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Abstract
Purpose: Ktrans has often been proposed as a quantitative imaging biomarker for
diagnosis, prognosis, and treatment response assessment for various tumors. None of
the many software tools for Ktrans quantification are standardized. The ISMRM Open
Science Initiative for Perfusion Imaging–Dynamic Contrast-Enhanced (OSIPI-DCE)
challenge was designed to benchmark methods to better help the efforts to standard-
ize Ktrans measurement.
Methods: A framework was created to evaluate Ktrans values produced by DCE-MRI
analysis pipelines to enable benchmarking. The perfusion MRI community was
invited to apply their pipelines for Ktrans quantification in glioblastoma from clini-
cal and synthetic patients. Submissions were required to include the entrants’ Ktrans

values, the applied software, and a standard operating procedure. These were eval-
uated using the proposed OSIPIgold score defined with accuracy, repeatability, and
reproducibility components.
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Results: Across the 10 received submissions, the OSIPIgold score ranged from
28% to 78% with a 59% median. The accuracy, repeatability, and reproducibil-
ity scores ranged from 0.54 to 0.92, 0.64 to 0.86, and 0.65 to 1.00, respectively
(0–1= lowest–highest). Manual arterial input function selection markedly affected
the reproducibility and showed greater variability in Ktrans analysis than automated
methods. Furthermore, provision of a detailed standard operating procedure was
critical for higher reproducibility.
Conclusions: This study reports results from the OSIPI-DCE challenge and high-
lights the high inter-software variability within Ktrans estimation, providing a frame-
work for ongoing benchmarking against the scores presented. Through this chal-
lenge, the participating teams were ranked based on the performance of their
software tools in the particular setting of this challenge. In a real-world clinical
setting, many of these tools may perform differently with different benchmarking
methodology.

K E Y W O R D S

challenge, data analysis, DCE-MRI, glioblastoma, open-science, perfusion

1 INTRODUCTION

Dynamic contrast-enhanced (DCE) MRI provides phys-
iological parameters associated with the exchange of a
contrast agent between intravascular and extravascular
spaces.1 In patients with glioblastoma, the volume transfer
constant (Ktrans) has been proposed as a marker for charac-
terizing tumor pathophysiology, which can aid in grading,2
assessment of treatment response,3 and differentiation of
recurrence from radiation necrosis.4

Quantitative DCE-MRI through pharmacokinetic (PK)
modeling is intended to yield reproducible parameters
across different studies and institutions.5 However, the
variation in the arterial input function (AIF), chosen PK
models, and stability in model fitting adversely affect the
quantification of Ktrans values.6 Therefore, the reported
Ktrans values differ among studies, making it currently
unsuitable as a marker in multi-institutional clinical tri-
als. Furthermore, a small number of studies have mea-
sured repeatability. Based on this limited literature, cur-
rent Quantitative Imaging Biomarkers Alliance (QIBA)
guidelines state that a change of Ktrans above 21.3% may
indicate true Ktrans change with 95% confidence in gliblas-
toma.7,8 Therefore, methods with a repeatability coeffi-
cient (%RC)8 above this threshold cannot reliably detect
tumor progression in longitudinal studies, further con-
tributing to the limitations of quantitative DCE-MRI in
clinical trials.

Over the past decade, more attention has been brought
to the replication of research studies, the so-called repro-
ducible research.9,10 While researchers make their best

effort to report accurate data, the choices they have to
make about different aspects of data collection and anal-
ysis methods could influence the outcome of their signif-
icance tests and, therefore, the derived conclusions.11,12

This “researcher degrees of freedom” issue imposes chal-
lenges for the reproducibility of the results when reana-
lyzing the same data, or generalizability of the findings to
independent data.11,12

For quantification of Ktrans from DCE-MRI, there is an
extensive list of available tools13 from which to choose,
although no “gold standard” analysis technique exists for
clinical data. Evaluation and validation of these tools in
the reported literature are based on data sets collected by
authors, rendering it difficult to perform a fair compari-
son between them.14 When provided with a wide range
of possible (well-grounded) options for analysis methods,
researchers may select or report methods that yield more
favorable results for their data.11,12 Despite researchers’
best intentions, the inclination to show statistically signif-
icant results, referred to as “selective analysis reporting,”
could accompany false positive errors.14 To avoid such
errors, which hinder reproducibility, it is critical to pro-
vide comprehensive and open/transparent details about
the study design and analysis approaches.

The ISMRM Open-Science Initiative for Perfusion
Imaging (OSIPI), an ISMRM perfusion study group ini-
tiative, was founded to promote reproducible research
and open science in perfusion imaging and to facilitate
the translation of software tools into clinical practice.
The OSIPI task force on DCE and dynamic susceptibility
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SHALOM et al. 3

contrast challenges (Task Force 6.2) was formed in Febru-
ary 2020 with a group of medical physicists, radiologists,
and biomedical engineers to address the current issues of
benchmarking perfusion quantification methods by orga-
nizing community challenges.

The OSIPI-DCE, as an ISMRM challenge, was the first
of such challenges. OSIPI-DCE aims to design and build
a systematic and controlled framework to benchmark
the quantification of Ktrans as a diagnostic or prognostic
biomarker in brain tumors, and to apply this framework
to submissions from the community. This setup allowed
the evaluation and validation of software packages in a
single setting with synthetic and real-world clinical data.
For the first time in a challenge setting, the accuracy,
repeatability, and reproducibility of various methods were
assessed for Ktrans quantification in glioblastomas. This
article describes the challenge data, design, results of eval-
uating different analysis methods, and obstacles in the
assessment of reproducibility.

2 METHODS

The OSIPI-DCE challenge was launched at the ISMRM
Annual Meeting on May 15, 2021, upon presentation of
the abstract15 on the outline of the challenge during this
annual meeting.

