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Abstract

We consider a system of an arbitrary number of 1d linear Schrödinger
equations on a bounded interval with bilinear control. We prove global ex-
act controllability in large time of these N equations with a single control.
This result is valid for an arbitrary potential with generic assumptions on
the dipole moment of the considered particle. Thus, even in the case of a
single particle, this result extends the available literature. The proof com-
bines local exact controllability around finite sums of eigenstates, proved
with Coron’s return method, a global approximate controllability prop-
erty, proved with Lyapunov strategy, and a compactness argument.
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1 Introduction
The evolution of a 1d quantum particle submitted to an external laser field is
described by the following linear Schrödinger equation{

i∂tψ =
(
−∂2xx + V (x)

)
ψ − u(t)µ(x)ψ, (t, x) ∈ (0, T )× (0, 1),

ψ(t, 0) = ψ(t, 1) = 0,
(1.1)

where V (x) is the potential of the particle, µ(x) is the dipole moment, ψ(t, x)
is the wave function, and u(t) is the amplitude of the laser. In this setting, we
consider N identical and independent particles. Then neglecting entanglement
effects, the system will be described by the following equations

i∂tψ
j =

(
−∂2xx + V (x)

)
ψj − u(t)µ(x)ψj , (t, x) ∈ (0, T )× (0, 1),

ψj(t, 0) = ψj(t, 1) = 0, j ∈ {1, . . . , N},
ψj(0, x) = ψj0(x).

(1.2)

This can be seen as a step towards more sophisticated and realistic models.
From the point of view of controllability, this is a bilinear control system where
the state is the N -tuple of wave functions (ψ1, . . . , ψN ) and the control is the
real-valued function u. The main result of this article is the global exact control-
lability of (1.2) for an arbitrary number N of particles, arbitrary potential V ,
and a generic dipole moment µ.

Before stating our main result, let us introduce some notations. We denote
by S the unit sphere in L2((0, 1),C) and S := SN . Since the functions V, µ and
the control u are real-valued, for any initial condition ψ0 := (ψ1

0 , . . . , ψ
N
0 ) in S,

the solution ψ(t) := (ψ1(t), . . . , ψN (t)) belongs to S. We say that the vectors
ψ0,ψf ∈ S are unitarily equivalent, if there is a unitary operator U in L2 such
that ψf = Uψ0, i.e. ψjf = Uψj0 for all j = 1, . . . , N . Finally, we define the
operator AV by

D(AV ) := H2 ∩H1
0 ((0, 1),C), AV ϕ :=

(
−∂2xx + V (x)

)
ϕ

and, for s > 0, we set Hs
(V ) := D

(
A
s/2
V

)
and write Hs

(V ) instead of (Hs
(V ))

N .

Main Theorem. For any given V ∈ H4((0, 1),R), problem (1.2) is globally
exactly controllable in H4

(V ) generically with respect to µ in H4((0, 1),R). More
precisely, there is a residual set QV in H4((0, 1),R) such that for any µ ∈ QV
and for any unitarily equivalent vectors ψ0,ψf ∈ S∩H4

(V ) there is a time T > 0

and a control u ∈ L2((0, T ),R) such that the solution of (1.2) satisfies

ψ(T ) = ψf .

First of all, notice that the unitary equivalence assumption on the initial
condition and the target is not restrictive. Indeed, the evolution of the consid-
ered Schrödinger equation (1.1) is unitary, hence the system can be controlled
from a given initial state only to a unitarily equivalent target.
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The problem of controllability for the bilinear Schrödinger equation has been
widely studied in the literature. A negative controllability result for bilinear
quantum systems is proved by Turinici [24] as a corollary of a general result by
Ball, Marsden, and Slemrod [1]. It states that the complement of the reachable
set with L2 controls from any initial condition in S ∩H2

(0) is dense in S ∩H2
(0).

Thus, these equations have been considered to be non-controllable.
This negative result is actually only due to the choice of the functional set-

ting. For a single particle, Beauchard proved in [2] local exact controllability in
large time in H7

(0) in the case µ(x) = x, V (x) = 0, using Coron’s return method,
quasi-static deformations, and Nash–Moser theorem. Exhibiting a regularizing
effect, this result was extended to the case of the space H3

(0) for generic dipole
moment µ, still in the case V = 0, by Beauchard and Laurent [4]. Thus, as
we are dealing with an arbitrary potential V and a generic dipole moment µ,
Main Theorem with N = 1 is already an improvement of the previous literature.
In [3], Beauchard and Coron proved exact controllability between eigenstates for
a particle in a moving potential well as studied by Rouchon in [22].

Different methods have been developed to study approximate controllability.
A first strategy of the proof of approximate controllability is due to Chambrion,
Mason, Sigalotti, and Boscain [10], which relies on the geometric techniques
based on the controllability of the Galerkin approximations. The hypotheses of
this result were refined by Boscain, Caponigro, Chambrion, and Sigalotti in [6].
In a more recent paper [7] of this team, in particular, it is proved a simulta-
neous approximate controllability property in Sobolev spaces for an arbitrary
number of equations. For more details and more references about the geometric
techniques, we refer the reader to the recent survey [8]. Although the results
presented in these papers cover an important class of models, the functional
setting used there is always incompatible with the one which is necessary for
the exact controllability. More precisely, approximate controllability is proved
in less regular spaces than the one needed for exact controllability.

The second method which is used in the literature to prove approximate con-
trollability for the bilinear Schrödinger equation is the Lyapunov strategy. This
method was used by Mirrahimi in [14] in the case of a mixed spectrum and by
Beauchard and Mirrahimi in [5] in the case V = 0 and µ(x) = x. Both of these
results prove approximate stabilization in L2. Global approximate controllabil-
ity with generic assumptions both on the potential and the dipole moment is
obtained by the second author in [17] and extended to higher norms leading to
the first global exact controllability result for a bilinear quantum system in [18].
For a model involving also a quadratic control, we refer to [15]. Approximate
controllability in regular spaces (containing H3) can also be deduced from the
exact controllability results in infinite time [19, 20] by Nersisyan and the second
author. The novelty of Main Theorem with respect to the above papers is the
fact that N particles are controlled simultaneously in a regular space for an
arbitrary fixed potential V .

Simultaneous exact controllability of quantum particles has been obtained
for a finite dimensional model in [25] by Turinici and Rabitz. Their model uses
specific orientation of the molecules and their proof relies on iterated Lie brack-
ets. To our best knowledge, the only exact simultaneous controllability results
for infinite dimensional bilinear quantum systems were obtained in [16] by the
first author locally around eigenstates in the case V = 0 for N = 2 or N = 3.
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This is proved either up to a global phase in arbitrary time or exactly up to a
global delay in the case N = 2 and up to a global phase and a global delay in
the case N = 3. In that paper, it is also proved that, under generic assumptions
on the dipole moment, local exact controllability (resp. local controllability up
to a global phase) with controls small in L2 does not hold in small time for
N ≥ 2 (resp. N ≥ 3). A key issue for the positive results of this paper is
the construction of a suitable reference trajectory which coincides (up to global
phase and/or a global delay) at the final time with the vector of eigenstates.
Extending directly this result to the case N ≥ 4 presents two difficulties: in
the trigonometric moment problem we solve for the construction of the refer-
ence trajectory resonant frequencies appear (e.g. λ7 − λ1 = λ8 − λ4) and the
frequency 0 appears with multiplicity N . The use of a global phase and/or a
global delay, by adding new degrees of freedom, allowed to deal with the fre-
quency 0 having multiplicity two or three. In our setting, we do not impose any
conditions on the phase terms of the reference trajectory (see Proposition 4.4).
Thus, the frequency 0 does not appear in the associated trigonometric moment
problems. Taking advantage of the assumptions on the spectrum of the free
operator, we prove local exact controllability around (ϕ1,V , . . . , ϕN,V ) (see the
First step of the proof of Theorem 4.1). The price to pay is that we lose track
of the time of control.

Structure of the article. The Main Theorem is proved in three steps. First,
under favourable hypotheses on V and µ, we prove that any initial condition
can be driven arbitrarily close to some finite sum of eigenfunctions. This is
done in Section 3 using a Lyapunov strategy inspired by [18]. Then, adapting
the ideas of [16], using favourable assumptions on the spectrum of AV and
a compactness argument, we prove in Section 4 exact controllability locally
around specific finite sums of eigenfunctions. Finally, for any potential V , using
a perturbation argument, leading to the potential V +µ instead of V , we gather
in Section 5 the two previous results to prove the Main Theorem. Let us mention
that, essentially with the same proof, one can prove global exact controllability
in H3+ε, for any ε > 0.

Notations
The space L2((0, 1),C) is endowed with the usual scalar product

〈f, g〉 =

∫ 1

0

f(x)g(x)dx,

and we denote by ‖ · ‖ the associated norm. For any s > 0, we denote by
‖ · ‖s the classical norm on the Sobolev space Hs((0, 1),C). The eigenvalues
and eigenvectors of the operator AV are denoted respectively by λk,V and ϕk,V .
The eigenstates are defined by

Φk,V (t, x) := ϕk,V (x)e−iλk,V t, (t, x) ∈ R+ × (0, 1), k ∈ N∗.

Any N -tuple of eigenstates is a solution of system (1.2) with control u ≡ 0.
Notice that

H3
(V ) =

{
ϕ ∈ H3((0, 1),C) ; ϕ|x=0,1 = ϕ′′|x=0,1 = 0

}
= H3

(0)
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for any V ∈ H3((0, 1),R). We endow this space with the norm

‖ψ‖H3
(V )

:=

( ∞∑
k=1

|k3〈ψ,ϕk,V 〉|2
) 1

2

.

