%, and 21% of features had good-to-excellent 
robustness on ADC, T1, and T2, respectively. 52%, 35%, and 25% of feature measurements had good-to- 
excellent inter-reader reproducibility on ADC, T1, and T2, respectively, with highest good-to-excellent repro-
ducibility for first order features on ADC/T1. 
Conclusion: We demonstrated large variations in texture features on 3 T liver MRI. Further study should evaluate 
methods to reduce variability.   

1. Introduction 

Texture features are measures of variation in signal intensity or 
density within an image. There is increased interest in extending image 
texture from original 2-dimensional photography to the field of medical 
image analysis. The main goal is to develop new radiologic texture- 
based biomarkers for regions of interest (suspicious lesions) on mag-
netic resonance imaging (MRI) or computed tomography (CT). These 
metrics fall into groups of varying complexity. The simplest group 
consists of first order metrics that may be derived from the signal his-
togram, such as standard deviation or entropy. The more complex 
measures involve spatial relationship of the signal based on run-lengths 
and co-occurrence matrices.1,2 

Texture features have been proposed as predictors of lesion pathol-
ogy or as prognostic factors. For example, MRI texture features have 
been proposed as tools to grade bladder cancer,3 classify liver lesions,4 

and predict biochemical recurrence after radiotherapy for prostate 

cancer.5 Texture features also have the potential to be used for prog-
nostication and to detect treatment-related changes. For this purpose, 
these metrics should be reproducible from reader to reader and robust 
and repeatable within patients. Furthermore, to take advantage of the 
big data analytics such as machine learning methods, we need to un-
derstand variability in input data which may be acquired not only over 
time but also when obtained with different parameters and/or at 
different institutions. However, most published studies are retrospective 
in nature and utilize imaging performed with different acquisition pa-
rameters and signal intensity both within and between studies.6 

The robustness of texture features has recently been called into 
question, primarily for CT.7–9 With respect to MRI texture features, 
prospective phantom studies have demonstrated sensitivity to acquisi-
tion parameters,10,11 while retrospective studies on in situ normal tissue 
and lesions have shown sensitivity to acquisition parameters,12 loca-
tion,13 and field strength.14 To date, there are no prospective studies 
analyzing the robustness, reproducibility, or repeatability of MRI texture 
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features in healthy volunteers. The aim of the present study was to 
prospectively assess the robustness of commonly employed texture 
features applied to modern abdominal MRI. We investigated the effect of 
intra-patient repeatability, parameter change, and inter-reader repro-
ducibility of liver texture features measured repeatedly on healthy vol-
unteers on a single 3 Tesla (3 T) magnet. 

2. Materials and methods 

This prospective study was HIPAA-compliant and institutional re-
view board-approved. 

After obtaining informed consent from five consecutive healthy 
volunteers (three male, two female, mean age 40.4 years (range 24–66)), 
abdominal MRI was performed on a 3 T magnet (MAGNETOM Prisma, 
Siemens, Erlangen, Germany) during May 2018. Sequences were 
initially obtained using standard clinical institutional protocol param-
eters for diffusion-weighted imaging (b-values = 0, 800, with apparent 
diffusion coefficient [ADC] maps) and T2-weighted (T2) and T1- 
weighted (three-dimensional gradient-echo radial volumetric interpo-
lated breath-hold examination [VIBE], T1) images with spectral fat 
suppression. Subsequently, to simulate protocol variability in multi- 
center and retrospective trials, patients were scanned using modified 
parameters commonly encountered across institutions, vendors, and 
scanners, and then repeated with baseline parameters (“repeat scan”) 
(Table 1). 

Texture analysis was performed using the Radiomics extension in 
3DSlicer version 4.8.1 (www.slicer.org).15 This provides the graphical 
interface to the open-source code (pyradiomics) for computing texture 
features.16 The description of each feature and equations are listed on 
the pyradiomics website.17 We included 92 commonly used features, 
subdivided into classes:  

(1) First order (FO, n = 18): describe distribution of voxel intensities.  
(2) Gray level co-occurrence matrix (GLCM, n = 23): describe 

second-order joint probability for two intensity levels occurring 
in separate voxels. 

(3) Gray level dependence matrix (GLDM, n = 14): describe distri-
bution of connected voxels that are within a certain distance and 
have similar (i.e. within specified range) intensity.  

(4) Gray level run length matrix (GLRLM, n = 16): quantifies number 
of consecutive voxels of given intensity. 

