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Abstract

We study a class of dissipative PDEs perturbed by a bounded random kick force.
It is assumed that the random force is nondegenerate, so that the Markov process
obtained by the restriction of solutions to integer times has a unique stationary
measure. The main result of the paper is a large deviations principle for oc-
cupation measures of the Markov process in question. The proof is based on
Kifer’s large-deviation criterion, a coupling argument for Markov processes, and
an abstract result on large-time asymptotic for generalized Markov semigroups.
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Introduction
This paper is devoted to the large deviations principle (LDP) for a class of dis-

sipative PDEs perturbed by a smooth random force. The large-time asymptotics of
solutions for the problem in question is well understood, and we refer the reader to
the articles [3, 13, 14, 21] for the first results in this direction and to the book [23]
for further references and a detailed description of the behavior of solutions as time
goes to infinity. In particular, it is known that if the noise is sufficiently nondegen-
erate, then the Markov process associated with the problem has a unique stationary
distribution that attracts exponentially the law of all solutions. Moreover, the law
of the iterated logarithm and the central limit theorem hold for Hölder-continuous
functionals calculated on trajectories and give some information about fluctuations
of their time averages around the mean value. Our aim now is to investigate the
probabilities of deviations of order 1 from the mean value.

Let us describe in more detail the main result of this paper on the example of
the Navier-Stokes system. More precisely, we consider the following problem in a
bounded domain1 D � R2 with a C 2-smooth boundary @D:

Pu � ��uC hu;riuCrp D �.t; x/; divu D 0; u
ˇ̌
@D
D 0;(0.1)

u.0; x/ D u0.x/;(0.2)

where � > 0 is the kinematic viscosity, u D .u1.t; x/; u2.t; x// is the velocity
field of the fluid, p D p.t; x/ is the pressure, and � is a random external force. We
assume that �.t; x/ is a random kick force of the form

�.t; x/ D

C1X
kD1

ı.t � k/�k.x/;(0.3)

where ı is the Dirac measure concentrated at 0 and �k are independent identically
distributed (i.i.d.) random variables defined on a probability space .�;F ;P / that
take values in L2.D;R2/ and satisfy

(0.4) Pfk�kkL2 � bg D 1

for some b < C1.
Problem (0.1)–(0.2) is well posed in the space

(0.5) H D fu 2 L2.D;R2/ W divu D 0 in D; hu;ni D 0 on @Dg;

where n stands for the outside unit normal to @D. The restrictions of solutions
for (0.1)–(0.2) to integer times form a Markov chain in H . As is well known
(see chapter 3 of the book [23] and the references therein), this process is ergodic
under rather general hypotheses on �k . More precisely, suppose that there exists
an increasing sequence of finite-dimensional subspaces HN � H such that the
law of the projection of �k to HN is absolutely continuous with respect to the

1 All the results of this paper remain true for periodic boundary conditions, in which case we
assume in addition that the mean values of the velocity field and of the external force are 0.
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Lebesgue measure, and its support contains the origin. Let P.H/ be the set of all
Borel probability measures onH endowed with the topology of weak convergence.
Then the Markov chain in question possesses a unique stationary measure � 2
P.H/, which is exponentially mixing in the sense that the law of any solution
of (0.1) with a deterministic initial condition converges to � exponentially fast in
the Kantorovich-Wasserstein metric.

We wish to investigate the probabilities of large deviations of the occupation
measures from �. More precisely, let

(0.6) �!k D
1

k

k�1X
jD0

ıvj
; k � 1;

be a sequence of random probability measures in P.H/, where fvj g denotes a
stationary trajectory of the Markov chain. The following theorem is a simplified
version of the main result of this paper (see Theorem 1.3).

THEOREM A. Under the above hypotheses, the sequence f�kg satisfies an LDP.
More precisely, there is a lower-semicontinuous mapping I W P.H/ ! Œ0;C1�

that is equal toC1 outside a compact subset such that

� inf
�2 P�

I.�/ � lim inf
k!1

1

k
log Pf�k 2 �g

� lim sup
k!1

1

k
log Pf�k 2 �g � � inf

�2x�

I.�/;

(0.7)

where � � P.H/ is an arbitrary Borel subset and P� and x� denote its interior and
closure, respectively.

For instance, if f W H ! Rm is a continuous mapping and B � Rm is a Borel
subset, then taking � D f� 2 P.H/ W

R
H f d� 2 Bg in inequality (0.7), we get

(see Section 1.2 for a precise statement)

exp.�c� k/ . P

�
1

k

k�1X
jD0

f .vj / 2 B

�
. exp.�cC k/ as k !1;

where c˙ D c˙.f; B/ � 0 are some constants (not depending on k) that can be
expressed in terms of the rate function I .

Let us mention that the LDP is well understood for finite-dimensional diffusions
and for Markov processes with compact phase space provided that the randomness
is sufficiently nondegenerate and ensures mixing in the total variation norm. This
type of result was first obtained by Donsker and Varadhan [11, 12] and later ex-
tended by many others. A detailed account of the main achievements can be found
in the books [9, 10, 16].

In the context of randomly forced PDEs, the problem of large deviations was
studied in a number of papers. Most of them, however, are devoted to studying
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PDEs with vanishing random perturbation and provide estimates for the probabil-
ities of deviations from solutions of the limiting deterministic equations. We refer
the reader to the papers [4–7, 15, 26–28] and the references therein for various re-
sults of this type, including the asymptotics of stationary distributions when the
amplitude of the perturbation goes to 0. To the best of our knowledge, the only
papers devoted to large deviations from a stationary distribution in the case of sto-
chastic PDEs are those by Gourcy [18, 19]. Using a general result due to Wu [30],
he established the LDP for occupation measures of stochastic Burgers and Navier-
Stokes equations provided that the random force is white in time and sufficiently
irregular in the space variables. The present paper gives a first result on large devi-
ations from a stationary distribution for PDEs with a smooth random perturbation.

Let us note that, in Gourcy’s papers [18, 19], the set of measures is endowed
with the � -topology that is generated by the duality with respect to bounded Borel
functions (and is much stronger than the weak topology used in our paper). This
enables one to apply the LDP to physically relevant observables that are not con-
tinuous on the energy space. Under our assumptions, the LDP is not likely to hold
for the � -topology. However, the results established in this paper can be applied to
derive the LDP for functionals that are continuous on higher Sobolev spaces.

Furthermore, using the Dawson-Gärtner theorem [8], we establish the following
result on large deviations in the space of trajectories (also called “process level
LDP”). Let us denote by H the space of sequences u D .uj ; j � 0/ with uj 2 H
and endow it with the Tikhonov topology. Given a stationary trajectory v D fvj g
for the Markov chain associated with (0.1), we define the sequence of occupation
measures

(0.8) �!k D
1

k

k�1X
jD0

ıvj
;

where we set vj D .vi ; i � j /.

THEOREM B. Let us assume that the above-mentioned hypotheses are satisfied.
Then the LDP holds for �k with a rate function I W P.H / ! Œ0;C1� vanishing
outside a compact subset.

In conclusion, let us mention that the LDP discussed above remains valid in the
case of unbounded perturbations; this question will be addressed in a subsequent
publication. We also remark that this paper is a first step of a research program
whose aim is to develop a large deviation theory for dissipative PDEs with random
perturbation and to justify the Gallavotti-Cohen fluctuation principle for some rel-
evant functionals; cf. [17].

The paper is organized as follows. In Section 1 we introduce the model, state
our results, describe applications, and outline the schemes of the proofs. Section 2
deals with the large-time asymptotics of generalized Markov semigroups. A central
technical part of the proof is the verification of the uniform Feller property for a
suitable family of semigroups. This verification is based on a coupling argument
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and is carried out in Section 3. The proofs of the main results are given in Sections 4
and 5. Finally, three auxiliary results used in the main text are recalled in the
Appendix.

Notation
Let Z be the set of integers, let ZC be the set of nonnegative integers, and let X

be a Polish space with a metric dX .u; v/. We denote by Xk the direct product of k
copies of X , by X D XZC the space of sequences .uk; k 2 ZC/ with uk 2 X ,
and by BX .a; d/ the closed ball of radius d > 0 centered at a 2 X . If a D 0, we
write BX .d/. The distribution of a random variable � is denoted by D.�/ and the
indicator function of a set C by IC .
Lp.D/ and H s.D/ denote the Lebesgue and Sobolev spaces in a domain D �

Rn. We use the same notation for spaces of scalar- and vector-valued functions.
The corresponding norms are denoted by k � kLp and k � ks , respectively.
Cb.X/ is the space of bounded continuous functions f W X ! R endowed

with the natural norm kf k1 D supX jf j, and CC.X/ is the set of strictly positive
functions f 2 Cb.X/.
Lb.X/ stands for the space of functions f 2 Cb.X/ such that

kf kL WD kf k1 C sup
0<dX .u;v/�1

jf .u/ � f .v/j

dX .u; v/
<1:

In the case of a compact metric space, we shall drop the subscript b and writeC.X/
and L.X/.

B.X/ denotes the Borel � -algebra onX , M.X/ the vector space of signed Borel
measures on X with finite total mass, MC.X/ the cone of nonnegative measures
� 2 M.X/, and P.X/ the set of Borel probability measures on X . The vector
space M.X/ is endowed with the total variation norm

k�kvar WD sup
�2B.X/

j�.�/j D
1

2
sup

f 2Cb.X/
kf k1�1

ˇ̌̌̌Z
X

f d�
ˇ̌̌̌
:

When dealing with MC.X/, we also use the Kantorovich-Wasserstein (also called
dual-Lipschitz) metric defined by

k�1 � �2k
�
L WD sup

f 2Lb.X/
kf kL�1

ˇ̌̌̌Z
X

f d�1 �
Z
X

f d�2

ˇ̌̌̌
; �1; �2 2MC.X/:

The topology defined by the Kantorovich-Wasserstein distance coincides with that
of weak convergence. We shall write �n * � to denote the weak convergence
of f�ng to �.