2.1 Challenge setup

This challenge aimed to assess the results and analysis
methods submitted by the participating teams according
to the OSIPIgold score (Table 1) for their (1) accuracy
in the quantification of Ktrans using a set of synthetic
data designed for this challenge, (2) repeatability using
open-access test–retest scans of 8 patients with glioblas-
toma,16,17 and (3) reproducibility based on an independent
re-analysis of the data by a neutral evaluator team.

The challenge design was submitted as an abstract15

for peer review at the 2020 ISMRM Annual Meeting.
The researchers in the perfusion MRI community were
invited by email to participate through the ISMRM Per-
fusion Study Group, LinkedIn, Twitter, or via direct con-
tact. Interested teams registered on the ISMRM Challenges
website and received submission guidelines via an auto-
mated email. The participants were asked to submit their
results along with a report about the analysis approach, as
described below:

• Matrices of voxelwise Ktrans maps (in the original space)
for all slices in the synthetic and clinical DCE-MRI (two
visits per subject) in NIfTI format.

• Standard operating procedures (SOPs) with sufficient
detail to allow a neutral evaluator team to reproduce

the results without interaction with the challenge
participants. The SOPs should explain software access
and installation and provide a step-by-step guide to
reproduce the analysis. It is essential that the synthetic
and patient data are analyzed with the same approach.
Copies of each submission SOP are contained in Sup-
porting Information Data S7.

No requirement was placed on the challenge partici-
pants to release their source codes or to base their submis-
sions on open-source or open-access software. However,
for commercial or in-house software that was not freely
available, the participants were asked to provide a trial
license or an executable file for the independent replica-
tion of the results. The license could be temporary, allow-
ing sufficient time for re-analysis. Instructions on how
to obtain the license should have been included in the
SOPs without requiring interactions between submitters
and neutral evaluator teams.

The challenge was open for submissions through the
end of the year 2021. The task force reached out to experi-
enced DCE scientists to help in evaluating the submissions
in terms of procedural reproducibility and the reported
Ktrans maps, after the challenge was closed. The evalua-
tors had either more than 1 (I.W.), 5 (Z.A., S.B.), or 10
(P.S.L., J.V., H.O.L., K.S.) years of experience in DCE analy-
sis. At the end of the challenge, the SOPs and software tools
for each submission were provided to the independent
evaluators.

2.2 Data description

Two sets of data were provided in our challenge
repository.18

2.2.1 Clinical data

A set of repeat DCE-MRI and T1-mapping scans with
accompanying T1 contrast-enhanced (CE) FLASH and T2
CE fluid-attenuated inversion recovery from 8 patients
with glioblastoma, selected from the RIDER Neuro MRI
database16,17 and renamed, were acquired on a 1.5T
Siemens scanner at two scan dates, typically 1–2 days
apart. Sequence details are provided in Supporting Infor-
mation Data S1.

2.2.2 Synthetic data

Two synthetic DCE-MRI patient data sets were generated
from RIDER subjects16,17 to be analyzed with the same
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4 SHALOM et al.

T A B L E 1 Summary of Open Science Initiative for Perfusion Imaging (OSIPI) scoring metric definitions. Here, OSIPIgold defines the
full proposed metric, whereas OSIPIsilver defines the score applied in cases in which reproduction of submissions was not possible.

Global OSIPI scoring metric

OSIPIgold = 100 ⋅ Scoreaccuracy ⋅ Scorerepeat ⋅ Scorereproduce OSIPIsilver = 100 ⋅ Scoreaccuracy ⋅ Scorerepeat

Component scoring metrics

Scoreaccuracy = exp

(
− 1

4

∑4
i=1

𝜎

(
Ktrans

i ,Ktrans
i,exact

)
𝜇

(
Ktrans

i ,Ktrans
i,exact

)
)

Accuracy score: a measure for the accuracy of the Ktrans values of submissions (Ktrans
i )

by comparison with exact values (Ktrans
exact ) in the synthetic data. The bar here denotes

a mean Ktrans value over the tumor mask in each scan, with averaging over the four
synthetic data sets (𝜎 and 𝜇 represent sample SD and mean, respectively, between
the two scans).

Scorerepeat = exp

(
− 1

8

∑8
i=1

𝜎

(
Ktrans

i,v1 ,Ktrans
i,v2

)
𝜇

(
Ktrans

i,v1 ,Ktrans
i,v2

)
)

Repeatability score: a measure for the repeatability of the Ktrans values of submissions.
This score compares the submitted Ktrans values for the test (Ktrans

i,v1 ) and retest (Ktrans
i,v2 ).

The bar here denotes a mean Ktrans value over the tumor mask in each scan, with
averaging over the eight clinical patient data sets (𝜎 and 𝜇 represent sample SD and
mean, respectively, between the two scans).

Scorereproduce = exp

(
− 1

20

∑20
i=1

𝜎

(
Ktrans

i ,Ktrans
i,neutral

)
𝜇

(
Ktrans

i ,Ktrans
i,neutral

)
)

Reproducibility score: a measure that quantifies to what extent the submitted Ktrans

values are independently reproducible. The metric compares the submitted Ktrans val-
ues (Ktrans

i ) calculated for the two visits of each of the 10 cases (i.e., two synthetic and
eight patient data) against the same values reproduced independently (Ktrans

i, neutral) by
experienced neutral evaluators, based on the standard operating procedures (SOPs)
provided. The bar here denotes a mean Ktrans value over the tumor mask in each scan
with averaging over the 20 visit data sets (𝜎 and 𝜇 represent sample SD and mean,
respectively, between the two scans).

processing pipeline as the clinical data. For this reason,
the synthetic DCE-MRI data were integrated into an origi-
nal DICOM study, also including the anatomical reference
data from the same RIDER subjects.