(5) Gray level size zone matrix (GLSZM, n = 16): consists of con-
nected voxels that share the same intensity.  

(6) Neighboring gray tone difference matrix (NGTDM, n = 5): 
quantifies intensity difference between a given voxel and its 
neighbors. 

Two readers (abdominal radiology fellow [VP], fourth year medical 
student [NG]) with training in 3DSlicer independently placed 5 cm3 

spherical liver regions of interest (ROIs) on axial ADC, T2, and T1 in the 
right posterior, right anterior, left lateral, and left medial lobes at the 
level of the main portal vein while avoiding vessels, ducts, or sur-
rounding structures (Fig. 1). This volume was chosen to encompass 
enough liver tissue and reflect the volume of a typical lesion. Consistent 
ROI placement across scans was accomplished with software-assisted 
and visual co-registration. Feature outputs for all four ROIs were aver-
aged for each scan for each patient. 

2.1. Statistical analysis 

Power calculation was not done for this study to estimate inter- and 
intra-observer agreement. A proper power analysis requires an a priori 
specified estimate of the level of agreement. Unfortunately, there is no 
prior data available to suggest such limits. 

Statistics were computed in SAS version 9.4 (SAS Institute, Cary, 
NC), assessing reliability in terms of:  

(1) Repeatability: variation between single-reader measurements 
performed on baseline versus repeat scan using identical 
parameters  

(2) Robustness: variation between single-reader measurements for 
baseline scan and scan acquired after one acquisition parameter 
was changed  

(3) Reproducibility: variation between two-reader measurements 
on the same scan for the same patient 

Sources of variation were computed as follows:  

(1) Intra-class correlation (ICC): inter-subject variance divided by 
sum of inter-subject variance and intra-subject variance  

(2) Within-subject coefficient of variation (CV): square root of intra- 
subject variance expressed as a percentage of overall mean 

For ICC and CV, restricted maximum likelihood estimation of vari-
ance components was used to compute intra- and inter-subject compo-
nents of the overall variance and these estimates. The CV was only 

Table 1 
3 T abdominal MRI scan parameters for imaging sequences obtained on each patient. Items bolded with an asterisk (*) are MRI parameters which were changed with 
respect to standard parameters. VIBE = volume interpolated breath-hold examination.  

Imaging sequence Number of excitations Time to echo (ms) Time to repeat (ms) Flip angle (degrees) Slice thickness (mm) Matrix size (pixels2) 

Diffusion-weighted imaging 
Standard 4 85 3000 90 4 192 × 144 
Modified 1 (number of excitations) 2* 85 3000 90 4 192 × 144 
Modified 2 (matrix size) 4 85 3000 90 4 128 £ 96* 
Modified 3 (slice thickness) 4 85 3000 90 8* 192 × 144 
Repeat scan 4 85 3000 90 4 192 × 144  

T2-weighted imaging with fat suppression 
Standard 4 83 5000 120 4 320 × 320 
Modified 1 (number of excitations) 2* 83 5000 120 4 320 × 320 
Modified 2 (matrix size) 4 83 5000 120 4 192 £ 192* 
Modified 3 (slice thickness) 4 83 5000 120 8* 320 × 320 
Modified 4 (TE) 4 102* 5000 120 4 320 × 320 
Repeat scan 4 83 5000 120 4 320 × 320  

T1-weighted imaging with fat suppression (radial VIBE) 
Standard 4 1.58 3.2 12 3 256 × 218 
Modified 1 (matrix size) 4 1.58 3.2 12 3 352 £ 300* 
Modified 2 (slice thickness) 4 1.58 3.2 12 5* 256 × 218 
Modified 3 (flip angle) 4 1.58 3.2 6* 3 256 × 218 
Repeat scan 4 1.58 3.2 12 3 256 × 218  
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provided for measures observed to be always positive or always nega-
tive. In the latter case, the CV was computed using absolute values of 
recorded results. Intra-subject differences were computed as the value 
from reader 1 minus the value from reader 2 (reproducibility) or as the 
value from the baseline scan minus the value from the second scan 
(repeatability and robustness). Inter-reader (reproducibility) and inter- 
scan (repeatability and robustness) reliability were interpreted as poor 
when ICC < 0.4 or CV > 20%, moderate when 0.4 ≤ ICC < 0.7 or 10% <
CV ≤ 20%, good when 0.7 ≤ ICC < 0.9 or 5% < CV ≤ 10% and excellent 
when ICC ≥ 0.9 or CV ≤ 5%. 