For an integrable function f W X ! R and a measure � 2M.X/, we set

hf; �i D

Z
X

f .u/�.du/; kf k� D
Z
X

jf .u/j�.du/:
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Given a function f W X ! R, we denote by f C and f � its positive and
negative parts, respectively:

f C D
1

2
.jf j C f /; f � D

1

2
.jf j � f /:

1 The Model and the Results
1.1 The Model

In this section, we describe a class of discrete-time stochastic systems for which
we shall prove the LDP. Let H be a real separable Hilbert space with a scalar
product . � ; � / and the corresponding norm k�k and let S W H ! H be a continuous
mapping. We consider the random dynamical system

(1.1) uk D S.uk�1/C �k; k � 1;

where f�kg is a sequence of independent identically distributed (i.i.d.) random
variables in H . System (1.1) defines a homogeneous family of Markov chains,
and we denote by Pk.u; �/ its transition function and by Pk W Cb.H/ ! Cb.H/

and P�
k
W P.H/ ! P.H/ the corresponding Markov operators. We shall assume

that S satisfies the following three conditions (which are stronger versions of those
introduced in [21]; see also section 3.2.1 in [23]).

(A) REGULARITY AND STABILITY. The mapping S W H ! H is continuous.
Moreover, for any R > r > 0 there are positive constants C D C.R/ and a D
a.R; r/ < 1 and an integer n0 D n0.R; r/ � 1 such that

kS.u1/ � S.u2/k � C.R/ku1 � u2k for u1; u2 2 BH .R/;(1.2)

kSn.u/k � maxfakuk; rg for u 2 BH .R/, n � n0;(1.3)

where Sn is the nth iteration of S .
Let us denote by K the support of the law for �1 and assume that it is a compact

subset in H . Given a closed subset B � H , define the sequence of sets

A0.B/ D B; Ak.B/ D S.Ak�1.B//CK; k � 1;

and denote by A.B/ the closure in H of the union of Ak.B/. We shall call A.B/
the domain of attainability from B .

(B) DISSIPATIVITY. There is � > 0 and a nondecreasing integer-valued func-
tion k0 D k0.R/ such that

(1.4) Ak.BH .R// � BH .�/ for R � 0, k � k0.R/:

(C) SQUEEZING. There is an orthonormal basis fej g in H such that, for all
R > 0 and u1; u2 2 BH .R/,

(1.5) k.I � PN /.S.u1/ � S.u2//k � N .R/ku1 � u2k;
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where PN W H ! H denotes the orthogonal projection on the linear span of e1;
: : : ; eN , and fN .R/g is a decreasing sequence of positive numbers converging to
zero as N !1.

As for the sequence f�kg, we assume that it satisfies the following hypothesis:

(D) STRUCTURE OF THE NOISE. The random variable �k has the form

�k D

1X
jD1

bj �jkej ;(1.6)

where fej g is the orthonormal basis entering (C), bj � 0 are constants such that

(1.7) B WD

1X
jD1

b2j <1;

and �jk are independent scalar random variables. Moreover, the law of �jk is
absolutely continuous with respect to the Lebesgue measure, and the corresponding
density pj .r/ is a continuously differentiable function such that pj .0/ > 0 and
supppj � Œ�1; 1�.

Recall that a measure � 2 P.H/ is said to be stationary for (1.1) if P�1� D �.
A proof of the following theorem can be found in chapter 3 of [23].

THEOREM 1.1. Suppose that Conditions (A)–(D) are fulfilled and that

(1.8) bj ¤ 0 for all j � 1:2

Then there is a unique stationary measure � 2 P.H/. Moreover, there are con-
stants C > 0 and ˛ > 0 such that, for any � 2 P.H/, we have

(1.9) kP�k� � �k
�
L � Ce

�˛k

�
1C

Z
H

kuk�.du/
�
; k � 0:

We conclude this subsection with a simple remark on the support of the station-
ary distribution�. Let us denote by A D A.f0g/ the domain of attainability from 0.
Since A is an invariant subset for (1.1), it carries a stationary measure. Since the
stationary measure is unique, we must have supp� � A. On the other hand, in-
equality (1.3) and the inclusion 0 2 suppD.�1/ imply that Pk.u; BH .r// > 0 for
any u 2 A, r > 0, and k � 1. Combining this fact with the Kolmogorov-Chapman
relation, one easily proves that supp� D A.

2 Theorem 1.1 remains valid if finitely many bj are nonzero. However, the main results of this
paper on LDP will be proved under the stronger condition (1.8).
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1.2 The Results
Before formulating the main results of this paper, we recall some standard def-

initions from the theory of large deviations (e.g., see chapter 6 in [9]). Let X
be a Polish space and let P.X/ be the space of probability measures on X en-
dowed with the topology of weak convergence (generated by the Kantorovich-
Wasserstein distance). Recall that a random probability measure on X is defined
as a measurable mapping from a probability space .�;F ;P / to P.X/. A map-
ping I W P.X/ ! Œ0;C1� is called a rate function if it is lower-semicontinuous,
and a rate function I is said to be good if the level set f� 2 P.X/ W I.�/ � ˛g

is compact for any ˛ 2 Œ0;C1/. For a measurable set ƒ � P.X/, we write
I.ƒ/ D inf�2ƒ I.�/.

DEFINITION 1.2. Let f�k D �!
k
; k � 1g be a sequence of random probability

measures on A. We shall say that f�kg satisfies the LDP with a rate function I if
the following two properties are satisfied:
UPPER BOUND: For any closed subset F � P.X/, we have

lim sup
k!1

1

k
log Pf�k 2 F g � �I.F /:(1.10)

LOWER BOUND: For any open subset G � P.X/, we have

lim inf
k!1

1

k
log Pf�k 2 Gg � �I.G/:(1.11)

We now consider the family of Markov chains defined by (1.1). To an arbitrary
random variable u0 inH , which we always assume to be independent of f�kg, one
associates a family of occupation measures by the formula

�k WD
1

k

k�1X
nD0

ıun
;(1.12)

where ıu stands for the Dirac measure concentrated at u. Recall that A denotes
the domain of attainability from zero (see the end of Section 1.1). It is a compact
subset ofH , invariant under the random dynamics defined by (1.1). Note that if the
support of D.u0/ is contained in A, then �k is also supported by A. The following
theorem is the main result of this paper.

THEOREM 1.3. Let Hypotheses (A)–(D) and Condition (1.8) be fulfilled and let u0
be an arbitrary random variable in H whose law is supported by A. Then the
family f�k; k � 1g of random probability measures on A satisfies the LDP with a
good rate function I defined by

I.�/ D sup
V 2C.A/

.hV; �i �Q.V //; � 2 P.A/;(1.13)

whereQ.V / is a 1-Lipschitz convex function such thatQ.C/ D C for any C 2 R.
Furthermore, the functionQ can be written as the limit (1.40), which exists for any
V 2 C.A/ and does not depend on the initial point u0.
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Note that the lower semicontinuity of I is built in its definition, while the fact
that I is a good rate function follows from the compactness of P.A/ in the weak
topology. Choosing suitable open and closed sets in the LDP for occupation mea-
sures, we obtain the asymptotics of the time averages for various functionals of
trajectories of (1.1). For instance, let f W A ! Rm be a continuous mapping and
let � � Rm be a Borel set. Define

F� D f� 2 P.A/ W hf; �i 2 x�g; G� D f� 2 P.A/ W hf; �i 2 P�g;
where x� and P� denote the closure and interior of � , respectively. In view of the
LDP, we have

lim sup
k!1

1

k
log P

�
1

k

k�1X
nD0

f .un/ 2 �

�
� �I.F�/;(1.14)

lim inf
k!1

1

k
log P

�
1

k

k�1X
nD0

f .un/ 2 �

�
� �I.G�/:(1.15)

Theorem 1.3 provides the LDP for the occupation measures (1.12). Some fur-
ther analysis combined with the Dawson-Gärtner theorem enables one to derive a
process level LDP for trajectories of (1.1) issued from A. Namely, denote byH D
HZC the direct product of countably many copies ofH and, given a trajectory fukg
for (1.1), define a sequence of random probability measures onH by the relation

(1.16) �k D
1

k

k�1X
nD0

ıun
; k � 1;

where we set un D .uk; k � n/.

THEOREM 1.4. Let the hypotheses of Theorem 1.3 be fulfilled and let u0 be an
arbitrary random variable in H whose law is supported by A. Then the family
of random probability measures f�k; k � 1g satisfies the LDP with a good rate
function I W P.H /! Œ0;C1�, which is equal toC1 outside a compact subset.

1.3 Applications
Two-Dimensional Navier-Stokes System

Let us consider the Navier-Stokes system (0.1) in which �.t; x/ is a random kick
force of the form (0.3). We assume that the kicks f�kg form a sequence of i.i.d.
random variables in the space H (see (0.5)). Normalizing the solutions of (0.1) to
be right-continuous and denoting uk D u.k; x/, we see that any solution of (0.1)
satisfies relation (1.1) in which S stands for the time-1 shift along trajectories of the
homogeneous Navier-Stokes system (e.g., see section 2.3 in [23]). We claim that
Theorems 1.3 and 1.4 can be applied to (1.1) with the above choice of S provided
that we restrict our consideration to trajectories lying in A D A.f0g/. Indeed, the
differentiability of the flow map for the Navier-Stokes system is well known (e.g.,
see section 7.5 in [1]), and all other properties entering Conditions (A) and (B)
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are checked in [21]. Furthermore, the squeezing property (C) is satisfied for any
choice of an orthonormal basis fej g in H (cf. the proof of Proposition 1.6 below).
We thus obtain the following result:

PROPOSITION 1.5. Let the random variables f�kg satisfy Condition (D) with bj ¤
0 for all j � 1, let u0 be an arbitrary H -valued random variable that is indepen-
dent of f�kg and whose law is supported by A, and let fukg be the corresponding
trajectory of (1.1). Then the occupation measures �k and �k defined by (1.12) and
(1.16) satisfy the LDP with good rate functions.