We use bold characters to denote vector functions or product spaces. For in-
stance, we denote by ψ(t) the vector (ψ1(t), . . . , ψN (t)) of solutions of (1.2) and
by Hs

(V ) the space (Hs
(V ))

N . With coherent notations, ϕV denotes the vector
(ϕ1,V , . . . , ϕN,V ).
Let us denote by U(H) the set of unitary operators from a Hilbert space H into
itself, and by UN the set ofN×N unitary matrices. AnyN×M matrix C = (cij)
defines a linear map from HM to HN (denoted again by C) which associates to
the vector (z1, . . . , zM ) the vector (

∑M
j=1 c1jz

j , . . . ,
∑M
j=1 cNjz

j).
For a Banach space X, let BX(a, d) be the closed ball of radius d > 0 centred on
a ∈ X. A subset of X is said to be residual if it contains a countable intersection
of open and dense sets.
The symbol δj=k is the classical Kronecker symbol, i.e., δj=k = 1 if j = k and
δj=k = 0 otherwise.
Finally, we define the space

`2r(N,C) :=
{
d ∈ `2(N,C) ; d0 ∈ R

}
which is endowed with the natural metric.

2 Well-posedness
In the following proposition, we recall a well-posedness result of the Cauchy
problem for the Schrödinger equation

i∂tψ =
(
−∂2xx + V (x)

)
ψ − u(t)µ(x)ψ − v(t)µ(x)ζ, (t, x) ∈ (0, T )× (0, 1),

ψ(t, 0) = ψ(t, 1) = 0,

ψ(0, x) = ψ0(x),
(2.1)

and list properties of the solution that will be used in the proofs of the main
results in the subsequent sections.

Proposition 2.1. Let us assume that V, µ ∈ H3((0, 1),R) and T > 0. Then,
for any ψ0 ∈ H3

(0), ζ ∈ C
0([0, T ], H3

(0)) and u, v ∈ L
2((0, T ),R) there is a unique

weak solution of (2.1), i.e., a function ψ ∈ C([0, T ], H3
(0)) such that the following

equality holds in H3
(0) for every t ∈ [0, T ]

ψ(t) = e−iAV tψ0 + i

∫ t

0

e−iAV (t−τ)(u(τ)µψ(τ) + v(τ)µζ(τ)
)
dτ.

For every R > 0, there exists C = C(T, V, µ,R) > 0 such that, if ‖u‖L2(0,T ) < R,
this weak solution satisfies

‖ψ‖C0([0,T ],H3
(V )

) ≤ C
(
‖ψ0‖H3

(V )
+ ‖v‖L2(0,T )‖ζ‖L∞((0,T ),H3

(V )
)

)
.
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Moreover, if v ≡ 0 the solution satisfies

‖ψ(t)‖ = ‖ψ0‖ for all t ∈ [0, T ],

and the following properties hold in the case v ≡ 0.

Differentiability. Let us denote by ψ(t, ψ0, u) the solution of (2.1) corre-
sponding to ψ0 ∈ H3

(0), u ∈ L
2((0, T ),R) and v = 0. The mapping

ψ(T, ψ0, ·) : L2((0, T ),R) → H3
(0),

u 7→ ψ(T, ψ0, u)
(2.2)

is C1, and for any u, v ∈ L2((0, T ),R), we have ∂uψ(T, ψ0, u)v = Ψ(T ), where
Ψ is the weak solution of the linearized system

i∂tΨ =
(
−∂2xx + V (x)

)
Ψ− u(t)µ(x)Ψ− v(t)µ(x)ψ, (t, x) ∈ (0, T )× (0, 1),

Ψ(t, 0) = Ψ(t, 1) = 0,

Ψ(0, x) = 0,

with ψ = ψ(·, ψ0, u).
Regularity. Assume that V, µ ∈ H4((0, 1),R). For any u ∈W 1,1((0, T ),R)

and ψ0 ∈ H4
(V−u(0)µ), we have ψ(t) ∈ H4

(V−u(t)µ) for all t ∈ [0, T ].

Time reversibility. Suppose that ψ(T, ψf , u) = ψ0 for some ψ0, ψf ∈ H3
(0),

u ∈ L2((0, T ),R), and T > 0. Then ψ(T, ψ0, w) = ψf , where w(t) = u(T − t).

See [4, Propositions 2 and 3] for the proof of the well-posedness in H3
(0) and

for the differentiability property. The property of regularity is established in [2,
Proposition 47]. In these references, the case of V = 0 is considered, but the case
of a non-zero V is proved by literally the same arguments (see [19]). The time
reversibility property is obvious. Proposition 2.1 implies that similar properties
hold for the solutions of system (1.2). We denote by ψ(t,ψ0, u) the solution of
(1.2) corresponding to ψ0 ∈H

3
(0) and u ∈ L2((0, T ),R).

3 Approximate controllability

3.1 Approximate controllability towards finite sums of
eigenvectors

In this section, we assume that the following conditions are satisfied for the
functions V, µ ∈ H4((0, 1),R)

(C1) 〈µϕj,V , ϕk,V 〉 6= 0 for all j ∈ {1, . . . , N}, k ∈ N∗.

(C2) λj,V − λk,V 6= λp,V − λq,V for all j ∈ {1, . . . , N}, k, p, q ∈ N∗ such that
{j, k} 6= {p, q} and k 6= j.

For any M ∈ N∗, let us define the sets

CM := Span{ϕ1,V , . . . , ϕM,V }, CM := (CM )N , (3.1)

E :=

ψ ∈ L2 ;

N∏
j=1

〈ψj , ϕj〉 6= 0

 . (3.2)

The following theorem is the main result of this section.
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Theorem 3.1. Assume that Conditions (C1) and (C2) are satisfied for the
functions V, µ ∈ H4((0, 1),R). Then, for any ψ0 ∈ S ∩H4

(V ) ∩ E, there are
M ∈ N∗, ψf ∈ CM , sequences Tn > 0 and un ∈ C∞0 ((0, Tn),R) such that

ψ(Tn,ψ0, un) −→
n→∞

ψf in H3. (3.3)

Proof. See [18, Theorem 2.3] for the proof of a similar result in the case N = 1
(in that case one gets M = 1). To simplify notations, we shall write λk, ϕk
instead of λk,V , ϕk,V . For any z = (z1, . . . , zN ) ∈ H4

(V ), let us define the
following Lyapunov function

V(z) = α

N∑
j=1

‖(−∂2xx + V )2PNzj‖2 + 1−
N∏
j=1

|〈zj , ϕj〉|2, (3.4)

where α > 0 is a constant that will be chosen later and PN is the orthogonal
projection in L2 onto the closure of the vector span of {ϕk}k≥N+1, i.e.,

PN (z) :=
∑

k≥N+1

〈z, ϕk〉ϕk. (3.5)

Clearly, we have that V(z) ≥ 0 for any z ∈ S ∩H4
(V ) and V(z) = 0 if and

only if z = (c1ϕ1, . . . , cNϕN ) for some ci ∈ C such that |ci| = 1, i = 1, . . . , N .
Furthermore, for any z ∈ S ∩H4

(V ), we have

V(z) ≥ α
N∑
j=1

‖(−∂2xx + V )2PNzj‖2 ≥ C1

N∑
j=1

‖zj‖24 − C2.

Thus
C(1 + V(z)) ≥ ‖z‖24 (3.6)

for some constant C > 0. We need the following result which a generalization
of [18, Proposition 2.6].

Proposition 3.2. Under the conditions of Theorem 3.1, for any ψ0 ∈ S ∩
H4

(V ) ∩ E\ (∪∞M=1CM ) there is a time T > 0 and a control u ∈ C∞0 ((0, T ),R)
such that

V(ψ(T,ψ0, u)) < V(ψ0).

See Section 3.2 for the proof of this result.
Let us choose α > 0 in (3.4) so small that V(ψ0) < 1 and define the set

K :=
{
ψ ∈H4

(V ) ; ψ(Tn,ψ0, un) −→
n→∞

ψ in H3 for some Tn ≥ 0,

un ∈ C∞0 ((0, Tn),R)
}
.

Then the infimum m := infψ∈K V(ψ) is attained, there is e ∈ K such that

V(e) = inf
ψ∈K
V(ψ). (3.7)

Indeed, any minimizing sequence ψn ∈ K, V(ψn) → m is bounded in H4,
by (3.6). Extracting a subsequence if necessary, we may assume that ψn ⇀ e
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in H4 for some e ∈ H4
(V ). This implies that V(e) ≤ lim infn→∞ V(ψn) = m.

Let us show that e ∈ K. As ψn ∈ K, there are sequences Tn > 0 and un ∈
C∞0 ((0, Tn),R) such that

‖ψ(Tn,ψ0, un)−ψn‖H3
(V )
≤ 1

n
. (3.8)

On the other hand, ψn → e in H3, and (3.8) implies that ψ(Tn,ψ0, un) → e
in H3. Thus e ∈ K and V(e) = m.