To compare scan parameters' impact on texture features, the absolute 
value of the difference between values derived for a given subject by a 
given reader from a scan with one parameter changed and the value 
derived for that subject by that reader from a scan conducted using 
baseline values of all parameters (i.e., a baseline or repeat scan) was 
computed for each feature. Since data from five subjects provided 
minimal power to compare parameters on a per measure basis, this was 
pooled over measures. Mixed model analysis of variance was used to 
compare parameters by standardized absolute differences while ac-
counting for lack of statistical independence among differences 
computed for the same subject. The dependent variable was the vector 
containing the standardized absolute differences for all texture features 
from all subjects, both readers, and both baseline scans. An anonymized 
subject was incorporated as a random classification factor. Pairwise 
comparisons among the parameters were conducted with the Tukey- 
Kramer honestly significant difference multiple comparison correction. 

3. Results 

Five healthy volunteers were scanned. A total of 77 acquisitions were 
performed (16 per person, except for 13 from one patient who did not 

complete the three “repeat scans” due to time constraints). Results are 
summarized below. 

3.1. Repeatability 

Repeatability was derived by computing texture measures from a 5 
cm3 spherical ROI placed on ADC maps, T1-weighted, and T2-weighted 
images of the liver. Corresponding texture measures on baseline and 
repeat scan were compared. Repeatability results are summarized in 
Supplemental Table 1. 

ADC: 59% (54/92) and 67% (60/90) of texture features had good-to- 
excellent scan-rescan repeatability for both readers by ICC and CV, 
respectively. GLRLM texture features most frequently had good-to- 
excellent repeatability for both readers (81% ICC and 63% CV), while 
FO features least frequently had good-to-excellent repeatability (39% 
ICC and 35% CV). 

T1: 73% (67/92) and 49% (56/89) of texture features had good-to- 
excellent scan-rescan repeatability for both readers by ICC and CV, 
respectively. Texture features most frequently with good-to-excellent 
repeatability for both readers were GLSZM (94%) and GLCM (86%) by 
ICC and CV, respectively, while FO features least frequently had good- 
to-excellent repeatability (29% ICC, 19% CV). 

T2: 75% (69/92) and 61% (55/90) of texture features had good-to- 
excellent scan-rescan repeatability for both readers by ICC and CV, 
respectively. Texture features most frequently with good-to-excellent 
repeatability for both readers were GLSZM (88%) and GLCM (77%) by 
ICC and CV, respectively, while FO features least frequently had good- 
to-excellent repeatability (50% ICC, 29% CV). 

Fig. 1. Example of lesion region of interest (ROI) placement in 3DSlicer on a T1-weighted imaging sequence with fat suppression. 5 cm3 spherical ROIs were placed 
in the right lateral, right medial, left lateral, and left medial lobes at the level of the main portal vein. 
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3.2. Robustness 

The frequency of features reaching threshold CV or ICC levels for 
each change in MRI acquisition parameter are summarized in Supple-
mental Table 2 and Figs. 2–3. 

For ADC, 41% (113/276) and 22% (59/270) of texture feature 
measurements had good-to-excellent robustness to parameter changes 
for both readers by ICC and CV, respectively. For T1, 31% (86/276) and 
19% (51/270) of measurements had good-to-excellent robustness to 
parameter changes for both readers by ICC and CV, respectively. For T2, 
42% (156/368) and 21% (77/360) of measurements had good-to- 
excellent robustness to parameter changes for both readers by ICC and 
CV, respectively. 

The results of our mixed model analysis are shown in Tables 2–3 and 
Fig. 4. For each texture feature order, the following acquisition param-
eters were the most robust: slice thickness for FO and flip angle for 
GLCM, GLDM, GLRLM, GLSZM, and NGTDM (Table 2). The least robust 
parameter changes were: TE for FO and NGTDM, slice thickness for 
GLCM, NEx for GLDM and GLRLM, and matrix size for GLSZM. Across all 
image weightings and texture feature orders, altering the flip angle had 
the least effect on texture features, while TE had the greatest effect and 
largest variability as indicated by the widest confidence interval (Fig. 4). 
Table 3 demonstrates several statistically significant pairwise differ-
ences between the effects of parameter changes on texture feature out-
puts, which are also dependent upon the texture feature group in 
question. 

3.3. Inter-reader reproducibility 

Reproducibility results are summarized in Supplemental Table 3, 
using data from all scans and texture feature measurements. 