In particular, taking for u0 a random variable distributed according to the sta-
tionary measure �, we obtain Theorems A and B of the Introduction. Furthermore,
in view of the discussion after Theorem 1.3, we have an LDP for the time averages
of continuous functionals f W H ! Rm calculated on trajectories of (1.1). This
result is applicable, for instance, to the energy functional f .u/ D 1

2

R
D ju.x/j

2 dx.
To treat other physically relevant observables, such as the enstrophy or the cor-

relation tensor, we need to change the phase space of the problem, making it more
regular. Specifically, let us define the space

U D H \H 1
0 .D/ \H

2.D/

(where H s.D/ denotes the usual Sobolev space of order s) and endow it with
the usual scalar product in H 2. Since the flow map for the Navier-Stokes system
preserves the H 2-regularity, system (1.1) can be studied in the space U provided
that the random kicks also belong to U . We have the following result.

PROPOSITION 1.6. Let f�kg be a sequence of i.i.d. random variables in U of the
form (1.6), in which fej g is an orthonormal basis in U , and fbj g and f�jkg are the
same as in Condition (D). Assume that bj ¤ 0 for all j � 1. Then the LDP holds
for the occupation measures �k and �k of any trajectory whose initial state u0 is a
U -valued random variable with range in A.

For instance, one can take for an initial state any function u0 2 U or a ran-
dom variable u0 distributed according to the stationary measure. Furthermore,
relations (1.14) and (1.15) hold for the functional f W U ! R6 defined by

f .u/ D

�
1

2

Z
D

ju.x/j2 dx;
1

2

Z
D

j.r ˝ u/.x/j2 dx; ui .x1/uj .x2/; 1 � i; j � 2
�
;

where u D .u1; u2/, and x1; x2 2 D are given points.

PROOF OF PROPOSITION 1.6. We shall check that Conditions (A)–(D) of Sec-
tion 1.1 (with H replaced by U ) are fulfilled. The validity of (D) follows from the
hypotheses of the proposition. The facts that, for any T > 0, the time-T shift along
trajectories is uniformly Lipschitz-continuous on bounded subsets of U and that it
is continuously differentiable in the Fréchet sense are proved in chapter 7 of [1].
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Let us prove (1.3). It is well known that (see the proof of theorem 6.2 of chap-
ter 1 in [1])

kS.u/k � qkuk; kS.u/k2 � Ckuk;

where q < 1 and C > 0 are some constants, u 2 H in the first inequality, and
u 2 BH .1/ in the second. Combining these two estimates we see that for any
R > 0 we can find n1 D n1.R/ � 1 such that

kSnC1.u/k2 � Cq
n
kuk for u 2 BH .R/, n � n1:

This inequality immediately implies (1.3).
We now establish the dissipativity property (B). We know that this property

holds in the space H . Thus, we can find �1 > 0 such that, for any R > 0 and a
sufficiently large integer k1.R/ � 1, we have

Ak.BU .R// � BH .�1/ for k � k1.R/:

Since the mapping S is continuous from H to U , it follows that

AkC1.BU .R// � S.BH .�1//CK for k � k1.R/:

Choosing � > 0 such that S.BH .�1//CK � BU .�/, we obtain (1.4) withH D U
and k0.R/ D k1.R/C 1.

It remains to prove the squeezing property (C). Let ui .t/, i D 1; 2, be two
solutions of the homogeneous Navier-Stokes system, which we write as a nonlocal
PDE in the space H :

(1.17) @tuC �LuC B.u/ D 0:

Here L D �…�, B.u/ D B.u; u/, B.u; v/ D ….hu;riv/, and … is the orthogo-
nal projection in L2.D;R2/ ontoH . We wish to show that, if the initial conditions
ui0 D ui .0/ belong to the ball BU .R/ and fej g is an orthonormal basis in U , then

k.I � PN /.u1.1/ � u2.1//k2 � N .R/ku10 � u20k2;

where N .R/ depends only on the basis fej g and goes to 0 as N !1.
A simple compactness argument implies that this inequality will hold if we

prove that

(1.18) ku1.1/ � u2.1/k3 � C.R/ku10 � u20k2 for u10; u20 2 BU .R/:

The proof of this inequality is carried out by standard methods (e.g., see [1]),
and we confine ourselves to outlining the main steps. We shall denote by Ci .R/
unessential positive constants depending only on R.

Step 1. It suffices to prove that

ku1.1/ � u2.1/k2 � C1.R/ku10 � u20k2;(1.19)

k Pu1.1/ � Pu2.1/k1 � C2.R/ku10 � u20k2;(1.20)

for u10; u20 2 BU .R/, where Pv D @tv. Set u D u1 � u2 and note that (1.17)
implies

�Lu.1/ D �Pu.1/ � B.u1.1/; u.1// � B.u.1/; u2.1//:
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Since ui .1/, i D 1; 2 are bounded in H 2 (see theorem 6.2 in [1]) and the bilinear
mapping .u; v/ 7! B.u; v/ is continuous from U to H 1, we see that

�kLu.1/k1 � k Pu.1/k1 C C3.R/ku.1/k2:

Recalling thatL�1 is continuous fromH 1
0 \H toH 3 and using inequalities (1.19)

and (1.20), we obtain the required estimate (1.18).
Step 2. To prove (1.19) and (1.20), we first show that

(1.21) sup
0�t�1

�
k Pu.t/k2 C

Z t

0

k Pu.s/k21 ds
�
� C4.R/ku10 � u20k2:

Differentiating (1.17) in time, we derive the following equation for Pu D Pu1 � Pu2:

(1.22) @t PuC �L PuC B. Pu1; u/C B.u1; Pu/C B. Pu; u2/C B.u; Pu2/ D 0:

Taking the L2-scalar product with 2 Pu and performing some standard transforma-
tions, we obtain

@tk Puk
2
C �k Puk21 � C5ku2k

2
1k Puk

2
C C5kuk1kuk

�
k Pu1k1k Pu1k C k Pu2k1k Pu2k

�
:

Applying the Gronwall and Cauchy-Schwarz inequalities and using the fact that Pui
belong to a bounded set in L1.0; 1IH/ \ L2.0; 1IH 1/, we derive

(1.23) k Pu.t/k2 C �
Z t

0

k Pu.s/k21 ds �

C6.R/
�
k Pu.0/k2 C kukL1.Jt IH/kukL2.Jt IH1/

�
;

where Jt D .0; t/. It follows from (1.17) that (cf. Step 1)

k Pu.0/k � C7.R/ku.0/k2:

Furthermore, it is well known that

(1.24) sup
0�t�1

�
ku.t/k2 C tku.t/k21 C

Z t

0

ku.s/k21 ds
�
� C8.R/ku.0/k

2:

Combining these two inequalities with (1.23), we obtain (1.21).
Step 3. We now derive (1.19). To this end, note that

(1.25) �Lu.1/ D g WD �@tu.1/ � B.u1.1/; u.1// � B.u.1/; u2.1//:

Using the continuity properties of B and inequalities (1.21) and (1.24), one easily
obtains

kgk � k@tu.1/k C C9.R/ku.1/k1 � C10.R/ku.0/k2:

Combining this with (1.25) and the continuity of L�1 from H to H 2, we ob-
tain (1.19).

Step 4. It remains to prove (1.20). To this end, we take the L2-scalar product
of (1.22) with 2tL Pu. After some standard transformations, we derive

(1.26) @t
�
tk Puk21

�
� k Puk21 C 2�tk Puk

2
2 D q.t/;
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where we set

q.t/ D �2t
�
B. Pu1; u/C B.u1; Pu/C B. Pu; u2/C B.u; Pu2/; L Pu

�
:

Well-known estimates for the bilinear term B imply that

(1.27) jq.t/j � �tk Puk22 C C11t q1.t/;

where

q1.t/ D k Pu1kk Pu1k1kuk1kuk2 C ku1k
2
ku1k

2
2k Puk

2

C ku2k1ku2k2k Pukk Puk1 C k Pu2k
2
1kukkuk2:

Integrating (1.26) in time and using (1.27), we obtain

(1.28) tk Puk21 C �

Z t

0

sk Puk22 ds �
Z t

0

k Puk21 ds C C11

Z t

0

sq1.s/ds:

The first integral on the right-hand side can be estimated with the help of (1.21).
We now bound each term of the second integral:Z t

0

sk Pu1kk Pu1k1kuk1kuk2 ds � C12.R/
�Z t

0

ku.s/k22 ds
�1=2

sup
0�s�t

ku.s/k1;Z t

0

sku1k
2
ku1k

2
2k Puk

2 ds � C13.R/
�Z t

0

k Pu.s/k2 ds
�1=2

;Z t

0

sku2k1ku2k2k Pukk Puk1ds � C14.R/
�Z t

0

k Pu.s/k21 ds
�1=2

sup
0�s�t

k Pu.s/k;Z t

0

sk Pu2k
2
1kukkuk2 ds � C15.R/

�Z t

0

ku.s/k22 ds
�1=2

sup
0�s�t

ku.s/k;

where 0 � t � 1, and we used the fact that the functions ui and Pui belong to
bounded sets in the spaces L1.J1;H 2/ and L1.J1; L2/ \ L2.J1;H 1/, respec-
tively. On the other hand, it is well known that

sup
0�t�1

�
ku.t/k21 C

Z t

0

ku.s/k22 ds
�
� C17.R/ku.0/k

2
1:

Combining these estimates with (1.28), (1.24), and (1.21), we obtain (1.20). This
completes the proof of Proposition 1.6. �

Complex Ginzburg-Landau Equation
Let us consider a complex Ginzburg-Landau (CGL) equation perturbed by a

random kick force:

(1.29) @tu � .� C i/�uC iajuj
2u D �.t; x/; x 2 D; u

ˇ̌
@D
D 0:

Here a > 0 is a parameter, D � R3 is a bounded domain with C 2-smooth bound-
ary @D, u D u.t; x/ is a complex-valued unknown function, and � is an external
force of the form (0.3), where f�kg is a sequence of i.i.d. random variables in the
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complex space H 1
0 .D/. It is well known that the Cauchy problem for (1.29) is

well posed in H 1
0 .D/ (see [22]), that is, for any u0 2 H 1

0 .D/, problem (1.29) has
a unique solution such that

(1.30) u.0; x/ D u0.x/:

Let us assume that the random kicks entering (1.29) have the form

�k.x/ D

1X
jD1

bj .�
1
jk C i�

2
jk/ej ;

where fej g is an orthonormal basis inH 1
0 .D/ consisting of the real eigenfunctions

of the Dirichlet Laplacian, fbj g � R is a sequence satisfying (1.7), and � i
jk

are
independent real-valued random variables whose laws possess the properties stated
in Condition (D) of Section 1.1. We denote by A � H 1

0 .D/ the set of attainability
from 0. The following result is an analogue of Propositions 1.5 and 1.6 for the case
of the CGL equation.

PROPOSITION 1.7. In addition to the above hypotheses, assume that bj ¤ 0 for all
j � 1. Then the LDP holds for the occupation measures (1.12) and (1.16) of the
trajectories whose initial state is an H 1

0 -valued random variable with range in A.

PROOF. We endow the space H 1
0 D H

1
0 .D/ with the scalar product

.u1; u2/1 D Re
Z
D

ru1.x/ � ru2.x/dx

and regard it as a real Hilbert space. Let S W H 1
0 ! H 1

0 be the time-1 shift
along trajectories of the problem (1.29) with � � 0. The required results will be
established if we check that the stochastic system (1.1) considered in the space
H D H 1

0 possesses properties (A)–(D). Regularity of the mapping S and its Lip-
schitz continuity on bounded subsets are standard, and (D) is satisfied in view of
the hypotheses of the proposition. Thus, it remains to check (1.3)–(1.5).

Step 1. Let us introduce the following continuous functionals on H 1
0 :

H0.u/ D
1

2

Z
D

ju.x/j2 dx; H1.u/ D
Z
D

�
1

2
jru.x/j2 C

a

4
ju.x/j4

�
dx:

It is well known3 that if u.t/ is a solution of (1.29) and � is a locally integrable
function of time with range in H 1

0 , then

d
dt

H0.u/ D ��kruk2 C .u; �/;(1.31)

3 For instance, see section 2.2 in [22] for the more complicated case of a white noise force.



2122 V. JAKŠIĆ ET AL.

d
dt

H1.u/ D ��k�uk2 � 2a�.juj2; jruj2/(1.32)

C a�.u2; .ru/2/C .��uC ajuj2u; �/;

where . � ; � / and k�k stand for the real L2-scalar product and the corresponding
norm:

.u1; u2/ D Re
Z
D

u1.x/ xu2.x/dx; kuk2 D .u; u/:

Using the inequalities

k�uk2 � ˛1kruk
2; j.u2; .ru/2/j � .juj2; jruj2/;

.juj2; jruj2/ � c

Z
D

juj4dx;

where ˛1 > 0 is the first eigenvalue of the Dirichlet Laplacian, from (1.32) we
derive the inequality

(1.33)
d
dt

H1.u.t// � �ıH1.u.t// �
�

2
k�uk2 C .��uC ajuj2u; �/;

where ı > 0 depends only on a, �, and ˛1. Taking � � 0 and applying the
Gronwall inequality, we see that

H1.u.t// � e�ıtH1.u.0//; t � 0:

It follows that if u0 2 BH1
0
.R/, then

kSn.u0/k1 �
�
2H1.u.n//

�1=2
� .2e�ınH1.u0//1=2 � C1Re�ın=2ku0k1;

where we used the inequality

(1.34) H1.v/ � Ckvk41; v 2 H 1
0 ;

following immediately from the continuity of the embedding of H 1
0 � L4. The

above estimate for kSn.u0/k1 implies (1.3).
Step 2. We now prove the dissipativity property (1.4). To this end, we first

establish a bound for the L2-norm. It follows from (1.31) that, for any " > 0, the
function '".t/ D .H0.u.t//C "/1=2 satisfies the inequality

'0".t/ � ��˛1'".t/C
1
p
2
k�.t/k C �˛1

p
":

Applying the Gronwall inequality and passing to the limit "! 0, we obtain

(1.35) ku.t/k � e��˛1tku0k C

Z t

0

e��˛1.t�s/k�.s/kds:

Now note that if
R
J k�.s/kds � b0 for any interval J � RC of length 1, thenZ t

0

e��˛1.t�s/k�.s/kds �
b0

1 � e��˛1
for t � 0:
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Combining this with (1.35), we see that

(1.36) ku.k/k � e��˛1kku0k C
b0

1 � e��˛1
; k � 0:

This inequality, established in the case of locally time-integrable functions �.t/,
remains true for kick forces of the form (0.3) with L2 bounded functions �k . In
particular, (1.4) holds with H D L2.D/.

We now use the regularizing property of the homogeneous CGL equation to
prove (1.4) with H D H 1

0 . Namely, if we show that the mapping S W u0 7! u.1/

from L2 to H 1
0 is bounded on bounded subsets, then (1.36) will obviously imply

the existence of a universal constant � > 0 satisfying (1.4) with H D H 1
0 . To

prove the boundedness of S , let us fix a solution u of (1.29), define a function
 .t/ D t

p
H1.u.t//, and calculate its derivative. It follows from (1.32) and (1.34)

that4

 0.t/ D
p
H1 C

t
p
H1

d
dt

H1 �
p
Cku.t/k21:

Furthermore, integrating relation (1.31) with � � 0, we see that

ku.t/k2 C 2�

Z t

0

ku.s/k21 ds � ku0k2:

Combining these two relations, we obtain

(1.37) ku.t/k1 �
p
2H1.u.t// D

p
2

t
 .t/ �

p
2C

t

Z t

0

kuk21 ds �
C2

�t
ku0k

2:

The boundedness of S from L2 to H 1
0 is a straightforward consequence of this

inequality.
Step 3. It remains to establish the squeezing property (1.5), in which PN is the

orthogonal projection inH 1
0 (endowed with the scalar product . � ; � /1) to the vector

span of fej ; iej ; j D 1; : : : ; N g. Let us set QN D I � PN . By hypothesis, we
have kej k1 D 1; hence it follows that

kej k D
1
p

j̨
; j � 1;

where j̨ is the eigenvalue of the Dirichlet Laplacian corresponding to the eigen-
function ej . Using this relation, it is straightforward to check that fp j̨ ej g is an
orthonormal basis in L2 and that the norm of QN regarded as an operator in L2 is
equal to 1.

Let u1; u2 be two solutions of (1.29) corresponding to initial data u10; u20 2
BH1

0
.R/. Applying QN to (1.29) and setting w D QN .u1 � u2/, we derive the

equation
Pw � .� C i/�w C iaQN

�
ju1j

2u1 � ju2j
2u2

�
D 0:

4 A rigorous derivation of (1.37) can be carried out by the simple argument used to estab-
lish (1.35).
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It follows that

@tkwk
2
1 D 2Re

Z
D

r Pw � r xw dx D �2Re
Z
D

Pw� xw dx

D �2
�
.� C i/�w � iaQN .ju1j

2u1 � ju2j
2u2/;� xw

�
� �2�k�wk2 C a

ju1j2u1 � ju2j2u2k�wk;(1.38)

where we used the fact that the norm of QN is equal to 1. Using the Hölder in-
equality and the continuity of the embedding H 1

0 � L
6, we derive

kju1j
2u1 � ju2j

2u2k � C3.ku1k1 C ku2k1/
2
kwk1:

Substituting this into (1.38) and using the Poincaré inequality k�wk2 � ˛N kwk21,
we obtain

(1.39) @tkwk
2
1 � �.�˛N � C4.ku1k1 C ku2k1/

4/kwk21:

Since u10; u20 2 BH1
0
.R/ and the resolving operator for the CGL is bounded on

bounded subsets, we can find C5.R/ such that

kui .t/k1 � C5.R/ for 0 � t � 1, i D 1; 2:

Combining this with (1.39) and the Gronwall inequality, we derive

kw.t/k21 � exp
�
��˛N t C C4

Z t

0

.ku1k1 C ku2k1/
4 ds

�
kw.0/k21

� exp.��˛N t C C6.R/t/kw.0/k21:

Since QN is an orthogonal projection in H 1
0 , we have kw.0/k1 � ku10 � u20k1.

Substituting this into the above estimate and taking t D 1, we obtain

ku1.1/ � u2.1/k1 � N .R/ku10 � u20k1; 2N .R/ D exp.��˛N C C6.R//:

This completes the proof of (1.5) and Proposition 1.7 follows. �

1.4 Scheme of the Proof of Theorem 1.3
Along with �k , let us consider “shifted” occupation measures defined as

y�k D
1

k

kX
nD1

ıun
:

The sequences f�kg and fy�kg are exponentially equivalent (see Lemma A.2), and
therefore, by theorem 4.2.13 of [9], it suffices to prove the LDP for y�k . The proof
of this property is based on an abstract result established by Kifer [20]. For the
reader’s convenience, its statement is recalled in the Appendix (see Theorem A.1).
We shall prove that the following two properties hold.
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Property 1 (Existence of a Limit). For any V 2 C.A/, the limit

Q.V / D lim
k!C1

1

k
log E exp

� kX
nD1

V.un/

�
(1.40)

exists and does not depend on the initial condition u0.