Let us prove that e ∈ CM for some M ∈ N∗. Suppose, by contradiction,
that e /∈ ∪∞M=1CM . It follows from (3.7) and from the choice of α that V(e) ≤
V(ψ0) < 1. This shows that e ∈ E. Proposition 3.2 implies that there are
T > 0 and u ∈ C∞0 ((0, T ),R) such that

V(ψ(T, e, u)) < V(e). (3.9)

Define ũn(t) = un(t), t ∈ [0, Tn] and ũn(t) = u(t − Tn), t ∈ [Tn, Tn + T ]. Then
ũn ∈ C∞0 ((0, Tn + T ),R) and, by the continuity in H3 of the resolving operator
for (1.2), we get

ψ(Tn + T,ψ0, ũn)→ ψ(T, e, u) in H3,

hence ψ(T, e, u) ∈ K. Together with (3.9), this contradicts (3.7). Thus e ∈ CM ,
and we get (3.3) with ψf = e.

3.2 Proof of Proposition 3.2
Let us take any vector ψ0 ∈ S ∩H4

(V ) ∩ E\(∪∞M=1CM ), any time T > 0, any
control w ∈ C∞0 ((0, T ),R), and consider the mapping

V(ψ(T,ψ0, (·)w)) : R → R,
σ 7→ V(ψ(T,ψ0, σw)).

It suffices to show that, for an appropriate choice of T and w, we have

dV(ψ(T,ψ0, σw))

dσ

∣∣∣
σ=0
6= 0. (3.10)

Indeed, (3.10) implies that there is σ0 ∈ R close to zero such that

V(ψ(T,ψ0, σ0w)) < V(ψ(T,ψ0, 0)) = V(ψ0),

which completes the proof of Proposition 3.2.
To prove (3.10), notice that

dV(ψ(T,ψ0, σw))

dσ

∣∣∣
σ=0

= 2

N∑
j=1

<
(
α〈(−∂2xx + V )2PNψj(T ), (−∂2xx + V )2PNΨj(T )〉

− 〈ψj(T ), ϕj〉〈ϕj ,Ψj(T )〉
N∏

q=1,q 6=j

|〈ψq0, ϕq〉|2
)
, (3.11)
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where

ψj(t) = ψ(t, ψj0, 0) =

∞∑
k=1

e−iλkt〈ψj0, ϕk〉ϕk, (3.12)

and Ψj is the solution of the linearized problem
i∂tΨ

j =
(
− ∂2xx + V (x)

)
Ψj − w(t)µ(x)ψj , (t, x) ∈ (0, T )× (0, 1),

Ψj(t, 0) = Ψj(t, 1) = 0,

Ψj(0, x) = 0.

Rewriting this in the Duhamel form

Ψj(t) = i

∫ t

0

e−iAV (t−τ)w(τ)µ(x)ψ(τ)dτ

and using (3.12), we get that

〈Ψj(T ), ϕp〉 = ie−iλpT
∞∑
k=1

〈ψj0, ϕk〉〈µϕk, ϕp〉
∫ T

0

e−i(λk−λp)τw(τ)dτ. (3.13)

Replacing (3.12) and (3.13) into (3.11), we obtain

dV(ψ(T,ψ0, σw))

dσ

∣∣∣
σ=0

=

∫ T

0

Φ(τ)w(τ)dτ,

where

iΦ(τ) :=

N∑
j=1

( ∞∑
p=N+1,k=1

αλ4p〈ψ
j
0, ϕp〉〈ϕk, ψ

j
0〉〈µϕk, ϕp〉ei(λk−λp)τ

−
∞∑

p=N+1,k=1

αλ4p〈ϕp, ψ
j
0〉〈ψ

j
0, ϕk〉〈µϕk, ϕp〉e−i(λk−λp)τ

−
( N∏
q=1,q 6=j

|〈ψq0, ϕq〉|2
) ∞∑
k=1

〈ψj0, ϕj〉〈ϕk, ψ
j
0〉〈µϕk, ϕj〉ei(λk−λj)τ

+
( N∏
q=1,q 6=j

|〈ψq0, ϕq〉|2
) ∞∑
k=1

〈ϕj , ψj0〉〈ψ
j
0, ϕk〉〈µϕk, ϕj〉e−i(λk−λj)τ

)
=:

∑
1≤k<p<∞

(
P (k, p)ei(λk−λp)τ + P̃ (k, p)e−i(λk−λp)τ

)
, (3.14)

where P (k, p) and P̃ (k, p) are constants. To prove (3.10), it suffices to show
that Φ(τ) 6= 0 for some τ ≥ 0. Suppose, by contradiction, that Φ(τ) = 0 for all
τ ≥ 0. Then Condition (C2) and [17, Lemma 3.10] imply that P (k, p) = 0 for
all k < p. Using the equality P (k, p) = 0 for 1 ≤ k ≤ N < p <∞ and (C1), we
get thatαλ4p +

N∏
q=1,q 6=k

|〈ψq0, ϕq〉|2
 〈ψk0 , ϕp〉〈ϕk, ψk0 〉+ N∑

j=1,j 6=k

αλ4p〈ψ
j
0, ϕp〉〈ϕk, ψ

j
0〉 = 0.
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Assume that for some integer p > N we have

N∑
j=1

|〈ψj0, ϕp〉| > 0. (3.15)

Let us set ak(λ) := λ+
∏N
q=1,q 6=k |〈ψ

q
0, ϕq〉|2 and consider the determinant

Λ(λ) =

∣∣∣∣∣∣∣∣∣
a1(λ)〈ψ1

0 , ϕ1〉 λ〈ψ2
0 , ϕ1〉 · · · λ〈ψN0 , ϕ1〉

λ〈ψ1
0 , ϕ2〉 a2(λ)〈ψ2

0 , ϕ2〉 · · · λ〈ψN0 , ϕ2〉
...

...
. . .

...
λ〈ψ1

0 , ϕN 〉 λ〈ψ2
0 , ϕN 〉 · · · aN (λ)〈ψN0 , ϕN 〉

∣∣∣∣∣∣∣∣∣ .
Then Λ(λ) is a polynomial of degree less or equal to N which vanishes at λ =

αλ4p. The free term in Λ(λ) is
∏N
k=1 ak(0)〈ψk0 , ϕk〉 which is non-zero by the

assumption ψ0 ∈ E. Thus Λ(λ) has at most N roots and the number of indices p
such that (3.15) holds is finite. This gives the existence of M ∈ N∗ such that
ψ0 ∈ CM and completes the proof of Proposition 3.2.

�

4 Local exact controllability

4.1 Local exact controllability around finite sums of eigen-
states

In this section, we assume that the following conditions are satisfied for the
functions V, µ ∈ H3((0, 1),R).

(C3) There exists C > 0 such that

|〈µϕj,V , ϕk,V 〉| ≥
C

k3
, ∀j ∈ {1, . . . , N}, ∀k ∈ N∗.

(C4) λk,V − λj,V 6= λp,V − λn,V for all j, n ∈ {1, . . . , N}, k ≥ j + 1, p ≥ n+ 1
with {j, k} 6= {p, n}.

(C5) 1, λ1,V , . . . , λN,V are rationally independent.

The goal of this section is the proof of the following theorem.

Theorem 4.1. Assume that Conditions (C3) − (C5) are satisfied for V, µ ∈
H3((0, 1),R). Let us take any C0, Cf ∈ UN and set z0 := C0ϕV , zf := CfϕV .
Then there exist δ > 0 and T > 0 such that if we define

Oδ,C0
:=
{
φ ∈H3

(0) ; 〈φj , φk〉 = δj=k and
N∑
j=1

‖φj − zj0‖H3
(V )

< δ
}
,

Oδ,Cf :=
{
φ ∈H3

(0) ; 〈φj , φk〉 = δj=k and
N∑
j=1

‖φj − zjf‖H3
(V )

< δ
}
,

then for any ψ0 ∈ Oδ,C0
and ψf ∈ Oδ,Cf , there is a control u ∈ L2((0, T ),R)

such that the associated solution of (1.2) with initial condition ψ(0) = ψ0 sat-
isfies ψ(T ) = ψf .
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Remark 4.2. Notice that the condition

〈φj , φk〉 = δj=k, ∀j, k ∈ {1, . . . , N}

is equivalent to the fact that φ is unitarily equivalent to ϕV . In this section,
we will always consider such initial conditions. Thus, the associated trajectories
will satisfy the following invariants

〈ψj(t), ψk(t)〉 ≡ δj=k, ∀j, k ∈ {1, . . . , N}. (4.1)

Remark 4.3. A quantum logical gate is a unitary operator Û in L2((0, 1),C) such
that for some n ∈ N∗, the space Span{ϕ1,V , . . . , ϕn,V } is stable for Û . Designing
such a quantum gate means finding a control u ∈ L2((0, T ),R) such that the
associated solution of (1.2) with initial condition (ϕ1,V , . . . , ϕn,V ) satisfies(

ψ1(T ), . . . , ψn(T )
)

=
(
Ûϕ1,V , . . . , Ûϕn,V

)
.

See [9] for L2–approximate realization of such quantum logical gates with error
estimates and numerical simulations on two classical examples. Theorem 4.1
thus proves exact realization of quantum logical gates in large time under Con-
ditions (C3) − (C5) of size n. Applying directly our Main Theorem leads to
exact realization of any quantum gate, for an arbitrary potential with a generic
dipole moment.

The proof of Theorem 4.1 is based on the following proposition which is an
adaptation of [16, Theorem 1.5].

Proposition 4.4. Assume that Conditions (C3) and (C4) are satisfied for
V, µ ∈ H3((0, 1),R). For any T > 0, there exist θ1, . . . , θN ∈ R, δ > 0, and
a C1 map

Γ : O0
δ ×O

f
δ → L2((0, T ),R),

where

O0
δ : =

{
φ ∈H3

(0) ; 〈φj , φk〉 = δj=k and
N∑
j=1

‖φj − ϕj,V ‖H3
(V )

< δ
}
,

Ofδ : =
{
φ ∈H3

(0) ; 〈φj , φk〉 = δj=k and
N∑
j=1

‖φj − eiθjϕj,V ‖H3
(V )

< δ
}
,

such that for any initial condition ψ0 ∈ O0
δ and for any target ψf ∈ O

f
δ ,

the solution of system (1.2) associated to the control u := Γ
(
ψ0,ψf

)
satisfies

ψ(T ) = ψf .