Synthetic data were created following two steps: First,
an inverse model was applied to the DCE-MRI and vari-
able flip angle (VFA) data set to obtain parameter maps
for precontrast relaxation rate (R10), rate constants (Ktrans,
kep), capillary plasma volume per unit volume of tissue(

vp
)
, and an AIF; subsequently, these parameter maps

had thresholds and filters applied to produce an unknown
ground truth. The forward model was applied to pro-
duce synthetic DCE-MRI and VFA signal intensity curves.
All details of the inverse modeling remained undisclosed
during the submission period. The challenge guideline
detailed the PK model used for the forward modeling as
well as the assumed concentration and relaxation rate rela-
tionships. In addition, it defined the creation of VFA data
using R10 maps and a constant R∗20 throughout.

For the inverse approach, initial parameter values were
recovered from the RIDER data using matrix form.19

A partial volume correction was applied using the sagit-
tal sinus signal. Thresholds were then applied to the
output to discard negative values produced during the
least-squares fitting process and limit maximal volume
fraction values to 1. Smoothing of the fitted values was
carried out using a 3× 3 median filter. The AIF signal

(corrected with hematocrit 0.45)20 was selected from the
middle cerebral arteries and scaled to have a realistic peak
value of 6 mM.21

For the forward model, the extended Tofts model was
applied with the AIF and parameter maps (Ktrans, kep, vp).
The resulting tissue concentration–time curves were con-
verted into R1(t)(= 1∕T1(t)) and R∗2(t)

(
= 1∕T∗2 (t)

)
, assum-

ing a linear relationship between concentration and the
relaxation rates according to the r1 and r∗2 relaxivities of
gadolinium–diethylenetriaminepentaacetic acid, respec-
tively (3.9 and 10 Hz/mM),22,23 and by making use of
the R10 and R∗20 maps. To deduce the precontrast relax-
ation rates, the signal evolution was modeled as a spoiled
gradient-echo sequence in steady state. This was applied
to express the signal everywhere at the initial time and the
initial sagittal sinus signal. These relations were combined
in order to give a calculated R10 map using the reference
T1 of 1.48 s in the sagittal sinus at 1.5 T.24 The constant
precontrast R∗20 applied was 17.24 Hz.23 Scan-specific con-
stants match the original scan values with flip angle= 25◦,
TR= 3.8 ms, TE= 1.8 ms, and using a 1× 1× 5 mm3 voxel
size.

Subsequently, these relaxation rates were converted
into DCE-MRI signal time curves, again modeling signal
evolution as a spoiled gradient-echo sequence. A multi-
plicative constant was defined to give the synthetic data
similar maximal signal values to the original RIDER data
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SHALOM et al. 5

set. This produced synthetic data with a 16-slice volume
captured with a temporal resolution of 4.8 s.

Finally, Rician noise was added to the signal–time
data by assessing the SD across the precontrast time steps
within each voxel from the original RIDER data set. Vox-
elwise noise values were then applied from randomly
sampled Gaussian distributions with the voxelwise SD;
the absolute resulting signal was taken. Across all voxels,
the signal noise applied had a mean and SD (𝜇 ± 𝜎) of
5.65± 3.21 and 5.51± 3.14 for synthetic Patients 1 and 2,
respectively. The VFA data were recreated using the same
signal model and R10 maps with flip angles of 5◦, 10◦, 15◦,
20◦, 25◦, and 30◦.

Synthetic signal intensity–time data were exported in
DICOM file format, and the original DICOM DCE-MRI
data were replaced by the synthetic data. The patient
identifiers were overwritten to avoid confusion with the
original RIDER data from which the synthetic data were
derived. The parameter maps (Ktrans, kep, vp) were then
changed to create the second visit data through the same
process with identical AIF. No guarantee was offered that
the second visit data were identical to the first, and some
substantial differences were deliberately introduced. The
differences between visits helped to assess the accuracy
while also penalizing methods that overconstrained visits
to have repeatable values.

2.2.3 Tumor segmentation

Segmentation of brain tumors for each visit in the clinical
and synthetic data was performed on the last time series of
DCE-MRI scans by comparing to the anatomical postcon-
trast T1 and fluid-attenuated inversion-recovery images
to delineate the enhancing tumor region. The regions of
interest (ROIs) were not released to the challengers. The
segmentations were carried out using the ITK-SNAP soft-
ware25 by an experienced neuroimaging researcher (R.P.)
under the supervision of a senior neuroradiologist (L.H.).
These mask data were output in NIfTI format to be over-
laid on the submitted Ktrans NIfTI matrices.

2.3 Leaderboard evaluation

The entry submissions were evaluated using the OSIPI
scoring metrics as defined in Table 1.

2.3.1 Segmentation overlay

The segmentation masks were overlaid in Python using
the Nibabel library26 onto the ground-truth data and

submitted Ktrans maps for all data sets. The extracted arrays
from all submissions were visualized within Python to
ensure correct alignment with the segmentation masks. It
was found that the submitted NIfTI files had varying align-
ment quality due to the nature of the analysis techniques
in stripping array data from DICOM files. Any submissions
with alignment issues were transformed without interpo-
lation using NumPy 90◦ rotations or axis reflection, to
ensure full overlap with the correct ROIs within the tumor
segmentation masks.27 Mean Ktrans values were calculated
by considering the average values—including negative
and zero values but excluding NaN values—within the
tumor-mask ROIs (TM-ROIs) and used within the scoring
metrics (Table 1).

2.3.2 OSIPI scoring

The entries were planned to be scored over three main
scoring metrics (Table 1): accuracy, repeatability, and
reproducibility. The three metrics were multiplied to pro-
duce a single final score, which implies that a method
needs to score well against all three criteria in order to
score well overall. Methods should return values in a
repeatable way to allow tracking of any changes that occur
and give accurate values for this. Reproducible methods
are of pivotal importance to allow dependable use across
centers or collaborators.