The function Q.V / is convex and 1-Lipschitz, and we denote by I WM.A/!
RC its Legendre transform; see (A.2). It is well known that

Q.V / D sup
�2P.A/

.hV; �i � I.�//I

see lemma 2.2 in [2] and theorem 2.2.15 in [10]. In view of the compactness
of P.A/, for any V 2 C.A/ the supremum in the above relation is attained at
some point �V 2 P.A/. Any such point is called an equilibrium state.

Property 2 (Uniqueness of the Equilibrium State). There is a dense vector space
V � C.A/ such that, for any V 2 V , there exists unique �V satisfying

Q.V / D hV; �V i � I.�V /:(1.41)

According to Kifer’s theorem, the first of the above properties implies the LD
upper bound for y�k , while the second is sufficient for the LD lower bound. The
proofs of these two properties are related to the large-time behavior of a gener-
alized Markov semigroup associated with uk : More precisely, given a function
V 2 C.A/, we consider the semigroup

(1.42) PVk f .u/ WD Euf .uk/ exp
� kX
nD1

V.un/

�
; f 2 C.A/;

where the subscript u means that we consider the trajectory of (1.1) starting from
u 2 H . The dual semigroup is denoted by PV �

k
W P.A/ ! P.A/. We construct

explicitly a dense vector space V � C.A/ such that, for any V 2 V , the semigroup
PV
k

is uniformly Feller and uniformly irreducible (see Section 2 for the definition
of these concepts). Then, by an abstract result proved in Section 2, there is a
number �V > 0, a function hV 2 CC.A/, and a measure �V 2 P.A/ satisfying

(1.43) PV1 hV D �V hV ; PV �1 �V D �V�V ;

such that for any f 2 C.A/ and � 2 P.A/ we have

��kV PVk f ! hf; �V ihV in C.A/ as k !C1;(1.44)

��kV PV �k � * hhV ; �i�V in MC.A/ as k !C1:(1.45)

Taking f D 1 in (1.44), one gets immediately the existence of the limit (1.40) for
V 2 V and any initial function u0 whose law is supported by A. Then, by a simple
approximation argument, we prove the existence of the limit for any V 2 C.A/.
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To establish the uniqueness of �V 2 P.A/ satisfying (1.41), we first show
that any equilibrium state �V is a stationary measure for the dual of the follow-
ing Markov semigroup:

(1.46) S V
k g WD �

�k
V h�1V PVk .ghV /; g 2 C.A/:

From convergence (1.45) we then deduce the uniqueness of stationary measure
for S V

k
, showing that �V .du/ D hV .u/�V .du/.

The crucial point in the realization of the above scheme is the verification of the
uniform Feller property for the semigroup fPV

k
g. This verification is based on a

coupling argument and is carried out in Section 3.

1.5 Scheme of the Proof of Theorem 1.4
Let pm W H ! Hm be the projection that maps a sequence .uj ; j 2 ZC/ to

the vector .uj ; 0 � j � m � 1/. It is straightforward to check that if fuk; k � 0g
is a trajectory for (1.1), then the image of �k (see (1.16)) under pm coincides with
the random probability measure

(1.47) �mk D
1

k

k�1X
nD0

ıum
n
; k � 1;

where umn D .un; : : : ; unCm�1/. It follows from the Dawson-Gärtner theorem (see
Theorem A.3 in the Appendix) that to prove Theorem 1.4 it suffices to show that for
any integerm � 1, the LDP holds for �m

k
with a good rate function Im W P.Hm/!

Œ0;C1�. The proof of this fact is very similar to the proof of Theorem 1.3 and the
argument is outlined in Section 5. To formulate the result precisely, let A.m/ be the
set of vectors .u1; : : : ; um/ 2 Hm such that u1 2 A and uk D S.uk�1/C �k for
2 � k � m, where �k 2 K. Note that if a trajectory fukg for (1.1) is such that u0
is an A-valued random variable, then the measures �m

k
are concentrated on A.m/.

In Section 5 we prove the following:

THEOREM 1.8. Under the conditions of Theorem 1.3, let u0 be a random variable
in H whose law is supported by A. Then the family f�m

k
; k � 1g regarded as a

sequence of random probability measures on A.m/ satisfies the LDP with a good
rate function Im W P.A.m//! Œ0;C1�. Moreover, Im can be written as

Im.�/ D sup
V 2C.A.m//

.hV; �i �Qm.V //; � 2 P.A.m//;(1.48)

whereQm W C.A.m//! R is a 1-Lipschitz convex function such thatQm.C / D C
for any C 2 R.

This result immediately implies that �m
k

, as measures on Hm, satisfy the LDP.
To see this, extend the rate function Im that was constructed in Theorem 1.8 to the
space P.Hm/ by setting Im.�/ D C1 for any measure � 2 P.Hm/ satisfying
�.A.m// < 1. Then, recalling that �m

k
are supported on A.m/ if so is the the initial



LARGE DEVIATIONS FOR DISSIPATIVE PDES WITH RANDOM KICKS 2127

measure D.u0/, we check that the LD upper and lower bounds hold for the family
f�m
k
; k � 1g regarded as random probability measures on Hm.

1.6 Uniform Large Deviations Principle
The arguments of the proofs of Theorems 1.3 and 1.4 enable one to obtain a uni-

form LDP for the families f�kg and f�kg, which depend on the initial point. More
precisely, let us denote by �k.u/ the occupation measure (1.12) for the trajectory
issued from a deterministic point u 2 A and define �k.u/ in a similar way. The
definition of the uniform LDP is recalled in the Appendix (see Section A.3). We
have the following result:

THEOREM 1.9. Let Hypotheses (A)–(D) and Condition (1.8) be satisfied. Then the
uniform LDP holds for the families f�k.u/; u 2 Ag and f�k.u/; u 2 Ag with the
good rate functions I and I defined in Theorems 1.3 and 1.4, respectively.

SKETCH OF THE PROOF. Let us define the set ‚ WD N � A and introduce an
order relation � on it by the following rule: if �i D .ki ; ui / 2 ‚ for i D 1; 2, then
�1 � �2 if and only if k1 � k2. Then .‚;�/ is a directed set. Defining r.�/ D k,
we apply Theorem A.1 to the family �� D �k.u/ indexed by � D .k; u/ 2 ‚. The
scheme of the proof described above for Theorem 1.3 applies equally well in this
case, and using the fact that the convergence in (1.40) is uniform with respect to
the deterministic initial condition u0 2 A, we get the existence of limit (A.1) and
uniqueness of equilibrium measure. Thus, we have the LDP

(1.49) � I. P�/ � lim inf
�2‚

1

k
log Pf�� 2 �g � lim sup

�2‚

1

k
log Pf�� 2 �g � �I.x�/:

Now notice that the middle terms in this inequality can be written as

lim inf
�2‚

1

k
log Pf�� 2 �g D lim inf

k!C1

1

k
inf
u2A

log Pf�k.u/ 2 �g;

lim sup
�2‚

1

k
log Pf�� 2 �g D lim sup

k!C1

1

k
sup
u2A

log Pf�k.u/ 2 �g:

Substituting these relations into (1.49), we obtain the uniform LDP for �k.u/.
To establish the uniform LDP for �k.u/, we apply Theorem A.4. We thus need

the uniform LDP for the projected measures �m
k
D �m

k
.u/ defined in Section 1.5.

The latter can be obtained by modifying the proof of Theorem 1.8 exactly in the
same way as we did above to get the uniform LDP for �k.u/. �

2 Large-Time Asymptotics for Generalized Markov Semigroups
In this section, we prove a general result on the large-time behavior of trajec-

tories for a class of dual semigroups. This type of result was established earlier
for Markov semigroups satisfying a uniform Feller and an irreducibility proper-
ties; see [21, 23–25, 29]. The main theorem of this section is a generalization of
theorem 4.2 in [21] and has independent interest.
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Let X be a compact metric space, let MC.X/ be the space of nonnegative
Borel measures on X endowed with the topology of weak convergence, and let
fP.u; � /; u 2 Xg �MC.X/ be a family satisfying the following condition:
FELLER PROPERTY: The function u 7! P.u; � / from X to MC.X/ is continuous

and nonvanishing.
In this case, we shall say that P.u; �/ is a generalized Markov kernel. One obvious
consequence of the Feller property is the inequality

C�1 � P.u;X/ � C for all u 2 X .

Define the operators

Pf .u/ D

Z
X

P.u; dv/f .v/; P��.�/ D

Z
X

P.u; �/�.du/;

and denote Pk D Pk and P�
k
D .P�/k . It is easy to see that

Pkf .u/ D

Z
X

Pk.u; dv/f .v/; P�k�.�/ D

Z
X

Pk.u; �/�.du/;

where Pk.u; �/ is defined by the relations P0.u; � / D ıu, P1.u; � / D P.u; � /, and

Pk.u; � / D

Z
X

Pk�1.u; dv/P.v; � /; k � 2:

To simplify the notation, the sup-norm on C.X/ is denoted in this section by k�k.
Let 1 be the function on X identically equal to 1. Recall that a family C � C.X/
is called determining if any two measures �; � 2 MC.X/ satisfying the relation
hf; �i D hf; �i for all f 2 C coincide. In this section we prove:

THEOREM 2.1. Let P.u; �/ be a generalized Markov kernel satisfying the follow-
ing conditions.
UNIFORM FELLER PROPERTY: There is a determining family C � CC.X/ of

nonzero functions such that 1 2 C and, for any f 2 C, the sequence
fkPkf k

�1Pkf; k � 0g is uniformly equicontinuous.
UNIFORM IRREDUCIBILITY: For any r > 0 there is an integer m � 1 and a

constant p > 0 such that

(2.1) Pm.u; B.yu; r// � p for all u; yu 2 X:

Then there is a constant � > 0, a unique measure � 2 P.X/ whose support
coincides withX , and a unique h 2 CC.X/ satisfying hh; �i D 1 such that for any
f 2 C.X/ and � 2MC.X/ we have

Ph D �h; P�� D ��;(2.2)

��kPkf ! hf; �ih in C.X/ as k !1;(2.3)

��kP�k� * hh; �i� as k !1:(2.4)



LARGE DEVIATIONS FOR DISSIPATIVE PDES WITH RANDOM KICKS 2129

PROOF. Note that the uniqueness of h and � is an immediate consequence of
the normalization and relations (2.2)–(2.4). We split the proof in four steps.