In the case N = 2 and V = 0, the previous proposition is exactly [16,
Theorem 1.2] with θj = θ − λj,V T . As here we do not impose any condition on
the phase terms θj , the proof of Proposition 4.4 does not introduce new ideas
with respect to [16]. Anyway, dealing with an arbitrary number of equations
(instead of two or three equations in [16]) needs some adaptations that are
described in Sections 4.2, 4.3, and 4.4. Dealing with a potential V instead of
V = 0 is done with literally the same arguments.
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To highlight the novelties of this work, we postpone the proof of Proposition 4.4
to Section 4.2 and first prove how this proposition implies Theorem 4.1. We start
with the proof of Theorem 4.1 in the particular case C0 = Cf = IN , where IN
is the N × N identity matrix. This is done using Proposition 4.4, a rotation
phenomenon for the solution corresponding to the null control on a suitable
time interval, and a time reversibility argument. Then, for any C ∈ UN , using
a linearity argument, we prove Theorem 4.1 in the case C0 = Cf = C. We end
the proof using connectedness of the set of unitary matrices and a compactness
argument.

Proof of Theorem 4.1. To simplify notations, until the end of Section 4, we shall
write λk, ϕk instead of λk,V , ϕk,V .

First step : proof in the case C0 = Cf = IN .
Let us take any T > 0. Let δ > 0 and θ1, . . . , θN be the constants given in
Proposition 4.4. Let ψ0,ψf ∈ Oδ,IN .
As Oδ,IN = O0

δ , there exists u ∈ L2((0, T ),R) such that the associated solution
of (1.2) with initial condition ψ0 satisfies

ψ(T ) = (eiθ1ϕ1, . . . , e
iθNϕN ). (4.2)

Using Condition (C5) and the Kronecker theorem on diophantine approximation
(see e.g. [23, Corollary 10]), there exists a rotation time Tr > 0 such that

|λj |3/2
∣∣∣ei(2θj−λjTr) − 1

∣∣∣ < δ

N
, ∀j ∈ {1, . . . , N}.

Thus, it comes that
N∑
j=1

‖ei(θj−λjTr)ϕj − e−iθjϕj‖H3
(V )

< δ. Together with (4.2),

this implies that if we extend u by zero on (T, T + Tr) then

N∑
j=1

‖ψj(T + Tr)− e−iθjϕj‖H3
(V )

< δ.

Thus,
ψ(T + Tr) ∈ Ofδ . (4.3)

As ψf ∈ Oδ,IN = O0
δ and the eigenvectors ϕj being real-valued, we have ψf ∈

O0
δ . Then, Proposition 4.4 implies the existence of v ∈ L2((0, T ),R) such that

the associated solution of (1.2) with initial condition ψf equals to ψ(T + Tr)
at time T . Finally, the time reversibility property proves that if u is defined by
u(T +Tr + t) = v(T − t) for t ∈ (0, T ), then the associated solution of (1.2) with
initial condition ψ0 satisfies

ψ(T + Tr + T ) = ψf . (4.4)

This ends the proof of Theorem 4.1 in the case C0 = Cf = IN in time T ∗ :=
2T + Tr.

Second step : proof in the case C0 = Cf = C.
Let δ > 0 be as in the first step, C ∈ UN , and z := Cϕ. Let δz > 0 be
sufficiently small to satisfy

C∗
(
BH3

(V )
(z, δz)

)
⊂ BH3

(V )
(ϕ, δ).
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Let us take any ψ0,ψf ∈ Oδz,C and define

ψ̃0 := C∗ψ0, ψ̃f := C∗ψf . (4.5)

The unitarity of C implies that 〈ψ̃j0, ψ̃k0 〉 = δj=k and 〈ψ̃jf , ψ̃kf 〉 = δj=k. Thus,
from the definition of δz it follows that ψ̃0, ψ̃f ∈ Oδ,IN . Then, by the first step,
there is a control u ∈ L2((0, T ∗),R) such that

ψ(T ∗, ψ̃0, u) = ψ̃f .

Since system (1.2) is linear with respect to the state, the resolving operator
commutes with C. Thus, in view of (4.5), we have

ψ(T ∗,ψ0, u) = ψ(T ∗, Cψ̃0, u) = Cψ(T ∗, ψ̃0, u) = Cψ̃f = ψf . (4.6)

This ends the proof the second step.

Third step : conclusion.
Since UN is connected, there is a continuous mapping t ∈ [0, 1] 7→ C(t) ∈
UN with C(0) = C0 and C(1) = Cf . By the previous step, for any z ∈
F := {C(t)ϕ ; t ∈ [0, 1]}, there is δz > 0 such that (1.2) is exactly control-
lable in BH3

(V )
(z, δz) in time T ∗. Using the compactness of the set F , we get

the existence of zj ∈ F , j = 1, . . . , L with L ∈ N∗ such that

F ⊂
L⋃
j=0

BH3
(V )

(zj , δzj ).

Without loss of generality, we can assume that zL = zf . Finally, setting T :=
(L+1)T ∗ and δ := min{δz0

, δzf }, we see that for anyψ0 ∈ Oδ,C0
andψf ∈ Oδ,Cf

there is a control u ∈ L2((0, T ),R) such that

ψ(T,ψ0, u) = ψf

This completes the proof of Theorem 4.1.

The rest of this section is dedicated to the proof of Proposition 4.4.

4.2 Construction of the reference trajectory
The proof of Proposition 4.4 relies on the return method introduced by Coron
(see [11, Chapter 6] for a comprehensive introduction). The natural strategy
to obtain local exact controllability around ϕ is to prove controllability for the
linearized system

i∂tΨ
j =

(
−∂2xx + V (x)

)
Ψj − v(t)µ(x)Φj , (t, x) ∈ (0, T )× (0, 1),

Ψj(t, 0) = Ψj(t, 1) = 0, j ∈ {1, . . . , N},
Ψj(0, x) = 0.

(4.7)

However, straightforward computations lead to

〈µϕk, ϕk〉〈Ψj(T ),Φj(T )〉 = 〈µϕj , ϕj〉〈Ψk(T ),Φk(T )〉, ∀j, k ∈ {1, . . . , N}.
(4.8)
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Thus, the linearized system (4.7) is not controllable and we use the return
method. In our setting, the main idea of this method is to design of a reference
control uref such that the associated solution ψref of system (1.2) with initial
condition ϕ satisfies

ψref (T ) = (eiθ1ϕ1, . . . , e
iθNϕN ),

for some θ1, . . . , θN ∈ R and the linearized system around this trajectory is con-
trollable. Then, an application of the inverse mapping theorem leads to local
controllability of (1.2) around the trajectory (uref ,ψref ) and proves Proposi-
tion 4.4. The main ideas of this proof are adapted from [16, Theorem 1.5]. For
the sake of completeness, we precise the adaptations that have been made and
give a sketch of the proofs. The reference trajectory is designed in the following
proposition.

Proposition 4.5. Assume that Conditions (C3) and (C4) are satisfied for
V, µ ∈ H3((0, 1),R). Let T > 0 and 0 < ε0 < · · · < εN−1 =: ε < T . There exist
η > 0 and C > 0 such that for every η ∈ (0, η), there are θη1 , . . . , θ

η
N ∈ R and a

control uηref ∈ L2((0, T ),R) with

‖uηref‖L2(0,T ) ≤ Cη (4.9)

such that the associated solution ψηref of (1.2) with initial condition ϕ satisfies
for j ∈ {1, . . . , N} and k ∈ {1, . . . , N − 1}

〈µψj,ηref (εk), ψj,ηref (εk)〉 = 〈µϕj , ϕj〉+ ηδj=k, (4.10)

and
ψηref (T ) =

(
eiθ

η
1ϕ1, . . . , e

iθηNϕN
)
. (4.11)

Remark 4.6. As in [16], the conditions (4.10), together with an appropriate
choice of the parameter η, will imply the controllability of the linearized system
around this reference trajectory (see Section 4.3).

Sketch of the proof of Proposition 4.5. We split the proof in two steps. In the
first step, we construct uηref on (0, ε) such that (4.10) is satisfied. Then in the
second step, we extend uηref to (ε, T ) in a such way that (4.11) is verified.

First step : Let us take uηref ≡ 0 on [0, ε0). Following the proof of [16,
Proposition 3.1], we construct a control uηref such that condition (4.10) is satis-
fied and

‖uηref‖L2(ε0,ε) ≤ Cη, (4.12)

by an application of the inverse mapping theorem to the map

Θ̃ : L2((ε0, ε),R) → RN × · · · × RN

u 7→
(

Θ̃1(u), . . . , Θ̃N−1(u)
)

at the point u = 0, where

Θ̃k(u) :=
(
〈µψj(εk), ψj(εk)〉 − 〈µϕj , ϕj〉

)
1≤j≤N .
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The C1 regularity of Θ̃ follows from the differentiability property in Proposi-
tion 2.1. A continuous right-inverse of dΘ̃(0) is constructed by a resolution of a
suitable trigonometric moment problem using Proposition 6.1.