ADC: 78% (359/460) and 52% (233/450) of individual feature 
measurements had good-to-excellent inter-reader reproducibility be-
tween the two readers according to ICC and CV, respectively. FO texture 
features had the highest proportion of measurements with good-to- 
excellent inter-reader reproducibility by ICC (92%) and CV (68%), 
while GLCM features had the lowest by ICC (67%) and NGTDM the 
lowest by CV (28%). 

T1: 64% (293/460) and 35% (158/450) of individual feature mea-
surements had good-to-excellent inter-reader reproducibility according 
to ICC and CV, respectively. FO texture features had the highest pro-
portion of measurements with good-to-excellent inter-reader reproduc-
ibility by ICC (92%) and CV (61%), while NGTDM features had the 
lowest by ICC (32%) and CV (4%). 

T2: 43% (235/552) and 25% (135/540) of individual texture feature 
measurements had good-to-excellent inter-reader reproducibility ac-
cording to ICC and CV, respectively. FO texture features had the highest 
proportion of measurements with good-to-excellent inter-reader repro-
ducibility by ICC (61%) and GLRLM by CV (33%), while GLCM features 
had the lowest by ICC (25%) and GLSZM features had the lowest by CV 
(8%). 

4. Discussion 

This study prospectively analyzed reproducibility, repeatability, and 
robustness of texture features in commonly acquired 3 T liver MRI 

Fig. 2. Histogram of the intra-class correlation (ICC) values as measures of robustness to the change in each scan parameter for the measures associated with each 
contrast. For each scan histogram ICC values were pooled over measures and readers. Vertical reference lines were added at ICC values of 0.2 (red) and 0.7 (blue) to 
identify measures with very poor robustness (ICC < 0.2) or good-to-excellent robustness (ICC > 0.7). ADC = apparent diffusion coefficient map, T1 = T1-weighted 
imaging with fat suppression, T2 = T2-weighted imaging with fat suppression, FO = first order, GLCM = gray level co-occurrence matrix, GLDM = gray level 
dependence matrix, GLRLM = gray level run length matrix, GLSZM = gray level size zone matrix, NGTDM = neighboring gray tone difference matrix. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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sequences. We found many features to be poorly repeatable among in-
dividual patients, have poor robustness to parameter changes, and have 
limited reproducibility between two readers. Therefore, their use may 
not be recommended in clinical practice or for longitudinal analysis. 

There has been much interest in use of texture features for prog-
nostication and characterization. Recently, studies have analyzed 
texture features on liver MRI, particularly for identification of hepatic 
fibrosis18 and liver lesion characterization.4 With objective metrics for 
tissue characterization, it is feasible that texture features could be used 
in machine learning algorithms for targeted questions.19,20 For such 
applications, it is exceedingly important to ensure that results be 
reliable. 

When varying acquisition parameters, we found low concordance 

rates between feature outputs. Feature measurement robustness rates of 
good-to-excellent were only 31–41% and 19–22%, using ICC and CV, 
respectively. Our mixed model analysis demonstrated that altering flip 
angle resulted in the most robust feature outputs across all feature orders 
aside from FO, and also when grouping all features across all image 
weightings. On the other hand, robustness to other parameter changes 
was more variable across different feature orders. Our model demon-
strated lower variation in outputs when altering parameters effecting 
resolution (i.e. matrix size, slice thickness) than those effecting signal-to- 
noise ratio (i.e. excitations). 

Researchers have shown variations in CT texture features when 
phantoms were scanned using different acquisition parameters and 
scanners, with intra-CT and inter-CT reproducibility ranging from 42 to 

Fig. 3. Histogram of the coefficient of variance (CV) values as measures of robustness to the change in each scan parameter for the measures associated with each 
contrast. For each scan histogram CV values were pooled over measures and readers. Vertical reference lines were added at CV values of 50% (red) and 10% (blue) to 
identify measures with very poor robustness (CV > 50%) or good-to-excellent robustness (CV < 10%). ADC = apparent diffusion coefficient map, T1 = T1-weighted 
imaging with fat suppression, T2 = T2-weighted imaging with fat suppression, FO = first order, GLCM = gray level co-occurrence matrix, GLDM = gray level 
dependence matrix, GLRLM = gray level run length matrix, GLSZM = gray level size zone matrix, NGTDM = neighboring gray tone difference matrix. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
The least squares mean and the standard error (SE) of the least squares mean of the percentage absolute differences associated with each scan parameter among texture 
features of each order. The least squares mean represents the mean percentage absolute difference adjusted for the effect of texture order and accounting for the lack of 
statistical independence among differences computed for the same subject. Bolded numbers with a ^ represent the maximum among the means for a given texture 
feature order and bolded numbers with a * represent the minimum among the means for a given texture feature order. That is, the least and most robust parameters for 
a given texture order are respectively identified by ^ and *. FO = first order, GLCM = gray level co-occurrence matrix, GLDM = gray level dependence matrix, 
GLRLM = gray level run length matrix, GLSZM = gray level size zone matrix, NGTDM = neighboring gray tone difference matrix  