Step 1. We first prove the existence of a measure satisfying the second relation
in (2.2). To this end, let F W P.X/! P.X/ be a map defined by

F.�/ D .P��.X//�1P��:

The Feller property implies that this map is well-defined and continuous in the
weak topology. Since P.X/ is a convex compact set, by the Leray-Schauder the-
orem, the mapping F has a fixed point � 2 P.X/. We thus obtain the second
relation in (2.2) with � D P��.X/. In what follows, we may assume without loss
of generality that � D 1; otherwise, we can replace P.u; �/ by ��1P.u; �/.

Step 2. Let us prove that, for any f 2 C, we have

(2.5) C�1f � kPkf k � Cf for all k � 1;

where Cf > 1 is a constant not depending on k. Indeed, suppose that there is a
sequence kj !1 such that

(2.6) kPkj
f k C kPkj

f k�1 !C1 as j !1:

In view of the uniform Feller property, we can assume that

kPkj
f k�1Pkj

f ! g in C.X/ as j !1;

where g 2 C.X/ is a function whose norm is equal to 1. Integrating with respect
to � and using the invariance of �, we derive

(2.7) kPkj
f k�1hf; �i ! hg; �i as j !1:

The uniform irreducibility implies that for any yu 2 X and r > 0 we have

�.B.yu; r/r/ D

Z
X

Pm.u; B.yu; r/r/�.du/ � p�.X/ > 0:

Hence, supp� D X , and since f; g 2 CC.X/ are nonzero functions, we have that
hf; �i > 0 and hg; �i > 0. It now follows from (2.7) that the sequence kPkj

f k

has a finite positive limit, and therefore (2.6) cannot hold.
Step 3. Let us prove the existence of h 2 CC.X/ satisfying the first relation

in (2.2) with � D 1. Let f 2 C be an arbitrary function. The uniform Feller
property and inequality (2.5) imply that the sequence Pkf is uniformly equicon-
tinuous. It follows that so is the sequence

fk D
1

k

k�1X
lD0

Plf:

Let h be a limit point for ffkg. It is straightforward to see that h � 0 and P1h D h.
Furthermore, since hfk; �i D hf; �i > 0, we see that h is nonzero. Multiplying h
by a constant, we can assume that hh; �i D 1. It remains to prove that h.u/ > 0
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for all u 2 X . Indeed, let yu 2 X be any point at which h is positive. Then there is
r > 0 such that h.v/ � r for v 2 B.yu; r/. It follows that, for any u 2 X , we have

h.u/ D Pmh.u/ D

Z
X

Pm.u; dv/h.v/ �

Z
B.yu;r/

Pm.u; dv/h.v/

� rPm
�
u;B.yu; r/

�
� rp > 0;

where m � 1 is the integer from (2.1).
Step 4. We now establish convergence (2.3) and (2.4) with � D 1. To this end,

we first note that (2.4) is an immediate consequence of (2.3). Furthermore, the
right-hand inequality in (2.5) with f D 1 implies that the norms of the opera-
tors Pk are bounded by C1 for all k � 1. Since the linear span of a determining
family is dense in C.X/, it suffices to establish (2.3) for any f 2 C.

Let us fix an arbitrary f 2 C and define the function g D f �hf; �ih. We need
to prove that Pkg! 0 in C.X/. Since fPkg; k � 0g is uniformly equicontinuous
and the norms of Pk are bounded, the required assertion will be established if we
prove that any sequence of integers ni ! 1 contains a subsequence fkj g � fnig
for which

(2.8) kgkj
k� ! 0 as j !1;

where we set gk D Pkg. Since hgk; �i D 0 for k � 0, convergence (2.8) certainly
holds for any subsequence fkj g such that kgC

kj
k ! 0 or kg�

kj
k ! 0 as j ! 1.

Let us assume that there is no subsequence satisfying this property. Then there
exist sequences fu˙i g � X and a constant ˛ > 0 such that

(2.9) zgCi .u
C
i / D max

u2X
zgCi .u/ � ˛; zg�i .u

�
i / D max

u2X
zg�i .u/ � ˛;

where we set zgi D gki
. Since zg˙i are uniformly equicontinuous, we can find r > 0

not depending on i such that

(2.10) zg˙i .u/ �
1

2
zg˙i .u

˙
i / for u 2 B.u˙i ; r/:

Let m and p be the constants arising in the uniform irreducibility condition.
Then (2.10) and (2.5) imply

Pmzg
˙
i .u/ D

Z
X

Pm.u; dv/zg
˙
i .v/ � C1zg

˙
i .u

˙
i /;

Pmzg
˙
i .u/ �

Z
B.u˙

i
;r/

Pm.u; dv/zg
˙
i .v/ � p zg

˙
i .u

˙
i /=2;

and it follows that

(2.11) sup
u2X

Pmzg
˙
i .u/ � Ag inf

u2X
Pmzg

˙
i .u/;
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where Ag D 2C1=p > 1 (so that 0 < 1 � A�1g < 1). In particular, due to the
stationarity of �, we have

Pmzg
˙
i .u/ � A

�1
g kPmzg

˙
i k � A

�1
g kPmzg

˙
i k� D A

�1
g kzg

˙
i k�:

Using this inequality, we now write

kPmzgik� D

Z
X

jPm.zg
C
i � zg

�
i /jd�

D

Z
X

ˇ̌
.Pmzg

C
i � A

�1
g kzg

C
i k�/ � .Pmzg

�
i � A

�1
g kzg

�
i k�/

ˇ̌
d�

�

Z
X

ˇ̌
Pmzg

C
i � A

�1
g kzg

C
i k�

ˇ̌
d�C

Z
X

ˇ̌
Pmzg

�
i � A

�1
g kzg

�
i k�

ˇ̌
d�

D

Z
X

Pm.zg
C
i C zg

�
i /d� � A

�1
g .kzgCi k� C kzg

�
i k�/

D .1 � A�1g /kzgik�:(2.12)

Furthermore, for any f 2 C.X/ and k � 1, we have

kPkf k� D hjPkf j; �i � hPkjf j; �i D hjf j; �i D kf k�:

It follows that the sequence fkPkgk�g is nonincreasing. Combining this property
with (2.12), we see that if nl � ni Cm, then

(2.13) kgnl
k� � .1 � A

�1
g /kgni

k�:

Let us choose a subsequence fkj g � fnig such that kjC1 � kj Cm. Then (2.13)
implies that

kgkj
k� D kPkj

gk� � .1 � A
�1
g /j kgk� for j � 0;

where k0 D 0. This proves convergence (2.8) and completes the proof of the
theorem. �

3 The Uniform Feller Property
We shall use freely the notation introduced in Section 1.1 (we recall, in par-

ticular, that fej g is the orthonormal basis introduced in Condition (C), PN is the
orthogonal projection onto HN D spanfe1; : : : ; eN g, and A D A.f0g/ is the do-
main of attainability from zero). Let V be the set of functions V 2 C.A/ for which
there is an integer N � 1 and a function F 2 C.HN / such that

(3.1) V.u/ D F.PNu/ for u 2 A:
It is easy to see that V is a dense subspace in C.A/ containing the constant func-
tions. In particular, the intersection C D V \ CC.A/ is a determining family
for P.A/.
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For any V 2 C.A/, let us consider the following generalized Markov kernel
on A:

(3.2)

P V1 .u; �/ D Eu
�
I�.u1/e

V.u1/
�

D

Z
�

P1.u; dv/e
V.v/; u 2 A; � 2 B.A/:

The corresponding semigroup of operators is given by (1.42). The goal of this
section is to prove the following:

THEOREM 3.1. Under the hypotheses of Theorem 1.3, for any V 2 V the semi-
group fPV

k
g possesses the uniform Feller property for the determining class C. In

other words, for any V 2 V and f 2 C the sequence fkPV
k
f k�11PV

k
f; k � 0g is

uniformly equicontinuous.

This theorem will play a key role in the proof of our main results. To prove it,
we first recall a coupling construction for the Markov chain associated with (1.1)
and then use it to establish Theorem 3.1.

3.1 Coupling
Let us denote by AZC the direct product of countably many copies of A en-

dowed with the Tikhonov topology and byP.v/ the law of the trajectory fuk; k �
0g for (1.1) issued from v 2 A. Thus, P.v/ is a probability measure on AZC . The
following result is established in [23] (see section 3.2.2).

PROPOSITION 3.2. Under the hypotheses of Theorem 1.3, for any sufficiently large
integer N � 1 there is a probability space .�N ;FN ;PN /, positive numbers CN ,
and N < 1 such that

(3.3) N ! 0 as N !1;

and an A�A–valued Markov process .uk; u0k/ on�N parametrized by the initial
point .v; v0/ 2 A �A for which the following properties hold:

(a) The PN -laws of the sequences fuk; k � 0g and fu0
k
; k � 0g coincide

with P.v/ and P.v0/, respectively.
(b) For any integer r � 1, we have

(3.4) PN
˚
PNuk D PNu

0
k for 1 � k � r � 1; PNur ¤ PNu

0
r

	
�

CN 
r
N kv � v

0
k; 5

where the trajectory .uk; u0k/ entering the left-hand side corresponds to
the initial point .v; v0/ 2 A �A.