These scoring metrics (Table 1) are defined similarly
to conventional definitions of accuracy and repeatability.
It is worthwhile to mention that we opted for a novel
definition of accuracy in this challenge as an alternative
to the conventional definition (1-bias), to overcome the
limitations such as negative scores. These new metric def-
initions enable the separate metrics to be combined into
one overall score that is equally influenced by the three
criteria.

2.4 Preliminary evaluation of the
challenge

An independent team of two scientists, D.A.H. and J.D.C.,
were invited to perform a test run for the whole chal-
lenge process. One of these scientists (D.A.H.) used their
in-house Ktrans quantification software on the DCE-MRI
scans of all subjects and visits in the synthetic and clin-
ical cohorts, according to the challenge guidelines. They
provided the Ktrans maps along with the SOP of the analy-
sis approach. The second scientist (J.D.C.) from the same
institution followed the SOP to reproduce the results. The
final results by the two scientists were used to test our
scoring metrics and revise the challenge guidelines where
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6 SHALOM et al.

necessary. As these results may be biased, they are not
reported.

2.5 Statistical analysis

To take full advantage of the data submitted for the
challenge, submissions were evaluated by several vox-
elwise approaches complementing the Scoreaccuracy and
Scorereproduce. This provided vital information, as similar
TM-ROI mean Ktrans values may stem from vastly different
distributions.28

For accuracy, a voxelwise Bland–Altman analysis was
applied to assess the differences between each entry
and the ground-truth Ktrans values. The mean difference
and SD were calculated for all the synthetic visits com-
bined. Bland–Altman plots can be found in the Support-
ing Information Data S5. Additionally, the proportional
change in Ktrans values within the TM-ROI (dKtrans

prop =(
Ktrans

v1 − Ktrans
v2

)
∕Ktrans

v1 ) between the two visits (Ktrans
v1 and

Ktrans
v2 ) in synthetic patients was computed.

For reproducibility, a voxelwise analysis was applied
to deduce the differences between the submission and
neutral teams’ Ktrans values. The mean difference and SD
details were calculated for all patient visits combined.

To allow a more detailed conclusion about the repeata-
bility outcomes from the submissions, two metrics were
extracted: (1) TM-ROI mean Ktrans difference between clin-
ical patient visits calculated for each of the 8 clinical
patients and (2) repeatability coefficient (RC) for TM-ROI
mean Ktrans (%RC = 2.77 × wCV, where wCV denotes the
within-subject coefficient of variation, defined by the RMS
of 𝜎∕𝜇)8,29,30 to measure repeatability between clinical vis-
its within the same submission.

3 RESULTS

Ten submissions, identified by a team name, were received
from May 15, 2021, through December 30, 2021. SOPs of
four submissions could not be reproduced due to runtime
errors or extensively long computational time. Therefore,
the reproducibility score was calculated only for six sub-
missions and OSIPIgold was only reported for them. To
compare the methods in terms of accuracy and repeata-
bility, OSIPIsilver was used for the remaining submissions,
ranked below those with OSIPIgold score.

3.1 Overview of challenge entries

An overall summary of the procedures used for each
submission is provided in Table 2, which includes

preprocessing methods (brain masking, denoising,
co-registration), PK model, AIF selection method, and the
DCE-MRI image quantification tool applied. There was a
wide variety of AIF selection methods ranging from man-
ual to fully automatic, but most teams opted to apply the
extended Tofts PK model.

3.2 OSIPI scores

The OSIPIgold scores as defined in Table 1 for each received
entry are given in Table 3 (see Supporting Information
Table S4 for component-score confidence intervals). The
highest overall score was obtained by the DCE-NET sub-
mission with OSIPIgold = 78%, followed by Maydm and
PerfLab with 73% and 61%, respectively. The OSIPIgold
scores ranged from 28% to 78% across submissions with
a 59% median score. The Scoreaccuracy, Scorerepeat, and
Scorereproduce ranged from 0.54 to 0.92, 0.64 to 0.86, and
0.65 to 1.00, with median values of 0.69, 0.81 and 0.95,
respectively.

3.3 Further evaluation

A summary of the mean Ktrans values extracted from the
TM-ROIs for the clinical patient data sets are included in
Supporting Information Table S1, with the values for the
synthetic patient sets reported alongside the ground truth
in Supporting Information Table S2. Figure 1 shows the
distributions of Ktrans values within the TM-ROIs for all
patients across the submissions. Different methods lead to
vastly different mean values and distributions.

An example of the clinical data received from each sub-
mission is shown in Figure 2, which provides details on
the Ktrans (min−1) map for both visits in the same slice. The
estimations within the TM-ROI and the rest of the brain
are highly variable between submissions. A similar plot
is detailed in Figure 3, where the Ktrans (min−1) maps are
displayed for Synthetic Patient 2, indicating the variability
among different tools. Small visual differences that were
picked up by each software between the two visits can be
observed.

3.4 Accuracy

Figure 4 summarizes the voxelwise differences between
ground-truth and submitted Ktrans values for the TM-ROI
in the synthetic patients. This figure illustrates the wide
range of accuracy of the tools in the synthetic data. Some
entries (DCE-NET, Madym, ROCKETSHIP, and PerfLab)
have largely symmetric difference distributions, whereas
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8 SHALOM et al.

T A B L E 3 Summary of Open Science Initiative for Perfusion Imaging (OSIPI) scores for all entries.