Scan parameter FO GLCM GLDM GLRLM GLSZM NGTDM 

Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE 

Excitations  23.5%  2.1%  24.6%  3.5%  35.6^  5.5%  29.5%^  3.7%  39.4%  5.5%  81.2%  17.6% 
Flip angle  22.5%  2.4%  19.7%*  3.9%  21.2%*  5.8%  20.8%*  4.0%  25.2%*  5.9%  34.5%*  21.6% 
Matrix size  25.9%  2.1%  22.8%  3.3%  32.0%  5.4%  25.5%  3.7%  40.9%^  5.4%  55.0%  16.1% 
Slice thickness  18.1%*  2.1%  27.5%^  3.3%  28.2%  5.4%  23.1%  3.7%  30.4%  5.4%  47.7%  16.1% 
Time to echo  30.7%^  2.4%  25.3%  3.9%  27.7%  5.8%  26.1%  4.0%  36.1%  5.9%  107.2%^  21.6%  
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89% and 16–85%, respectively.8 For MRI, prior study has demonstrated 
variability in features obtained on brain tumors when varying dynamic 
range and matrix size, with entropy (an FO feature) the only feature 
remaining robust,12 however this study was retrospective and used 
interpolation post-processing. A study of breast MRI phantoms sug-
gested that resolution may be the most important factor to consider 
between studies,11 contrary to our findings. Retrospectively recon-
structed brain MR images demonstrated slight differences between 
features obtained at different slice thickness,21 as in our study. 

We also found differences in features derived from ROIs placed on 
identical scans by two trained users of a commonly utilized software 
platform, 3DSlicer. These differences must arise out of slight variation in 
ROI placement. This result is surprising, as we hypothesized it would be 
minimal when using large ROIs in normal organs of healthy volunteers. 
Texture feature reproducibility rates of good-to-excellent were only 
43–78% and 25–52% using ICC and CV, respectively. That no image- 
weighting exceeded 78% suggests there is higher than expected inter- 
reader discordance across all features. This implies an inability of 
human observers to reproduce x-y-z coordinates of lesion center, and 
that automated tools may be necessary to ensure reproducibility. Among 
groups of features, FO features had the highest proportion of good-to- 
excellent reproducibility across all image weightings. We hypothesize 
that FO features, being global measures derived from signal distribution 
over the entire ROI, were the most reproducible between readers 
because different ROI placement by two readers will cause minimal 
variability in the shape of the signal histogram on which FO features are 

based. On the other hand, second order features require more complex 
and local calculations involving a larger number of variables, which 
causes greater error propagation,22 and factors in the differences in 
signal from neighboring voxels. Because of this, noise-rich MRI images 
(particularly ADC maps) which accentuate signal heterogeneity will 
affect second order features more than FO features. 

Lastly, we found measurable feature differences on scan-rescan pa-
tient images. Similar to reproducibility failures, changes in magnetic 
field homogeneity induced by different position with respect to coils and 
patient repositioning could also induce changes in these metrics. 
Repeatability rates of good-to-excellent were seen in 59%–75% and 
49–67% of features using ICC and CV, respectively. In contrast to their 
high level of reproducibility, FO features were the least repeatable, 
while GLCM features were the most repeatable across all image 
weightings. We were surprised to observe that FO features were less 
repeatable than second order features when ROIs were placed by the 
same reader on two different scans acquired with identical parameters. 
While using the same reader on multiple acquisitions may minimize 
inter-reader error with respect to ROI placement, it may accentuate 
error from uncontrollable factors such as field variation, patient move-
ment or angulation, and temperature changes. It appears that FO fea-
tures may be more susceptible to these uncontrollable factors, but 
additional study is warranted to confirm this finding. 