Second step : For any j ∈ N∗, let Pj be the orthogonal projection defined
by (3.5). We prove that for any initial condition at time ε close enough to(
Φ1, . . . ,ΦN

)
(ε), the projections

(
P1(ψ1(T )), . . . ,PN (ψN (T ))

)
can be brought

to 0 by a small control u ∈ L2((ε, T ),R). This is sufficient to prove Proposi-
tion 4.5. Indeed, if

P1

(
ψ1,η
ref (T )

)
= · · · = PN

(
ψN,ηref (T )

)
= 0, (4.13)

using the invariants (4.1), it comes that there exist θη1 , . . . , θ
η
N ∈ R such that

(4.11) holds.
As in [16, Proposition 3.2], the condition (4.13) with a control satisfying

‖uηref‖L2(ε,T ) ≤ Cη (4.14)

is obtained by an application of the inverse mapping theorem to the map

Θ : L2((ε, T ),R)×H3
(0) →H3

(0) ×X,

at the point
(
0,Φ1(ε), . . . ,ΦN (ε)

)
, where

Θ
(
u,ψ0

)
:=
(
ψ0, P1

(
ψ1(T )

)
, . . . ,PN

(
ψN (T )

))
and

X :=
{
φ ∈H3

(0) ; 〈φj , ϕk〉 = 0 for all 1 ≤ k ≤ j ≤ N
}
. (4.15)

Again, the C1 regularity of Θ is obtained thanks to Proposition 2.1. The con-
tinuous right-inverse of dΘ

(
0,Φ1(ε), . . . ,ΦN (ε)

)
is given by the resolution of a

suitable trigonometric moment problem with frequencies

{λk − λj ; j ∈ {1, . . . , N}, k ≥ j + 1} .

The solution of that moment problem is given by Proposition 6.1.

4.3 Controllability of the linearized system
This section is dedicated to the proof of controllability of the following system
which is the linearization of (1.2) around the reference trajectory ψηref :

i∂tΨ
j =

(
−∂2xx + V (x)

)
Ψj − uηref (t)µ(x)Ψj − v(t)µ(x)ψj,ηref ,

Ψj(t, 0) = Ψj(t, 1) = 0, j ∈ {1, . . . , N},
Ψj(0, x) = Ψj

0(x).

(4.16)

For any t ∈ [0, T ], let us define the following space

Xt : =
{
φ ∈H3

(0) ; <(〈φj , ψj,ηref (t)〉) = 0 for j = 1, . . . , N

and 〈φj , ψk,ηref (t)〉 = −〈φk, ψj,ηref (t)〉 for j = 2, . . . , N, k < j
}
.

This space is given by the linearization of the invariants (4.1) around the refer-
ence trajectory.

We prove the following controllability result.
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Proposition 4.7. There exists η̂ ∈ (0, η) such that for any η ∈ (0, η̂), there
exists a continuous linear map

Lη : X0 ×XT → L2((0, T ),R)(
Ψ0,Ψf

)
7→ v

such that for any Ψ0 ∈X0 and Ψf ∈XT , the solution Ψ of system (4.16) with
initial condition Ψ0 and control v := Lη(Ψ0,Ψf ) satisfies Ψ(T ) = Ψf .

The proof of Proposition 4.7 is adapted from [16, Proposition 4.1]. As the
proof is quite long and technical, we recall the main steps and arguments. Let us
set some notations that will be used throughout this proof. For any η ∈ (0, η)
and k ∈ N∗, let Φηk = ψ(·, ϕk, uηref ) as defined by (2.2). Notice that for j ∈
{1, . . . , N}, Φηj = ψj,ηref and for any t ∈ [0, T ], {Φηk(t)}k∈N∗ is a Hilbert basis of
L2((0, 1),C), as an image of a Hilbert basis by a unitary operator. Let

I :=
{

(j, k) ∈ {1, . . . , N} × N∗ ; k ≥ j + 1
}
∪ {(N,N)} .

In the first step we prove the controllability of the directions 〈Ψj(T ),Φηk(T )〉
for (j, k) ∈ I for η small enough. This comes from the solvability of the
trigonometric moment problem associated to the case η = 0 and a close lin-
ear maps argument. Then, we exhibit a minimal family that allows to con-
trol, simultaneously to the previous direction, the remaining diagonal directions
〈Ψj(T ),Φηj (T )〉 for j ∈ {1, . . . , N − 1}. This is the main feature of the design
of the reference trajectory. Indeed, we enlightened in (4.8) that those diagonal
directions were the ones leading to non controllability of the linearized system
in the case η = 0. Finally, due to the definition of XT , the remaining directions
〈Ψj(T ),Φηk(T )〉 for 1 ≤ k < j are automatically controlled.

Sketch of the proof of Proposition 4.7. Let R : I → N be the rearrangement
such that, if ωn := λk−λj with n = R(j, k), the sequence (ωn)n∈N is increasing.
Notice that 0 = R(N,N).

First step. Let us take any Tf ∈ (0, T ] and prove that there is η̂ = η̂(Tf ) ∈
(0, η) such that for any η ∈ (0, η̂) there exists a continuous linear map

GηTf : X0 × `2r(N,C)→ L2((0, Tf ),R)

such that for any Ψ0 ∈ X0, d = (dn)n∈Z ∈ `2r(N,C), the solution Ψ of system
(4.16) with initial condition Ψ0 and control v = GηTf (Ψ0, d) satisfies

〈Ψj(Tf ),Φηk(Tf )〉
i〈µϕj , ϕk〉

= dn, ∀(j, k) ∈ I, n = R(j, k).

Let

fηn : t ∈ [0, T ] 7→
〈µψj,ηref (t),Φηk(t)〉
〈µϕj , ϕk〉

for (j, k) ∈ I and n = R(j, k),

fη−n := fηn for n ∈ N∗ and H0 := AdhL2(0,Tf )

(
Span{eiωn·, n ∈ Z}

)
. As in [16,

Lemma 4.1], the construction of GηTf relies on the fact that the map

Jη : L2((0, Tf ),C) → `2(Z,C)

v 7→
(∫ Tf

0
v(t)fηn(t)dt

)
n∈Z

16



is an isomorphism from H0 to `2(Z,C). Indeed, for any (j, k) ∈ I and n =
R(j, k), straightforward computations lead to

〈Ψj(Tf ),Φηk(Tf )〉 = 〈Ψj
0, ϕk〉+ i〈µϕj , ϕk〉

∫ Tf

0

v(t)fηn(t)dt.

The isomorphism property of Jη comes from the estimate

‖Jη − J0‖L(L2(0,Tf ),`2) ≤ C‖u
η
ref‖L2(0,Tf ) ≤ Cη,

(see [16, Proof of Lemma 4.1] for the proof of this estimate) and the fact that,
due to Proposition 6.1, J0 is an isomorphism from H0 to `2(Z,C).

Second step. Let η̂ < min(η̂(T ), η̂(ε0)) with ε0 as in Proposition 4.5. In all
what follows we assume η ∈ (0, η̂). Let

fηj,j : t ∈ [0, T ] 7→
〈µψj,ηref (t), ψj,ηref (t)〉

〈µϕj , ϕj〉
for j ∈ {1, . . . , N − 1}. (4.17)

Then, the family Ξ := (fηn)n∈Z∪{fη1,1, . . . , f
η
N−1,N−1} is minimal in L2((0, T ),C).

The proof of this is a straightforward extension of [16, Lemma 4.3] and is not de-
tailed. It relies on the fact that (fηn)n∈Z is a Riesz basis of AdhL2(0,T )

(
Span{fηn ,

n ∈ Z}
)
and conditions (4.10).

Third step : conclusion. From the second step, we get the existence of a
biorthogonal family associated to Ξ in AdhL2(0,T )

(
Span{Ξ}

)
denoted by{

gη1,1, . . . , g
η
N−1,N−1, (g

η
n)n∈Z

}
, (4.18)

with gηj,j being real-valued for j ∈ {1, . . . , N}. The map Lη is defined by

Lη :
(
Ψ0,Ψf

)
∈X0 ×XT 7→ v ∈ L2((0, T ),R),

where

v := v0 +

N−1∑
j=1

(=(〈Ψj
f , ψ

j,η
ref (T )〉)−=(〈Ψj

0, ϕj〉)
〈µϕj , ϕj〉

−
∫ T

0

v0(t)fηj,j(t)dt
)
gηj,j ,

and v0 := GηT (Ψ0, d(Ψf )) with d(Ψf )n :=
〈Ψj

f ,Φ
η
k(T )〉

i〈µϕj , ϕk〉
, for (j, k) ∈ I and

n = R(j, k). The biorthogonality properties and the first step imply

〈Ψj(T ),Φηk(T )〉 = 〈Ψj
f ,Φ

η
k(T )〉, ∀(j, k) ∈ I ∪ {(1, 1), . . . , (N − 1, N − 1)}.

Finally, for j ∈ {2, . . . , N} and k < j explicit computations lead to

〈Ψj(T ), ψk,ηref (T )〉 = −〈Ψk(T ), ψj,ηref (T )〉.