Submission Rank Scoreaccuracy Scorerepeat Scorereproduce OSIPIsilver (%) OSIPIgold (%)

DCE-NET 1 0.92 0.85 1.00 78 78

Madym 2 0.85 0.85 1.00 73 73

PerfLab 3 0.78 0.80 0.98 62 61

MRI-QAMPER 4 0.72 0.86 0.93 62 57

FireVoxel 5 0.57 0.78 0.65 45 29

ROCKETSHIP 6 0.59 0.64 0.74 37 28

ImageJ/MRIcron 7 0.85 0.68 N/R 58 N/R

OHSU 8 0.67 0.79 N/R 53 N/R

UW QBI Lab 9 0.61 0.81 N/R 50 N/R

ALICE 10 0.54 0.86 N/R 46 N/R

Abbreviation: DCE, dynamic contrast-enhanced; N/R, not ranked.

others (MRI-QAMPER, OHSU, FireVoxel, and UW QBI
Lab) show a tendency to underestimate or overestimate
the ground-truth values. Bland–Altman plots of both the
TM-ROI mean (Supporting Information Figure S1) and
voxelwise Ktrans values (Supporting Information Figure S2)
reflect trends seen in Scoreaccuracy and Figure 4. It
should be noted that, as Figure 4 illustrates, while the
Scoreaccuracy from MRI-QAMPER and PerfLab are com-
parable, the voxelwise Ktrans values are more variable in
MRI-QAMPER, suggesting that the voxels with high val-
ues in MRI-QAMPER are averaged out in the calculation
of Scoreaccuracy (Supporting Information Figure S5).

A summary of dKtrans
prop for Synthetic Patient 2 can

be found in Supporting Information Table S5. This also
includes the absolute difference from the dKtrans

prop of the
synthetic ground truth, ranging from 0.025 to 0.453.

3.5 Repeatability

Figure 5 shows the distribution of relative changes in
Ktrans values between patient visits, which correspond
well with the repeatability score (Table 3). A higher
mean relative difference of Ktrans values between the
clinical visits corresponds to a lower repeatability score.
Within Figure 1, a summary of the clinical data analy-
sis provides patient-wise insight into the overall submis-
sion distributions (Figure 5). A Bland–Altman analysis of
test–retest TM-ROI mean Ktrans values (Supporting Infor-
mation Figure S3) reports test–retest variability within
submissions.

Table 4 lists the %RC values with a range of 0.56%
to 1.45% in the clinical patients, comparing the mean
TM-ROI Ktrans between the test and retest visits. The
OSIPI repeatability score (Table 3) shows strong negative

correlation with %RC values between clinical visits, with
a Pearson correlation coefficient of −0.986 (p< 0.001),
thereby supporting the validity of the defined repeatability
metric (Table 1) across these submissions.

3.6 Reproducibility

To complement the overall reproducibility scores, as
indicated in Table 3, the TM-ROI voxelwise differences
between the original and reproduced entries are summa-
rized in Table 5 in order of magnitude. The values dif-
fer by several orders of magnitude. The ranking of these
data largely follows the Scorereproduce, but for some sub-
missions their rank is slightly improved or worsened.
A Bland–Altman plot comparing the TM-ROI mean Ktrans

in each patient visit between the reproduced and original
entry (Supporting Information Figure S4) follows similar
trends as the voxelwise analysis (Table 5).

4 DISCUSSION

In this work, we systematically evaluated variability in
quantification of Ktrans obtained by different analysis
pipelines using a standardized benchmark. The submis-
sions were assessed in terms of a scoring model that mea-
sured accuracy, repeatability, and the ability to reproduce
results independently.

4.1 Accuracy

Submissions using population-based AIF (DCE-NET and
Madym) scored highly for accuracy. This is interesting, as
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SHALOM et al. 9

F I G U R E 1 Boxplots showing the distribution of voxelwise Ktrans values within the tumor mask for each patient visit in each challenge
submission. The filled dots denote the mean Ktrans values over the tumor region, with the boxed region and central line showing the
interquartile range and median, respectively. Whiskers show the 5th to 95th percentile values. The panels are arranged by the submission
team, with gray lines separating each of the clinical patients and Visit 1 (blue) and Visit 2 (yellow) both shown. The Ktrans axis is limited to
0.3 min−1 for clarity of comparison.

population-based AIFs do not account for between-subject
differences and are typically seen as a means of trad-
ing off accuracy against precision.21,43 The results indi-
cate that this trade-off is favorable even in terms of
accuracy—possibly indicating that AIF measurement

biases in this application area are larger than typi-
cal between-subject differences. On the other hand, the
results may have been biased by the synthetic data gen-
eration, for which the maximal value of the widely
used population-based AIF21—although not its functional
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10 SHALOM et al.

F I G U R E 2 The Ktrans values for Clinical Patient 3 over all submissions. Sets A and B correspond to Visits 1 and 2, respectively. The
maximum Ktrans value is restricted to 0.1 min−1 for comparison. NaN values are set to 0 in this figure for visualization purposes.

form—was applied to scale the selected AIF. The other
highest-scoring methods for accuracy after these submis-
sions were from ImageJ/MRIcron and PerfLab, which used
fully automatic AIF methods. Due to the data-driven
approach, these software tools should be more robust com-
pared with the methods that use population-based AIF
in synthetic data that have been developed with a differ-
ent AIF.

The synthetic data were purposefully different between
the “test” and “retest” visits, to enable detection of
any method that attempted to enforce the repeatability
between visits if distinct differences in values were present.
It should be noted that the synthetic data were not eval-
uated in the repeatability scoring. This was potentially
observed in the ALICE submission, which had a high
Scorereproduce but a low Scoreaccuracy. The ability to detect
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SHALOM et al. 11

F I G U R E 3 The Ktrans maps for Synthetic Patient 2 for both Visit 1 (A) and Visit 2 (B) over all submission teams and the ground truth
(GT). The maximum Ktrans value is restricted to 0.1 min−1 for comparison. NaN values are set to 0 in this figure for visualization purposes.
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12 SHALOM et al.