Note that, in [23], inequality (3.4) is proved with a fixed N . However, since
the numbers N .R/ entering (1.5) go to 0, we can make N arbitrarily small by
choosing a large N .

5 The relation PNuk D PNu0k in (3.4) should be omitted when r D 1.
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3.2 Proof of Theorem 3.1
Let us fix two functions V 2 V and f 2 C. There is no loss of generality in

assuming that the integer N � 1 entering representation (3.1) for V and f is the
same. Abusing slightly the notation, we shall write V and f for the corresponding
function F in the right-hand side. Let us set

gk.u/ D kP
V
k f k

�1
1 PVk f .u/; k � 0:

We need to show that fgk; k � 0g is uniformly equicontinuous. One can assume
that 0 < f � 1 and infA V D 0.

Let us fix two points v; v0 2 A and denote by fukg and fu0
k
g the sequences

constructed in Proposition 3.2. Denoting

„V f .´1; : : : ; ´k/ D exp.V .´1/C � � � C V.´k//f .´k/

and defining A.r/ to be the event on the left-hand side of (3.4), we can write

(3.5) PVk f .v/ �PVk f .v
0/ D

kX
rD1

I rk .v; v
0/;

where we set

I rk .v; v
0/ D EN fIA.r/.„V f .u1; : : : ; uk/ �„V f .u

0
1; : : : ; u

0
k//g

and EN stands for the expectation corresponding to PN . Let us denote by FN
k

the
filtration generated by .uk; u0k/. Since f is bounded by 1 and separated from 0 by
a positive number ı, taking the conditional expectation given FNr and carrying out
some simple estimates, we derive

I rk .v; v
0/ � EN

˚
IA.r/e

V.u1/C���CV.uk/f .uk/
	

� EN
�
IA.r/e

V.u1/C���CV.ur /EN
˚
„V 1.urC1; : : : ; uk/

ˇ̌
FNr

	�
� erkV k1EN

�
IA.r/

�
PVk�r1

�
.ur/

�
� erkV k1EN

�
IA.r/kP

V
k 1k1

�
� ı�1erkV k1

PVk f 1PN .A.r//:(3.6)

Substituting this into (3.5) and using (3.4), we derive

jgk.v/ � gk.v
0/j � CN ı

�1
kv � v0k

kX
rD1

erkV k1rN :

Choosing N so large that kV k1 C log N < 0, we obtain

jgk.v/ � gk.v
0/j � C 0N kv � v

0
k for all v; v0 2 A, k � 0:

The proof of Theorem 3.1 is complete. �
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4 Proof of Theorem 1.3
We shall prove Theorem 1.3 by verifying Property 1 (the existence of a limit)

and Property 2 (uniqueness of the equilibrium state) of Section 1.4.
Let P V

k
.u; �/, fPV

k
g, V , and C be as in Theorem 3.1. For any V 2 C.A/,

P Vk .u; � / � e
�kkV k1Pk.u; � / for any u 2 A:

Since Pk.u; �/ is uniformly irreducible (e.g., see section 5 of [21] for a proof of a
similar assertion in a more complicated setting), so is P V

k
.u; �/. By Theorem 3.1,

for any V 2 V the semigroup fPV
k
g possesses the uniform Feller property for the

determining class C. Thus, for V 2 V , Theorem 2.1 holds for the semigroup fPV
k
g

and the class C.
We now turn to the proof of Property 1 and the existence of the limit (1.40).

Theorem 2.1 implies that for any V 2 V there is hV 2 CC.A/ and a constant
�V > 0 such that

��kV PVk 1! hV in C.A/ as k !1:

It follows that for V 2 V

Q.V / D lim
k!C1

1

k
log.PVk 1/.u/ D log�V(4.1)

uniformly in u 2 A. The estimate

.PV1

k
1/.u/ D Eu exp

� kX
nD1

V1.un/

�
� ekkV1�V2k1 Eu exp

� kX
nD1

V2.un/

�
D ekkV1�V2k1 .PV2

k
1/.u/;

which holds for any V1; V2 2 C.A/, impliesˇ̌̌̌
1

k
log.PV1

k
1/.u/ �

1

k
log.PV2

k
1/.u/

ˇ̌̌̌
� kV1 � V2k1 for k � 1, u 2 A:(4.2)

Hence, (4.1) holds for all V 2 C.A/, the limit is uniform in u 2 A, and

jQ.V1/ �Q.V2/j � kV1 � V2k1 for V1; V2 2 C.A/:(4.3)

The existence of the limit (1.40) for an arbitrary A-valued initial random vari-
able u0 now follows by integration with respect to the law of u0. The Hölder
inequality implies immediately that Q is a convex function.

Let us prove Property 2. We shall show that, for any V 2 V , there is a unique
equilibrium state �V 2 P.A/ for Q.V /. To this end, we first derive a necessary
and sufficient condition for a measure � 2 P.A/ to be an equilibrium state.

Recall that I WM.A/! R is the Legendre transform of the 1-Lipschitz convex
function Q W C.A/ ! R. Given a function V 2 C.A/, introduce a Markov
semigroup by (1.46) and denote by fS V �

k
g its dual semigroup acting on P.A/.
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As in the case of Pk , for any F 2 C.A/ we can consider a generalized Markov
semigroup defined by

SF1 f D S V
1 .e

F f /; SFk D .S
F
1 /
k :

We claim that, for any F 2 C.A/, the limit

(4.4) QV .F / D lim
k!1

1

k
log.SFk 1/.u/

is well-defined and does not depend on u 2 A. Indeed, it is straightforward to
check using (1.46) that

SFk 1 D ��kV h�1V PVCF
k

hV :

In view of convergence (1.44), it follows that (4.4) exists for any F 2 V and is
equal to

(4.5) QV .F / D Q.V C F / �Q.V /:

Repeating the simple approximation argument used in the proof of (4.1), we con-
clude that the limit (4.4) is well-defined for any F 2 C.A/ and is given by (4.5).
It follows that the Legendre transform of QV has the form

(4.6) IV .�/ D I.�/CQ.V / � hV; �i:

Thus, � 2 P.A/ is an equilibrium state forQ.V / if and only if IV .�/ D 0. On the
other hand, by lemma 2.5 in [11] (see also lemma 4.1.45 in [10]), the latter holds
if and only if � is a stationary measure for S V �

1 . Thus, the required property will
be established if we prove that S V �

1 has a unique stationary measure.
In view of (1.46), we have

(4.7) S V �
k � D ��kV hVP

V �
k .h�1V �/:

It follows that �V D hV�V (where �V is the measure in (1.43)) is a stationary
measure for S V �

1 . Moreover, if � 2 P.A/ is another stationary measure for S V �
k

,
then, by (1.45), we have

� D S V �
k � D ��kV hVP

V �
k .h�1V �/! hV�V D �V :

This completes the proof of uniqueness of the equilibrium state for V 2 V and that
of Theorem 1.3. �

5 Proof of Theorem 1.4
As described in Section 1.5, Theorem 1.4 follows from Theorem 1.8 (which in

turn is a generalization of Theorem 1.3). To establish Theorem 1.8, one follows
the general scheme used in the proof of Theorem 1.3, applying it to the Markov
chain formed by the segments of trajectories of length m. Namely, let us consider
the following family of Markov chains in A.m/:
(5.1) uk D S .uk�1/C �k;
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where uk D .u1
k
; : : : ; um

k
/, �k D .0; : : : ; 0; �kCm�1/, and S W Hm ! Hm is the

mapping given by

S .v1; : : : ; vm/ D .v2; : : : ; vm; S.vm//; .v1; : : : ; vm/ 2 H
m:

It is clear that if u0 is an A-valued random variable independent of f�kg and fukg
is the corresponding trajectory of (1.1), then �m

k
is the occupation measure for the

trajectory of (5.1) starting from the (random) initial point .u0; : : : ; um�1/. Since
its law is supported by A.m/, the LDP for �m

k
will be established if we prove the

LDP for the Markov family (5.1) restricted to the invariant compact set A.m/. By
Kifer’s theorem and the argument described in Section 1.4, the latter result is a
consequence of the following two properties (which were described in Section 1.4
for fukg):

Property 10 (Existence of a Limit) For any function V 2 C.A.m// the limit

Qm.V / D lim
k!C1

1

k
log E exp

� kX
nD1

V.un/
�

(5.2)

exists and does not depend on the initial point u D .u1; : : : ; um/ 2 A.m/.

Property 20 (Uniqueness of Equilibrium State) There exists a dense vector space
Vm � C.A.m// such that, for any V 2 Vm, there is a unique measure �V 2
P.A.m// satisfying the relation

Qm.V / D sup
�2P.A.m//

.hV; �i � Im.�//;

where Im.�/ denotes the Legendre transform of Qm.

To establish these assertions, we introduce a generalized Markov semigroup by
the relation (cf. (1.42))

(5.3) PVk f .u/ WD Euf .uk/ exp
� kX
nD1

V.un/

�
; f 2 C.A.m//;

where V 2 C.A.m// is a given function. If we prove that fPV
k
g satisfies the

uniform Feller and uniform irreducibility properties of Theorem 2.1 for any V be-
longing to a dense subspace Vm that contains constant functions, then the required
results will follow line by line the proof of Theorem 1.3.

To show the uniform irreducibility, note that A.m/ is the domain of attainability
from 0 for system (5.1). Therefore the required property follows by repeating the
proof of a similar property for (1.1).