As Ψf ∈XT , this ends the proof of Proposition 4.7.
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4.4 Controllability of the nonlinear system
In this subsection, we end the proof of Proposition 4.4. We consider the reference
trajectory designed in Proposition 4.5. Let η̂ be given by Proposition 4.7. We
assume in all what follows that η ∈ (0, η̂) is fixed. Using the inverse mapping
theorem and Proposition 4.7, we prove in Proposition 4.8 that the projections
onto the space XT (see (4.20) for a precise definition) are exactly controlled.
Then, using the invariants (4.1) of the system, we prove that controlling these
projections is sufficient to control the full trajectory. Let us set

Ω :=
{
φ ∈H3

(0) ; 〈φj , φk〉 = δj=k, ∀j, k ∈ {1, . . . , N}
}

(4.19)

and define

Λ : Ω× L2((0, T ),R) → Ω×XT

(ψ0, u) 7→
(
ψ0, P̃1(ψ1(T )), . . . , P̃N (ψN (T ))

)
,

where ψ := ψ(·,ψ0, u) and

P̃j(φj) : = φj −<
(
〈φj , ψj,ηref (T )〉

)
ψj,ηref (T )

−
j−1∑
k=1

(
〈φj , ψk,ηref (T )〉+ 〈ψj,ηref (T ), φk〉

)
ψkref (T ). (4.20)

Thus, Λ takes value in Ω×XT and Λ(ϕ, uηref ) = (ϕ, 0). The following propo-
sition holds.

Proposition 4.8. There exist δ̃ > 0 and a C1 map

Υ : O0
δ̃
× ÕT,δ̃ → L2((0, T ),R),

where O0
δ̃
is defined in Proposition 4.4 and

ÕT,δ̃ :=
{
ψ̃f ∈XT ;

N∑
j=1

‖ψ̃jf‖H3
(V )

< δ̃
}
,

such that Υ
(
ϕ,0

)
= uηref and for any ψ0 ∈ O0

δ̃
and ψ̃f ∈ ÕT,δ̃ the solution ψ

of system (1.2) with initial condition ψ0 and control u = Υ
(
ψ0, ψ̃f

)
satisfies(

P̃1(ψ1(T )), . . . , P̃N (ψN (T ))
)

= ψ̃f .

Sketch of proof. As [16, Proposition 4.2], this proposition is proved by an ap-
plication of the inverse mapping theorem to the map Λ at the point (ϕ, uηref ).
This map is C1 by Proposition 6.1, and a continuous right inverse of the map

dΛ
(
ϕ, uηref

)
: X0 × L2((0, T ),R)→X0 ×XT

is given by Proposition 4.7.

Finally, we prove Proposition 4.4.
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Proof of Proposition 4.4. Let us take any ψ0 ∈ O0
δ and ψf ∈ O

f
δ , where the

sets O0
δ and Ofδ are defined in Proposition 4.4 and δ > 0 will be specified later

on. Let δ̃ be the constant in Proposition 4.8 and

ψ̃f :=
(
P̃1(ψ1

f ), . . . , P̃N (ψNf )
)
.

For sufficiently small δ ∈ (0, δ̃), we have ψ̃f ∈ ÕT,δ̃ and

<(〈ψjf , ψ
j,η
ref (T )〉) > 0, ∀j ∈ {1, . . . , N}, (4.21)

for any ψf ∈ O
f
δ . Let u := Υ

(
ψ0, ψ̃f

)
and let ψ be the associated solution of

(1.2) with initial condition ψ0. We prove that (up to an a priori reduction of δ)

ψ(T ) = ψf . (4.22)

Thanks to the regularity of Υ and Proposition 2.1, it comes that, up to a
reduction of δ, one can assume that

<(〈ψj(T ), ψj,ηref (T )〉) > 0, ∀j ∈ {1, . . . , N}. (4.23)

By Proposition 4.8, we get

ψ1(T )−<(〈ψ1(T ), ψ1,η
ref (T )〉)ψ1,η

ref (T ) = ψ1
f −<(〈ψ1

f , ψ
1,η
ref (T )〉)ψ1,η

ref (T ).

Thus, using the fact that ‖ψ1(T )‖ = ‖ψ1
f‖ and (4.21), (4.23), we get ψ1(T ) = ψ1

f .
Assume that(

ψ1, . . . , ψj−1
)
(T ) =

(
ψ1
f , . . . , ψ

j−1
f

)
for j ∈ {2, . . . , N}.

Then the equality P̃j(ψj(T )) = ψ̃jf gives

ψj(T )−<(〈ψj(T ), ψj,ηref (T )〉)ψj,ηref (T )−
j−1∑
k=1

〈ψj(T ), ψk,ηref (T )〉ψk,ηref (T )

= ψjf −<(〈ψjf , ψ
j,η
ref (T )〉)ψj,ηref (T )−

j−1∑
k=1

〈ψjf , ψ
k,η
ref (T )〉ψk,ηref (T ). (4.24)

Taking the scalar product of (4.24) with ψn(T )(= ψnf ) for n ∈ {1, . . . , j − 1}
and using the constraints 〈ψj(T ), ψk(T )〉 = 〈ψjf , ψkf 〉 = δj=k, we get

<(〈ψj(T ), ψj,ηref (T )〉) 〈ψj,ηref (T ), ψnf 〉+

j−1∑
k=1

〈ψj(T ), ψk,ηref (T )〉 〈ψk,ηref (T ), ψnf 〉

= <(〈ψjf , ψ
j,η
ref (T )〉) 〈ψj,ηref (T ), ψnf 〉+

j−1∑
k=1

〈ψjf , ψ
k,η
ref (T )〉 〈ψk,ηref (T ), ψnf 〉.

Straightforward algebraic manipulations of these equations lead to the existence
of γ1, . . . , γj−1 ∈ C that are proved to be arbitrarily small (up to an a priori
reduction of δ) such that for k ∈ {1, . . . , j − 1}

〈ψj(T ), ψk,ηref (T )〉 = 〈ψjf , ψ
k,η
ref (T )〉

+ γk

(
<(〈ψj(T ), ψj,ηref (T )〉)−<(〈ψjf , ψ

j,η
ref (T )〉)

)
. (4.25)
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If the γj ’s are small enough this is consistent with ‖ψj(T )‖ = ‖ψjf‖ only if

<(〈ψj(T ), ψj,ηref (T )〉) = <(〈ψjf , ψ
j,η
ref (T )〉).

Together with (4.25), this implies ψj(T ) = ψjf and ends the proof of Proposi-
tion 4.4.

5 Global exact controllability

5.1 Global exact controllability under favourable hypoth-
esis

In this section, combining the properties of approximate controllability proved in
Theorem 3.1 and local exact controllability proved in Theorem 4.1, we establish
global exact controllability for (1.2), under the following hypotheses on the
functions V, µ ∈ H4((0, 1),R)

(C6) For any j ∈ N∗, there exists Cj > 0 such that

|〈µϕj,V , ϕk,V 〉| ≥
Cj
k3

for all k ∈ N∗.

(C7) The numbers {1, λj,V }j∈N∗ are rationally independent, i.e., for any M ∈
N∗ and r ∈ QM+1\{0}, we have

r0 +

M∑
j=1

rjλj,V 6= 0.

Notice that these conditions imply Conditions (C1)− (C5).

Theorem 5.1. Assume that Conditions (C6) and (C7) are satisfied for the func-
tions V, µ ∈ H4((0, 1),R). Then, for any unitarily equivalent vectors ψ0,ψf ∈
S ∩H4

(V ), there is a time T > 0 and a control u ∈ L2((0, T ),R) such that the
solution of (1.2) satisfies

ψ(T ) = ψf .

Proof. In this proof, we use vectors of different size. In bold characters we
denote only the vectors of size N .

First step. Let us take any M ∈ N∗ and z ∈ CM and prove that there
is a time T > 0 and a constant δ > 0 such that for any ψ0,ψf ∈ BH3

(V )
(z, δ)

which are unitarily equivalent to z, there is a control u ∈ L2((0, T ),R) satisfying
ψ(T,ψ0, u) = ψf . Here we use the following technical lemma whose proof is
postponed to the end of this subsection.

Lemma 5.2. For any z ∈ CM and ε > 0, there is δ > 0 such that for any
φ ∈ BH3

(V )
(z, δ), which is unitarily equivalent to z, there exists Uφ ∈ U(L2)

satisfying Uφz = φ and ‖Uφϕj − ϕj‖H3
(V )

< ε for j = 1, . . . ,M .
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Notice that under Conditions (C6) and (C7), we can apply Theorem 4.1 in
the case of M equations and C0 = Cf = IM . We denote by δ∗ and T∗ the
corresponding radius and time given in Theorem 4.1. Let δ be the constant in
Lemma 5.2 corresponding to ε = δ∗

M . Then for any ψf ∈ BH3
(V )

(z, δ), which is

unitarily equivalent to z, we have
∑M
j=1 ‖Uψfϕj − ϕj‖H3

(V )
< δ∗. Thus Theo-

rem 4.1 implies the existence of a control uf ∈ L2((0, T∗),R) driving the solution
of (1.2) of size M from (ϕ1, . . . , ϕM ) to Uψf (ϕ1, . . . , ϕM ). As z ∈ CM , there
exists a matrix C ∈ CN×M such that z = C(ϕ1, . . . , ϕM ). Then we have

CUψf (ϕ1, . . . , ϕM ) = UψfC(ϕ1, . . . , ϕM ) = Uψfz = ψf .

Combining this with the fact that (1.2) is linear with respect to the state, we
get that the control uf also drives the solution of (1.2) of size N from z to ψf
(cf. (4.6)).
The same strategy leads to the existence of a control u0 ∈ L2((0, T∗),R) driving
the solution of (1.2) of size N from z to ψ0. Thus, using the time reversibility
property and setting T = 2T∗, u(t) = u0(T∗− t) on (0, T∗) and u(t) = uf (t−T∗)
on (T∗, T ), we end the proof of the first step.