F I G U R E 4 Boxplot of voxelwise differences in Ktrans (min−1)
values within tumor regions of interest between the ground-truth
and entry values. Filled point shows the value bias (mean voxelwise
difference between entry and ground-truth values), with the box
and central line showing the interquartile range and median of the
distribution. Whiskers show the 5th to 95th percentile values.

these changes in Ktrans was further investigated using
dKtrans

prop , to compare to the synthetic data. Based on percent-
age difference from dKtrans

prop in the synthetic data, Madym
showed the lowest deviation from the known change.
This metric aimed to provide an overview of accuracy less
biased to systematic offsets in Ktrans values that may have
resulted from differences in concentration–signal conver-
sion parameters and transit time handling.

Synthetic Patient 1 was based on a RIDER patient with
no obvious enhancing tumor region, although this infor-
mation was not revealed to participants; therefore, the
ROI was placed within the normal-appearing white mat-
ter (NAWM). The Ktrans values in NAWM have been shown
to be small but non-zero in several studies at high field
strengths,44–46 with a distinguishable difference in values
also reported between some patient groups with healthy
controls. As Ktrans is expected to be minimal in NAWM,
this selection of the synthetic data was meant to eval-
uate how the analysis tools perform in the absence of
blood–brain barrier disruption or the regime of low Ktrans.
This choice could have biased the score against methods
that are not optimized to return Ktrans in NAWM, as some
of the tools are developed and applied to the enhancing
tumor regions. Additionally, methods that cover a wide
range of Ktrans values by estimating more free parame-
ters may overfit a scenario in which a priori knowledge
exists. However, this evaluation was considered necessary

F I G U R E 5 Boxplots showing the distribution of absolute
relative changes in tumor mask region of interest (TM-ROI) mean
Ktrans (min−1) values between Visit 1 and Visit 2 for each
submission team. The filled dots denote the mean Ktrans values over
the tumor region with the boxed region and central line showing
the interquartile range and median, respectively. Whiskers show the
5th to 95th percentile values.

T A B L E 4 Repeatability coefficient (%RC) values for the
clinical test–retest visits, applied to tumor region-of-interest mean
values for each of the submissions.

Submission %RC ± 95% CI

MRI-QAMPER 0.56 0.26

DCE-NET 0.57 0.24

Madym 0.59 0.27

ALICE 0.62 0.32

UW QBI Lab 0.73 0.32

OHSU 0.75 0.23

PerfLab 0.76 0.29

FireVoxel 0.79 0.27

ImageJ/MRIcron 1.29 0.50

ROCKETSHIP 1.45 0.51

Abbreviations: AIF, arterial input function; CI, confidence interval; DCE,
dynamic contrast-enhanced.

for absolute quantification of Ktrans and standardization
of values across different studies. Closer quantification of
low Ktrans values was observed in Synthetic Patient 1 in
ImageJ/MRIcron, Madym, DCE-NET, and PerfLab com-
pared with other submissions (Supporting Information
Table S2); these packages also achieved closer quantifica-
tion of the tumor region in Synthetic Patient 2.
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SHALOM et al. 13

T A B L E 5 Comparison of original submissions and reproduced Ktrans values. Columns 1 and 2 shown the mean Ktrans values across
every voxel within masked regions for the original and reproduced results. Columns 3–5 give summary statistics of the differences between
the submission and reproduced values calculated within each voxel.

Mean Ktrans (min−1) Voxelwise differences Ktrans (min−1)

Submission Original Reproduced Mean SD ± 95% CI

Madym 5.4E−2 5.4E−2 −3.9E−13 1.9E−9 9.4E−12

ROCKETSHIP 5.2E−2 5.3E−2 −1.8E−4 1.0E−1 5.2E−4

DCE-NET 4.2E−2 4.2E−2 −1.9E−4 3.2E−3 1.6E−5

PerfLab 4.5E−2 4.4E-2 3.6E−4 2.5E−2 1.2E−4

MRI-QAMPER 1.7E−1 1.7E−1 −5.1E−4 4.7E−1 2.3E−3

FireVoxel 1.6E−1 8.7E−2 6.9E−2 3.1E−1 1.6E−3

Abbreviation: CI, confidence interval.

4.2 Repeatability

In all submissions, %RC values for clinical patients’
test–retest visits were below the 21.3% threshold7 sug-
gested currently by QIBA as an estimate of true change in
assessment of glioblastoma. The following discussion will
have to be reassessed subject to threshold changes in future
QIBA guidelines. Therefore, with any of these packages,
in follow-up studies on treatment response assessment in
glioblastoma, any measured changes of Ktrans that exceed
this threshold can be attributed to treatment response with
95% confidence. High repeatability of Ktrans is essential for
longitudinal monitoring of the tumor’s response to treat-
ment or its progression,8 as the reconstruction of the same
conditions could reliably help show detection of changes,
should the values deviate. Although high repeatability
should not come at the expense of sensitivity to actual
changes, this balancing act is crucial for longitudinal stud-
ies.

Some or all of the mean TM-ROI Ktrans values in the
MRI-QAMPER, ALICE, and FireVoxel submissions are out-
side the interquartile range of the TM-ROI distribution,
indicating heavy influence by voxels with outlier values.
This may be due to the choice of masks for analysis by
these submissions, as some methods are solely designed to
return values within tumor regions. If outlier thresholding
was applied, these entries may have performed better on
this metric, as the central interquartile-range distributions
appear much more consistent between visits. Regardless,
the repeatability and %RC scores for MRI-QAMPER and
ALICE were not overly affected, although this may not
hold if the methods were applied to different data sets with
more prevalent outliers.

Lower repeatability scores in ROCKETSHIP and
ImageJ/MRIcron tools may have been associated with their
denoising routines within the methodology. Application
of this preprocessing step may have influenced differences

that have been reported between the visits, potentially
applying different amounts of denoising and affecting the
resulting parameter retrieval.