We now turn to the uniform Feller property. Let Vm be the space of functions
V 2 C.A.m// for which there is an integer N � 1 and a function F 2 C.Hm

N /

such that
V.u/ D F.PNu/ for u D .u1; : : : ; um/ 2 A.m/;
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where PNu D .PNu1; : : : ;PNum/. Given v; v0 2 A.m/, we define

vk D .v; u1; : : : ; uk/; v0k D .v
0; u01; : : : ; u

0
k/; wk D .v

0; u1; : : : ; uk/;

where fukg and fu0
k
g stand for the trajectories issued from v and v0, respectively.

Then, for V; f 2 Vm and k � m, we have (cf. (3.5))

PVk f .v/ �PVk f .v
0/ D Ik.v; v

0/C

kX
rD1

I rk .v; v
0/;

where we set6

Ik.v; v
0/ D Ef .vk/.e

V.v1/C���CV.vk/ � eV.w1/C���CV.wk//;

I rk .v; v
0/ D EIA.r/.e

V.w1/C���CV.wk/f .vk/ � e
V.v01/C���CV.v

0
k
/f .v0k//;

and A.r/ is defined in Section 3.2. Since the last k elements of the sequences vk
andwk are the same, the expression Ik.v; v0/ can be estimated uniformly in k � m
by a function of the form kPV

k
f k1 g.v; v

0/, where g.v; v0/ ! 0 as v � v0 ! 0.
On the other hand, I r

k
.v; v0/ can be bounded in exactly the same way as in the

proof of Theorem 3.1. This completes the proof of Theorems 1.8 and 1.4.

Appendix: Auxiliary Results
In this section, we recall three results on the large deviations principle (LDP).

The first of them was established by Kifer [20] and provides a sufficient condi-
tion for the validity of LDP for a family of random probability measures. The
second result shows that, when studying the LDP for occupation measures of ran-
dom processes, one can take the average starting from any nonnegative time. The
third result due to Dawson and Gärtner [8] shows that the process level LDP is a
straightforward consequence of the LDP for finite segments of solutions.

A.1 Kifer’s Sufficient Condition for LDP
Let ‚ be a directed set, let X be a compact metric space, and let .�;F ;P /

be a probability space. We consider a family f��g D f�!� g of random probability
measures on X depending on � 2 ‚ such that the following limit exists for any
V 2 C.X/:

Q.V / D lim
�2‚

1

r.�/
log

Z
�

exp
�
r.�/

Z
X

V d�!�

�
dP .!/;(A.1)

where r W ‚ ! R is a given positive function such that lim�2‚ r.�/ D 1. Then
Q W C.X/ ! R is a convex 1-Lipschitz functional such that Q.V / � 0 for any

6 Given a function g W A.m/ ! R and any finite sequence ´ � A of length � m, with a slight
abuse of notation we denote by g.´/ the value of g calculated on the last m elements of ´.
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V 2 CC.X/ and Q.C/ D C for any constant C 2 R. Recall that the Legendre
transform of Q is defined on the space M.X/ by

(A.2) I.�/ D sup
V 2C.X/

.hV; �i �Q.V //

if � 2 P.X/ and I.�/ D 1 otherwise. The function I.�/ is convex and lower-
semicontinuous in the weak topology, and Q can be reconstructed by the formula

Q.V / D sup
�2P.X/

.hV; �i � I.�//:

Since P.X/ endowed with the topology of weak convergence is compact, for any
V 2 C.X/ there is �V 2 P.X/ such that

Q.V / D hV; �V i � I.�V /:(A.3)

Any measure �V 2 P.X/ satisfying (A.3) is called an equilibrium state for V . The
following result of Kifer shows that if the equilibrium state is unique for a dense
vector subspace of V 2 C.X/, then the LDP holds for �� .

THEOREM A.1. Suppose that limit (A.1) exists for any V 2 C.X/. Then the LD
upper bound

lim sup
�2‚

1

r.�/
log Pf�� 2 F g � �I.F /

holds with the rate function I given by (A.2). Furthermore, if there exists a dense
vector space V � C.X/ such that the equilibrium state �V 2 P.X/ is unique for
any V 2 V , then the LD lower bound also holds:

lim inf
�2‚

1

r.�/
log Pf�� 2 Gg � �I.G/:

A.2 Exponential Equivalence of Random Probability Measures
Let X be a Polish space and let f�kg and f�0

k
g be two sequences of random

probability measures on X . Recall that f�kg and f�0
k
g are said to be exponentially

equivalent if

(A.4) lim
k!1

Pfk�k � �
0
kk
�
L > ıg

1=k
D 0 for any ı > 0:

It is well known that if two sequences of random probability measures are expo-
nentially equivalent, then an LDP with a good rate function for one of them implies
the same LDP for the other; see section 4.2.2 in [9].

Now let fung be a random sequence in X . We denote by �.m/
k

the occupation
measures for fung starting at time m � 0:

�
.m/

k
D
1

k

mCk�1X
nDm

ıun
:

The following result was used in Section 1.4:
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LEMMA A.2. The sequences �.m/
k

and �.l/
k

are exponentially equivalent for any
integers m; l � 0.

PROOF. Let f 2 Lb.X/ be such that kf kL � 1. Thenˇ̌�
f; �

.m/

k

�
�
�
f; �

.l/

k

�ˇ̌
�
2jm � l j

k
:

It follows that k�.m/
k
� �

.l/

k
k�L � 2jm � l j=k, whence we see that

P
˚�.m/

k
� �

.l/

k

�
L
> ı

	
D 0 for k > 2ı�1jm � l j:

Hence, condition (A.4) is satisfied for any ı > 0, and the sequences in question are
exponentially equivalent. �

A.3 Dawson-Gärtner Theorem
For a given Polish space X , we denote by X D XZC the direct product of

countably many copies of X endowed with the Tikhonov topology, and by pm W
X ! Xm the natural projection to the first m components of X . Let f�kg D f�

!
k g

be a sequence of random probability measures on P.X/ and let �m
k

be the image
of �k under the projection pm. The following theorem is a particular case of a
more general result established in [8] (see also theorem 4.6.1 in [9]).

THEOREM A.3. Suppose that for any integer m � 1 the sequence f�m
k
g satisfies

the LDP with a good rate function Im W P.Xm/! Œ0;C1�. Then the LDP holds
for f�kg with the good rate function

(A.5) I.� / D sup
m�1

Im
�
� ı p�1m

�
:

PROOF.
Step 1. Rate function. Let us prove that the function I defined by (A.5) is a

good rate function. Indeed, since Im are good rate functions, for any ˛ 2 R we
have

(A.6)

fI � ˛g D

1\
mD1

˚
� 2 P.X/ W Im

�
� ı p�1m

�
� ˛

	
D

1\
mD1

˚
� ı p�1m 2 K

m
˛

	
;

where Km˛ are compact subsets in P.Xm/. This relation immediately implies that
the set fI � ˛g is closed and therefore I is lower-semicontinuous. Furthermore,
since a sequence f�j g � P.X/ converges if and only if so does f�j ı p�1m g for
any m � 1, it follows from (A.6) that the level sets of I are compact.

Step 2. Lower bound. Let G � P.X/ be an open subset. It suffices to prove
that, for any � 2 G, we have

lim inf
k!1

1

k
log Pf�k 2 Gg � �I.� /:
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Since G is open, for any � 2 G, one can find an integer m � 1 and open subset
Gm � P.Xm/ containing � ı p�1m such that G � p�1m .Gm/. Since the LDP holds
for �m

k
D �k ı p

�1
m , it follows that

lim inf
k!1

1

k
log Pf�k 2 Gg � lim inf

k!1

1

k
log Pf�k 2 p

�1
m .Gm/g

D lim inf
k!1

1

k
log Pf�mk 2 Gmg � �Im.Gm/:

It remains to note that Im.Gm/ � Im.� ı p�1m / � I.� /.
Step 3. Upper bound. Let F � P.X/ be a closed subset. It suffices to prove

that, if ˛ < I.F /, then

(A.7) lim inf
k!1

1

k
log Pf�k 2 F g � �˛:

Relation (A.6) implies that

¿ D F \ fI � ˛g D
1\
mD1

F \
˚
Im
�
� ı p�1m

�
� ˛

	
:

Since F \ fI � ˛g is a compact set, it follows that one can find an integer m � 1
such that F \ fIm.� ı p�1m / � ˛g D ¿. Denoting by Fm the image of F under
the projection pm, we conclude that Im.Fm/ > ˛. Since F � p�1m .Fm/, using the
LDP for �m

k
, we derive

lim inf
k!1

1

k
log Pf�k 2 F g � lim inf

k!1

1

k
log Pf�k 2 p

�1
m .Fm/g

D lim inf
k!1

1

k
log Pf�mk 2 Fmg � �Im.Fm/ < �˛:

This completes the proof of (A.7) and of the theorem. �

Theorem A.3 admits a simple generalization to the case of uniform LDP. Let
us assume that we are given a sequence of random probability measures f�k.y/g
on X depending on a parameter y 2 Y where Y is an arbitrary set. We say that
f�k.y/g satisfies the uniform LDP with a good rate function I W P.X/! Œ0;C1�

if

�I. P�/ � lim inf
k!1

1

k
log inf

y2Y
Pf�k.y/ 2 �g

� lim inf
k!1

1

k
log sup

y2Y

Pf�k.y/ 2 �g � �I.x�/;(A.8)

where � � P.X/ is an arbitrary Borel subset. The proof of the following result
literally repeats that of Theorem A.3, and we omit it:
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THEOREM A.4. Suppose that for any integerm � 1 the sequence f�m
k
.y/; y 2 Y g

satisfies the uniform LDP with a good rate function Im W P.Xm/! Œ0;C1�. Then
the uniform LDP holds for f�k.y/; y 2 Y g with the good rate function (A.5).
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