Lack of repeatability, specifically with respect to different patient 
settings (i.e. different scanners or imaging protocols) has been 
posited.13,23 To this end, investigators have developed methods to adjust 

Table 3 
P values from the mixed model analysis to compare scan parameters in terms of the mean percentage absolute difference with the Tukey-Kramer honestly significant 
difference multiple comparison correction. Numbers with a * represent p values less than 0.05. FO = first order, GLCM = gray level co-occurrence matrix, GLDM = gray 
level dependence matrix, GLRLM = gray level run length matrix, GLSZM = gray level size zone matrix, NGTDM = neighboring gray tone difference matrix.  

Scan parameters compared FO GLCM GLDM GLRLM GLSZM NGTDM 

Excitations Flip angle  0.974  0.461  0.003*  0.015*  0.010*  0.246 
Excitations Matrix size  0.423  0.913  0.570  0.207  0.983  0.506 
Excitations Slice thickness  0.007*  0.694  0.046*  0.016*  0.033*  0.278 
Excitations Time to echo  0.008*  0.999  0.148  0.620  0.889  0.753 
Flip angle Matrix size  0.295  0.786  0.018*  0.257  0.003*  0.850 
Flip angle Slice thickness  0.115  0.077  0.188  0.841  0.578  0.965 
Flip angle Time to echo  0.008*  0.479  0.426  0.328  0.128  0.068 
Matrix size Slice thickness  0.001*  0.166  0.419  0.543  0.005*  0.986 
Matrix size Time to echo  0.073  0.890  0.624  0.999  0.646  0.128 
Slice thickness Time to echo  0.001*  0.930  1.000  0.650  0.501  0.067  

Fig. 4. Interval plot for the percentage absolute dif-
ferences associated with each scan parameter among 
texture features of all orders combined. The mean 
percentage absolute differences are shown as solid 
circles and the limits of each interval extend from the 
lower to the upper limit of a 95% confidence interval 
for the true mean percentage absolute difference. 
Lower percentage absolute difference (i.e. for flip 
angle) indicates more robust feature outputs when 
given parameter changed. ADC = apparent diffusion 
coefficient map, T1 = T1-weighted imaging with fat 
suppression, T2 = T2-weighted imaging with fat 
suppression.   
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for differences on CT, for example using image compensation.24 Such 
methodology is less well studied for MRI. In addition, MRI is prone to 
within- and between-scan intensity changes given that MRI intensity is 
not standardized to a reference level as Hounsfield units are to water and 
air. That features were poorly repeatable in patients rescanned on the 
same day using the same scanner and parameters implies that corrective 
mechanisms may be difficult to achieve. Limiting studies to a single time 
point rather than multiple follow-up exams may be a partial mitigator, 
and using within-patient or within-scan control methods (e.g. normal-
izing liver lesion data using background liver as a control) could have 
added benefits. These challenges are compounded for multi-institutional 
studies where protocols and conditions may differ vastly; for these 
studies substantial effort should be devoted early on utilizing pilot 
studies to test texture feature stability and variability prior to selecting 
tested features and analyzing pooled data.25 Authors have also sug-
gested harmonization solutions for ensuring reproducibility across 
scanners and protocol settings in the image domain (e.g. standardized 
image acquisition, post-processing of raw data, augmentation, style 
transfer) and feature domain (e.g. normalization and harmonization, 
including ComBat harmonization).26 

There are several study limitations. First, we had a small sample size 
(n = 5). However, since each patient was imaged multiple times, the 
total number of unique imaging sequences for ROI placement was sub-
stantially larger (n = 77), and is more typical for studies on repeatability 
and robustness. Second, we analyzed healthy volunteers and studied 
ROIs placed on normal parenchyma, so our results may not be trans-
latable to lesions, whole organs, or patients with underlying liver disease 
such as cirrhosis. Since a diseased liver introduces more variability, such 
as the fraction of ROI containing normal versus fibrotic liver, we should 
expect an even wider numerical discrepancy of texture features (poorer 
agreement) in clinical studies. Third, we only studied imaging per-
formed on an MRI from a single vendor. Lastly, texture analysis is 
sometimes preceded by steps such as signal normalization or dis-
cretization; further study should assess measurement robustness on post- 
processed images. 

In conclusion, we demonstrated large variations in texture outputs 
with respect to intra-patient repeatability, robustness to parameter 
changes, and inter-reader reproducibility. Further studies are needed to 
assess reliability of not just individual features but also of multivariate 
radiomic models that may play an increasing role in coming years. 
Research should also focus on methods to correct for this variation. 
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