4.3 Reproducibility

The evaluators were able to reproduce six entries with
no or limited interactions with the participants (limited
interactions were defined as a small number of interac-
tions on simple issues, such as resolution of installation
problems). For the remaining entries, interactions con-
sisted of concerns and issues of software malfunction or
image processing time. In three out of four teams that
remained unreproduced, there were some manual steps
involved, namely, fully manual (UW QBI Lab and ALICE)
or semi-automatic (OHSU) AIF selection.

Specifically, the evaluators encountered software mal-
function for ImageJ/MRIcron and OHSU, and incomplete
software in UW QBI Lab. Finally, due to fitting several
PK modeling strategies, long computational time (an esti-
mated ∼100 days) was an issue for the ALICE submission,
as the timeline available to the evaluators was insufficient
to reproduce the results.

The issues highlighted here suggest the need for clear
guidelines about the level of detail in the SOPs that is
required to allow the straightforward replication of the
methods for widespread use. SOPs may contain video tuto-
rials, walking through each step and clarifying from where
the installation or runtime errors may stem. In addition, it
would be helpful to combine all software modules into a
single executable file so that future users would download
the entire software package at once. Moreover, it is neces-
sary to minimize any manual decisions that can vary across
different operators for higher reproducibility. For example,
the software packages requiring manual interaction within
the AIF present lower reproducibility in this study, with
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14 SHALOM et al.

ROCKETSHIP and FireVoxel receiving the lowest repro-
ducibility scores. In addition, the submissions with the
highest reproducibility scores (Madym, DCE-NET, and
PerfLab) used population-based or fully automatic AIF
selection processes, thereby eliminating most user-specific
interactions.

In general, software packages should ideally be devel-
oped with community distribution in mind using best
practice guidelines47–49 concerning use guidance, docu-
mentation, and issue logging. To ensure this, testing with
users equipped with a range of expertise and operating sys-
tems as well as between institutes is essential. If a software
package only runs under certain system requirements, it
should be clearly mentioned in the SOP, so that the users
can address this before installation. Then, the software
may be used regardless of the user’s depth of experience in
quantitative DCE-MRI.

4.4 Implication on future challenge
design

The design of the metric based on the mean Ktrans val-
ues could be biased toward methods with outlier handling,
suggesting that a score using the median could be more
representative of most values produced via these methods.
The analysis was rerun using the median Ktrans values, but
this did little to change the ranking order; it caused the
greatest improvement in accuracy scores from ALICE and
FireVoxel.

A second issue encountered was the encoding of NaN
values. After preliminary analysis of all submissions, it was
discovered that FireVoxel presented values of 1 × 1060 fol-
lowing extraction with the Nibabel package in Python.26

After discussion with the authors of this submission, it
became clear that these were intended to encode NaN
values. Therefore, it was decided that these values were
treated as NaN and excluded from further analysis. Before
this correction, FireVoxel produced substantially different
scores of 0.40, 0.54, and 0.56 for accuracy, repeatability,
and reproducibility, respectively demonstrating the impor-
tance of proper attention to NaN handling in the challenge
design. To avoid this in the future, inclusion of a specific
section within the SOP outlining the NaN handling pro-
cesses is recommended, to exclude unphysical or missing
values from score calculation. Particularly, masked zero
values would artificially lower the TM-ROI mean and may
improve OSIPIgold and %RC values.

Our synthetic data were produced using a single-voxel
approach. Although this approach provides value in terms
of benchmarking, giving an equal comparison from known
parameters to score the entries, for future work, the use of
an interacting voxel simulation would be beneficial.50 This

approach would only have been of concern if the entries
were hitting perfect accuracy levels, suggesting a bias cre-
ated by the production method. In addition, values used
for concentration–signal conversions may be beneficial to
provide, to avoid systematic effects in Ktrans estimation.
Moreover, r∗2 has been shown to vary51 but was assumed
constant for synthetic data production due to short TE. An
interesting extension of the modeling for future challenges
would reduce such assumptions.

For future challenges, scoring should ideally include
a reproducibility score for all submitted entries. An alter-
native setup for reproducibility could be more efficient,
perhaps requiring submission of an independent repro-
duction along with the entry method. However, this may
prevent the number of received submissions. A checklist
for inclusion in the SOP could be of value, including a
detailed summary of pipeline components, total run time,
and any licensing requirements.

Although our proposed scoring metric for assessment
of accuracy measures the bias of the submitted meth-
ods in estimating Ktrans reliably, as noted in Section 3,
the voxelwise variability in Ktrans quantification may be
averaged out when calculating the TM-ROI mean. Future
challenges may account for the voxel-by-voxel differences
(instead of TM-ROI mean) between the submitted and
ground-truth Ktrans values.

4.5 Study limitations

The scope of the challenge is limited to Ktrans and does
not necessarily present a full report on the state of the tis-
sue under study. The participants were asked to submit
Ktrans values with no requirement to fit any specific PK
model, although the extended Tofts model was almost uni-
versally applied in the submissions. In future challenges,
definition of a PK model to use and requiring submission
of all parameter maps (Ktrans, vp, kep) would allow for
an improved analysis, focusing particularly on covariance
of model parameters. Additionally, requesting AIF details
would be recommended to compare the effect of AIF
amplitude on variances in parameter estimation between
the different approaches. This has been shown to be a fac-
tor for Ktrans estimation52 and would inform discussion on
the influence of AIF type on parameter accuracy.

The results of this study highlight the variability of
pipeline choices in the submissions received. The pre-
sented results and discussions are not able to fully untan-
gle the relative impact of each methodology choice on the
resulting Ktrans values. To address this, future challenges
should design methodology to investigate specific pipeline
choices. For example, a challenge might supply a smaller
data set but ask for several pipeline options.
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In this challenge, no commercial software was submit-
ted, which was unfortunate and may potentially reflect
difficulties in the provision of licenses for the evaluators.
Even with the disclaimer that there was no expectation of
making code packages or software freely available beyond
the evaluators, potentially the open-science aspect dis-
suaded interested parties from the outset. Perhaps includ-
ing this disclaimer in the advertisement could bring in
more commercial packages. Interested parties are encour-
aged to analyze the OSIPI-DCE challenge data with any
commercial packages they hold licenses, to enable bench-
marking among all software types.