Second step. Let M ∈ N∗ and z0, zf ∈ CM be unitarily equivalent. In this
step, we prove that there is a constant δ > 0 and a time T > 0 such that for
any ψ0 ∈ BH3

(V )
(z0, δ) and ψf ∈ BH3

(V )
(zf , δ), which are unitarily equivalent

to z0, there is a control u ∈ L2((0, T ),R) such that ψ(T,ψ0, u) = ψf .
As z0, zf ∈ CM , there exists U ∈ U(CM ) such that zf = Uz0. Since U(CM )
is connected, we can choose a continuous mapping t ∈ [0, 1] 7→ U(t) ∈ U(CM )
such that U(0) = IM and U(1) = U . Then using the exact controllability
result proved in the first step for the vectors U(t)z0, t ∈ [0, 1] and an argument
of compactness, as in the third step of the proof of Theorem 4.1, we get the
required property.

Third step. Let us take any unitarily equivalent ψ0,ψf ∈ S ∩H4
(V ) ∩ E

and prove that there is a time T > 0 and a control u ∈ L2((0, T ),R) such that
ψ(T,ψ0, u) = ψf . Applying Theorem 3.1 to ψ0 and ψf , we find sequences
T0n, Tfn and u0n ∈ L2((0, T0n),R), ufn ∈ L2((0, Tfn),R) such that

‖ψ(T0n,ψ0, u0n)−ψ01‖H3
(V )

+ ‖ψ(Tfn,ψf , ufn)−ψf1‖H3
(V )
−→
n→∞

0

for some ψ01,ψf1 ∈ CM . By the second step, we have exact controllability
between some δ-neighbourhoods of ψ01 and ψf1 (notice that these vectors are
unitarily equivalent). Choosing n so large that

‖ψ(T0n,ψ0, u0n)−ψ01‖H3
(V )

+ ‖ψ(Tfn,ψf , ufn)−ψf1‖H3
(V )

< δ,

we find a time T̃ and a control ũ ∈ L2((0, T̃ ),R) such that

ψ(T̃ ,ψ(T0n,ψ0, u0n), ũ) = ψ(Tfn,ψf , ufn).

Taking T = T0n + T̃ + Tfn and u(t) = u0n(t) for t ∈ (0, T0n), u(t) = ũ(t− T0n)

for t ∈ (T0n, T0n + T̃ ), and u(t) = ufn(T − t) for t ∈ (T0n + T̃ , T ), and using the
time reversibility property, we get ψ(T,ψ0, u) = ψf .
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Fourth step. By the time reversibility property, to complete the proof of the
theorem, it remains to show that for any ψ0 ∈ S ∩H4

(V ) we have ψ(T,ψ0, u) ∈
H4

(V ) ∩E for some T > 0 and u ∈ L2((0, T ),R).
Let us take any ψ0n,ψf ∈ S ∩H4

(V ) ∩ E such that ψ0n −→
n→∞

ψ0 in L2.

From the previous step, there are sequences Tn and un ∈ L2((0, Tn),R) such
that ψ(Tn,ψ0n, un) = ψf . Then

‖ψ(Tn, ψ
j
0, un)−ψf‖ = ‖ψ0 −ψ0n‖ −→

n→∞
0,

therefore
N∏
j=1

|〈ψ(Tn, ψ
j
0, un), ϕj〉|2 −→

n→∞

N∏
j=1

|〈ψjf , ϕj〉|
2 6= 0.

Thus ψ(Tn,ψ0, un) ∈ E for sufficiently large n. Finally, taking a control ũ ∈
C∞0 ((0, Tn),R) sufficiently close to u in L2((0, Tn),R), we get ψ(T,ψ0, ũ) ∈
H4

(V ) ∩E. This completes the proof of Theorem 5.1.

We end this section by the proof of Lemma 5.2.

Proof of Lemma 5.2. Let Aφ := Span{φi ; i = 1, . . . , N}. As φ and z are uni-
tarily equivalent, there exists a linear map Lφ : Az → Aφ such that Lφz = φ
and

〈Lφξ, Lφζ〉 = 〈ξ, ζ〉, ∀ξ, ζ ∈ Az.

Let {ψzk}1≤k≤M be an orthonormal basis in CM (with respect to the scalar
product in L2 ) such that {ψzk}1≤k≤n is a basis in Az. If we define ψφj := Lφψ

z
j

for j = 1, . . . , n, then {ψφk}1≤k≤n will be an orthonormal basis in Aφ and
ψφj −→

φ→z
ψzj in H3

(V ) for j = 1, . . . , n. Let

ψ̃φk := ψφk , ∀k ∈ {1, . . . , n},

ψ̃φk := ψzk −
n∑
j=1

〈ψzk, ψ
φ
j 〉ψ

φ
j , ∀k ∈ {n+ 1, . . . ,M}.

It is easy to see that ψ̃φk −→
φ→z

ψzk in H3
(V ) for k = 1, . . . ,M . Thus if φ is

sufficiently close to z in H3
(V ), then {ψ̃

φ
k}1≤k≤M is linearly independent. We

denote by {ψ̂φk}1≤k≤M the associated orthonormal family given by the Gram-
Schmidt process. Notice that ψ̂φk = ψφk for k ∈ {1, . . . , n} and ψ̂φk −→

φ→z
ψzk inH

3
(V )

for k = 1, . . . ,M . Let Uφ ∈ U(L2) be any operator such that Uφψzj = ψ̂φj
for every j ∈ {1, . . . ,M}. By construction we have that Uφz = Lφz = φ
and ‖Uφϕj − ϕj‖H3

(V )
−→
φ→z

0 for any j ∈ {1, . . . ,M}. This ends the proof of

Lemma 5.2.
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5.2 Proof of the Main Theorem
Let us fix an arbitrary V ∈ H4, and let QV be the set of all functions µ ∈ H4

such that Conditions (C6) and (C7) are satisfied with the functions V and µ
replaced by the functions V + µ and µ. Let us prove that (1.2) is exactly
controllable in H4

(V ) for any µ ∈ QV . Along with (1.2), let us consider the
system

i∂tψ
j =

(
− ∂2xx + V (x) + µ(x)

)
ψj − u(t)µ(x)ψj , (t, x) ∈ (0, T )× (0, 1),

ψj(t, 0) = ψj(t, 1) = 0, j ∈ {1, . . . , N},
ψj(0, x) = ψj0(x),

(5.1)
and denote by ψ̃ its resolving operator. Clearly, we have

ψ̃(t,ψ0, u) = ψ(t,ψ0, u− 1) (5.2)

for any ψ0 ∈ H
3
(0), t ∈ [0, T ], and u ∈ L2((0, T ),R). By Theorem 5.1, sys-

tem (5.1) is exactly controllable in S ∩H4
(V+µ) for any µ ∈ QV .

Let us take any ψ0,ψf ∈ S∩H4
(V ) and any control u1 ∈W 1,1((0, 1),R) such

that u1(0) = 0 and u1(1) = −1. By Proposition 2.1, ψ(1,ψ0, u1) =: ψ01 ∈ S ∩
H4

(V+µ) and ψ(1,ψf , u1) =: ψf1 ∈ S∩H4
(V+µ). The time reversibility property

implies that ψ(1,ψf1, u2) = ψf , where u2(t) = u1(1−t), t ∈ [0, 1]. Since (5.1) is
exactly controllable, there is a time T̃ and a control ũ ∈ L2((0, T ),R) such that
ψ̃(T̃ ,ψ01, ũ) = ψf1. Finally, choosing T = T̃ + 2 and u(t) = u1(t) for t ∈ (0, 1),
u(t) = ũ(t− T̃ )−1 for t ∈ (1, 1 + T̃ ), and u(t) = u2(t−1− T̃ ) for t ∈ (1 + T̃ , T ),
we get ψ(T,ψ0, u) = ψf . This proves the global exact controllability of (1.2)
in H4

(V ) for any µ ∈ QV .
It remains to show that the set QV is residual in H4. Let us write QV =

Q6
V ∩Q7

V , where Q
j
V is the set of all functions µ ∈ H4 such that Condition (Cj)

is satisfied with V and µ replaced by V +µ and µ, j = 6, 7. Since the intersection
of two residual sets is residual, the proof of the Main Theorem follows from the
following result.

Lemma 5.3. For any V ∈ Hs, s ≥ 4, the sets Q6
V and Q7

V are residual in Hs.

This lemma is proved in Section 6.2. See [13] for the proof of the fact thatQ7
V

is residual in a much more general case. Nevertheless, we give its proof in the
Appendix, since it is simpler in our setting.

6 Appendix

6.1 Moment problem
In this article, we use several times the following result about the trigonometric
moment problem.

Proposition 6.1. Assume that Condition (C4) is satisfied. Let (ωn)n∈N be the
increasing sequence defined by

{ωn ; n ∈ N} = {λk,V − λj,V ; j ∈ {1, . . . , N}, k ≥ j + 1 and k = j = N}.
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Then, for any T > 0, there exists a continuous linear map

L : `2r(N,C)→ L2((0, T ),R)

such that for every d = (dn)n∈N ∈ `2r(N,C), we have∫ T

0

L(d)(t)eiωntdt = dn, ∀n ∈ N.