In this article, variabilities in quantitating Ktrans using
different tools were reported. Although the submitted
tools were ranked using OSIPIgold and OSIPIsilver, the
OSIPI-DCE challenge did not aim to find the “best” tool
for analysis of DCE-MRI, rather to provide a platform for
comparing the methods. The submitted tools may not have
been specifically designed and validated for quantification
of Ktrans in brain gliomas, nor were they necessarily tai-
lored to the design of the challenge or the specific scoring
metrics used. Nevertheless, the proposed OSIPIgold score
remains beneficial as a benchmark. Other research groups
working on DCE-MRI analysis tools are encouraged to
apply their methods to our provided data set and evaluate
their results using our scoring metrics.

5 CONCLUSIONS

The OSIPI-DCE challenge highlighted the variability in
Ktrans quantification between submissions and how the
choice of methods in analysis pipelines affect Ktrans esti-
mations. Further developments and consensus are needed
within the community to standardize pipeline selection
in different clinical settings to estimate Ktrans at a stan-
dard biomarker level. Some aspects that can be improved
were identified as greater detail in description of analy-
sis methodology to enable dissemination of approaches
beyond the immediate developers, outlier handling, and
the level of manual interactions as in the AIF and
brain-tissue mask selection. Benchmarking efforts, such
as the presented challenge, aid the translation of Ktrans

from research to clinical application.53 Moreover, as the
field moves toward increasingly complex PK and signal
modeling, and application of deep learning to replace
model-based approaches, benchmarking the tools that
produce reliable Ktrans estimations can provide a base
for comparison of other advanced markers. To this end,
the challenge data and assessment methodology will per-
sist, providing an ongoing benchmarking tool for software
development and pipeline selection.
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Ondřej Macíček https://orcid.org/0000-0002-0179-5779
Michal Bartoš https://orcid.org/0000-0003-4389-7703
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FIGURE S1. Bland–Altman plots showing comparison
between the submissions and the ground truth for all
synthetic patient visits for mean tumor region-of-interest
(ROI) Ktrans values. Any zero values within the tumor ROI
were included in the analysis. Colored dashed line and
black dashed lines in each panel show the mean difference
(bias) and upper/lower limits of agreement (bias ± 1.96𝜎),
respectively.
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FIGURE S2. Bland–Altman plots showing the compar-
ison between the submissions and the ground truth for
all synthetic patient visits for voxelwise Ktrans values. Any
zero values within the tumor region of interest (ROI)
were included in the analysis. Red dashed lines show a
general linear fit bias with black dashed lines giving the
upper/lower limits of agreement (bias ± 1.96𝜎).
FIGURE S3. Bland–Altman plots showing the compar-
ison between the submissions Visit 1 and Visit 2 mean
tumor region-of-interest (ROI) Ktrans values across all clin-
ical patient cases. Any zero values within the tumor ROI
were included in the analysis. Colored dashed line and
black dashed lines in each panel show the mean difference
(bias) and upper/lower limits of agreement (bias ± 1.96𝜎),
respectively.
FIGURE S4. Bland–Altman plots showing the compari-
son between the submissions and the neutral evaluators
for all visits mean tumor region-of-interest (ROI) Ktrans

values. This is displayed only for submissions that were
reproduced. Any zero values within the tumor ROI were
included in the analysis. Colored dashed line and black
dashed lines in each panel show the mean difference
(bias) and upper/lower limits of agreement (bias ± 1.96𝜎),
respectively.
FIGURE S5. Voxelwise Ktrans values for the synthetic
patients across the MRI-QAMPER and PerfLab submis-
sions. These submissions have a very similar accuracy
score (Table 3, main manuscript), but the voxelwise differ-
ences (Figure 4, main manuscript) show larger variation
in MRI-QAMPER. In each panel, the black line shows the
visit tumor mask mean, and the red dashed line at 0.1
shows the Figure 3 cutoff value. Different Ktrans ranges
are reported for Synthetic Patient 1 (top four panels) and
Patient 2 (bottom four panels) to match the range of Ktrans

values present in each patient across both submissions.
TABLE S1. Values of the recovered Ktrans values (min−1)
over the tumor mask for each clinical visit in all entries.

Here, C1 v1 denotes clinical patient Set 1 at Visit 1, and the
naming system follows directly for the remaining sets.
TABLE S2. Values of the recovered Ktrans values (min−1)
over the tumor mask for each synthetic visit in all
entries and the ground-truth Digital Reference Object
(DRO). Here S1 v1 denotes Synthetic Patient 1 at Visit
1, and the naming system follows directly for the
remaining sets.
TABLE S3. Values of the recovered Ktrans values (min−1)
over the tumor mask for each visit from the neutral eval-
uators in all reproduced submissions. Here, C1 v1 and
S1 v1 denote clinical and Synthetic Patient 1 at Visit 1,
respectively. The naming system follows directly for the
remaining sets.
TABLE S4. A summary of Open Science Initia-
tive for Perfusion Imaging (OSIPI) scores for all
entries. The 95% confidence intervals for Scoreaccuracy,
Scorerepeat, and Scorereproduce are shown with ± nota-
tion. Confidence intervals are generated using scores
for each 𝜎∕𝜇 term in the summations (Table 1)
separately.
TABLE S5. A summary of the proportional change in
mean tumor mask region-of-interest (TM-ROI) Ktrans value
(dKtrans

prop ) in Synthetic Patient 2 for all submissions and the
ground truth (GT). To compare the dKtrans

prop values from
each submission, the absolute difference from the GT
dKtrans

prop was calculated.
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