Proof. Let us set ω−n := −ωn for n ∈ N, and let D+ be the upper density of
the sequence (ωn)n∈Z, i.e.,

D+ := lim
r→∞

n+(r)

r
,

where n+(r) is the largest number of elements of the sequence (ωn)n∈Z in an
interval of length r. By the Beurling theorem (e.g., see [12, Theorem 9.2]), if
the uniform gap condition

ωn+1 − ωn ≥ γ, ∀n ∈ N (6.1)

is satisfied for some γ > 0, then for any for T > 2πD+, the family (eiωn·)n∈Z
is a Riesz basis of H0 := AdhL2(0,T )

(
Span{eiωn· ; n ∈ Z}

)
. Let us show that,

under Condition (C4), the sequence (ωn)n∈Z has a uniform gap and D+ = 0.
Indeed, by the well-known asymptotic formula for the eigenvalues (e.g., see [21,
Theorem 4]),

λk,V = k2π2 +

∫ 1

0

V (x)dx+ rk, with
∞∑
k=1

r2k < +∞. (6.2)

This implies that for some sufficiently large integers n0 and k0, we have

ωn0+n = λk0+p,V − λj,V , where n = pN + j, 1 ≤ j ≤ N, p ∈ N.

Thus, the frequencies (ωn)n≥n0
can be gathered as successive packets of N

frequencies such that the minimal gap inside each packet is

γ̃ := min
1≤q<m≤N

(λm,V − λq,V ).

Using Condition (C4), we obtain γ̃ > 0. The gap between the (` + 1)th packet
and the `th packet is

λ`+1,V − λ`,V + λ1,V − λN,V

which goes to infinity as ` → ∞, by (6.2). On the other hand, ωn 6= ωk for
n 6= k, by Condition (C4). Hence we get the uniform gap condition (6.1). From
(6.2) it follows immediately that D+ = 0. Thus the family (eiωn·)n∈Z is a Riesz
basis of H0. This implies that the map

J0 : H0 → `2(Z,C)

f 7→
(∫ T

0
f(t)eiωntdt

)
n∈Z

is an isomorphism. Then, the map L : d ∈ `2r(N,C) 7→ J−10 (d̃), where d̃n := dn
and d̃−n := dn for n ∈ N, satisfies the required properties.
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6.2 Proof of Lemma 5.3
First step. Let us show that Q7

V is residual in Hs. It suffices to show that the set
Q7

0 of all functions W ∈ Hs, such that the numbers {1, λj,W }j∈N∗ are rationally
independent, is residual in Hs. Let us take any M ∈ N∗ and r ∈ QM+1\{0}
and denote by QM,r the set of all functions W ∈ Hs such that

r0 +

M∑
j=1

rjλj,W 6= 0.

Then we have Q7
0 =

⋂
M∈N∗,r∈QM\{0}QM,r. Thus it is sufficient to prove that

QM,r is open and dense in Hs. Continuity of the eigenvalues1 λk,W from L2

to R implies that QM,r is open in Hs. Let us show that QM,r is dense in Hs.
For any W,P ∈ Hs and σ ∈ R, differentiating the identity

(−∂2xx +W + σP − λj,W+σP )ϕj,W+σP = 0

with respect to σ at σ = 0, we get

(−∂2xx +W − λj,W )
dϕj,W+σP

dσ

∣∣∣
σ=0

+ (P − dλj,W+σP

dσ

∣∣∣
σ=0

)ϕj,W = 0.

Taking the scalar product of this identity with ϕj,W , we obtain

dλj,W+σP

dσ

∣∣∣
σ=0

= 〈P,ϕ2
j,W 〉.

Thus
d
dσ

(
r0 +

M∑
j=1

rjλj,W+σP

)∣∣∣
σ=0

= 〈P,
M∑
j=1

rjϕ
2
j,W 〉. (6.3)

By [21, Theorem 9], for any W ∈ L2, the functions {ϕ2
j,W }∞j=1 are linearly

independent. Hence we can find P ∈ Hs such that

〈P,
M∑
j=1

rjϕ
2
j,W 〉 6= 0.

Then (6.3) implies that W + σP ∈ QM,r for any σ sufficiently close to 0. This
shows that QM,r is dense in Hs. Thus Q7

V is residual in Hs.

Second step. Recall that Q6
V is the set of all functions µ ∈ Hs such that for

any j ∈ N∗ there exists Cj > 0 verifying

|〈µϕj,V+µ, ϕk,V+µ〉| ≥
Cj
k3

for all k ∈ N∗.

We will use the following well known estimates for any W ∈ L2

‖ϕk,W − ϕk,0‖L∞ ≤
C

k
, (6.4)

‖ϕ′k,W − ϕ′k,0‖L∞ ≤ C, (6.5)

1By [21, Theorem 3], the eigenvalues λk,W and eigenfunctions ϕk,W are real-analytic
functions with respect to W ∈ L2.
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(e.g., see in [21, Theorem 4]). Integrating by parts, we get for any W ∈ Hs

〈µϕj,W , ϕk,W 〉 =
1

λk,W
〈(−∂2xx +W )(µϕj,W ), ϕk,W 〉

=
1

λk,W
(〈−µ′′ϕj,W , ϕk,W 〉+ 2〈−µ′ϕ′j,W , ϕk,W 〉

+ λj,W 〈µϕj,W , ϕk,W 〉).

This implies that for k 6= j, we have

〈µϕj,W , ϕk,W 〉 =
1

λj,W − λk,W
(〈µ′′ϕj,W , ϕk,W 〉+ 2〈µ′ϕ′j,W , ϕk,W 〉). (6.6)

Again integrating by parts, we obtain

〈µ′ϕ′j,W , ϕk,W 〉 =
1

λk,W
〈µ′ϕ′j,W , (−∂2xx +W )ϕk,W 〉

=− 1

λk,W
µ′ϕ′j,Wϕ

′
k,W

∣∣∣x=1

x=0
+

1

λk,W
〈(−∂2xx +W )(µ′ϕ′j,W , ϕk,W 〉.

(6.7)

Using (6.6) with µ replaced by µ′′, we get

〈µ′′ϕj,W , ϕk,W 〉 =
1

λj,W − λk,W
(〈µ(4)ϕj,W , ϕk,W 〉+ 2〈µ(3)ϕ′j,W , ϕk,W 〉).

Combination of this last equality with (6.2), (6.4)-(6.7) and the explicit expres-
sion ϕk,0(x) =

√
2 sin(kπx), yields that

k3〈µϕj,W , ϕk,W 〉 = −4jπ−1µ′ cos(jπx) cos(kπx)
∣∣∣x=1

x=0
+ ck,jk

−1

= −4jπ−1((−1)j+kµ′(1)− µ′(0)) + ck,jk
−1,

where for any j ∈ N∗ the sequence cj,k, k > j is bounded in R. Thus for any µ
from the set

B = {µ ∈ Hs ; µ′(1)± µ′(0) 6= 0}

and for any W ∈ Hs, there is Kj ∈ N∗ such that

|〈µϕj,W , ϕk,W 〉| ≥
Cj
k3

for all k ≥ Kj . In particular, this is true for W = V + µ. Combining this with
the following result, we complete the proof.

Lemma 6.2. For any V ∈ Hs, the set Q1
V of all functions µ ∈ Hs such that

〈µϕj,V+µ, ϕk,V+µ〉 6= 0 (6.8)

for all j, k ∈ N∗, is residual in Hs.

Indeed, B is open and dense in Hs and B ∩ Q1
V ⊂ Q6

V . Then B ∩ Q1
V is

residual as an intersection of two residual sets. Hence Q6
V is a residual set

in Hs.
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Proof of Lemma 6.2. For any j, k ∈ N∗, let Q1
V,j,k be the set of functions µ ∈ Hs

such that (6.8) holds. Then Q1
V = ∩j,k∈N∗Q1

V,j,k and it suffices to show that
Q1
V,j,k is open and dense in Hs. As above, the fact that Q1

V,j,k is open follows
immediately from the continuous dependence of the eigenfunction ϕk,V+µ on µ.
Let us show that Q1

V,j,k is dense in Hs. Since ϕj,V (x)ϕk,V (x) is not identically
equal to zero, the set of functions µ such that 〈µϕj,V , ϕk,V 〉 6= 0 is dense in
Hs. For any µ0 from that set, the function 〈µ0ϕj,V+sµ0 , ϕk,V+sµ0〉 is non-zero
real-analytic function with respect to s ∈ R. Thus sµ0 ∈ Q1

V,j,k almost surely
for any s ∈ R. This proves that Q1

V,j,k is dense in Hs.

Conclusion and open problems
In this article, we have proved simultaneous global exact controllability between
any unitarily equivalent N -tuples of functions in S ∩H4

(V ). Our result is valid in
large time, for an arbitrary number of equations, and for an arbitrary potential.
Hence, the spectrum of the free operator can be extremely resonant. Thus, not
only we extend previous results on exact controllability for a single particle to
simultaneous controllability of N particles, but we also improve the existing
literature in 1d for N = 1.

Our proof combines several ideas. Using a Lyapunov strategy, we proved
that any initial condition can be driven arbitrarily close to some finite sum
of eigenfunctions. Then, designing a reference trajectory and using a rotation
phenomenon on a suitable time interval we proved local exact controllability in
H3

(V ) around ϕ. Finally combining linearity of the equation with respect to
the state and a compactness argument, we obtained global exact controllability
under favourable hypotheses. The case of an arbitrary potential is dealt with a
perturbation argument.

We mention here two possible ways to improve this result. The optimal
functional setting for exact controllability is H3

(V ). While using our Lyapunov
function, we have dealt with more regular initial and final conditions to get
convergence in H3 from the boundedness in H4. This issue of strong stabiliza-
tion in infinite dimension is not specific to bilinear quantum system and is an
open problem. The other possible improvement concerns the time of control. In
our strategy, there are three steps requiring a time large enough : the approx-
imate controllability, the rotation argument in local exact controllability, and
the compactness argument.
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