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Abstract

In the Eulerian approach, the motion of an incompressible fluid is usu-
ally described by the velocity field which is given by the Navier–Stokes sys-
tem. The velocity field generates a flow in the space of volume-preserving
diffeomorphisms. The latter plays a central role in the Lagrangian de-
scription of a fluid, since it allows to identify the trajectories of individual
particles. In this paper, we show that the velocity field of the fluid and
the corresponding flow of diffeomorphisms can be simultaneously approx-
imately controlled using a finite-dimensional external force. The proof is
based on some methods from the geometric control theory introduced by
Agrachev and Sarychev.
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0 Introduction

The motion of an incompressible fluid is described by the following Navier–
Stokes (NS) system

u̇− ν∆u+ 〈u,∇〉u+∇p = f(t, x), div u = 0, (0.1)

u(0) = u0, (0.2)

where ν > 0 is the kinematic viscosity, u = (u1(t, x), u2(t, x), u3(t, x)) is the
velocity field of the fluid, p = p(t, x) is the pressure, and f is an external force.
Throughout this paper, we shall assume that the space variable x = (x1, x2, x3)
belongs to the torus T3 = R3/2πZ3.

The well-posedness of the 3D NS system (0.1) is a famous open problem.
Given a smooth data (u0, f), the existence and uniqueness of a smooth solution
is known to hold only locally in time. One can establish global existence in the
case of a small data. Global existence for a large data holds in the case of weak
solution, but in that case the uniqueness is open.

The flow generated by a sufficiently smooth velocity field u gives the La-
grangian trajectories of the fluid:

ẋ = u(t, x), x(0) = x0 ∈ T3. (0.3)

Since the fluid is assumed to be incompressible, for any t ≥ 0, the mapping φut :
x0 7→ x(t) belongs to the group SDiff(T3) of orientation and volume preserving
diffeomorphisms on T3 isotopic to the identity. This group is often referred
as configuration space of the fluid (cf. [AK98, KW09]). Thus for a sufficiently
smooth data, we have a path (u(t), φut ), which is defined locally in time, and its
approximate controllability is the main issue addressed in this paper. We shall
assume that the external force is of the following form

f(t, x) = h(t, x) + η(t, x),

where h is the fixed part of the force (given function) and η is a control force.
To state the main result of this paper, we need to introduce some notation. Let
us define the space

H := {u ∈ L2(T3,R3) : div u = 0,

∫
T3

u(x)dx = 0}, (0.4)

and denote by Π the orthogonal projection onto H in L2(T3,R3). Consider the
projection of system (0.1) onto H:

u̇+ Lu+B(u) = h(t, x) + η(t, x), (0.5)
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where L = −∆ is the Stokes operator and B(u) := Π(〈u,∇〉u). Let us set
Hk
σ := Hk(T3,R3) ∩H, where Hk(T3,R3) is the space of vector functions v =

(v1, v2, v3) with components in the usual Sobolev space of order k on T3. Let E
be subset of H. We shall say that system (0.5) is approximately controllable
by an E-valued control, if for any ν > 0, k ≥ 3, ε > 0, T > 0, u0, u1 ∈ Hk

σ ,
h ∈ L2(JT , H

k−1
σ ), and ψ ∈ SDiff(T3), there is a control η ∈ L2([0, T ], E) and a

solution u of (0.5), (0.2) satisfying

‖u(T )− u1‖Hk(T3) + ‖φuT − ψ‖C1(T3) < ε.

The following theorem is a simplified version of our main result (see Section 2.1).

Main Theorem. There is a finite-dimensional subspace E ⊂ H such that (0.5)
is approximately controllable by an E-valued control.

Roughly speaking, this shows that, using a finite-dimensional external force,
one can drive the fluid flow (which starts at the identity) arbitrarily close to
any configuration ψ ∈ SDiff(T3). Moreover, near the final position ψ(x), the
particle starting from x will have approximately the prescribed velocity v1(x) :=
u1(ψ(x)).

We give some explicit examples of finite-dimensional subspaces E which
ensure the above approximate controllability property. For instance, for any ` ∈
Z3, let {l(`), l(−`)} be an arbitrary orthonormal basis in {x ∈ R3 : 〈x, `〉 = 0}.
We show that our problem is controllable by η taking values in a space of the
form

E = E(K) := span{l(±`) cos〈`, x〉, l(±`) sin〈`, x〉 : ` ∈ K}, K ⊂ Z3 (0.6)

if and only if K is a generator of Z3 (i.e., any a ∈ Z3 is a finite linear combina-
tion of the elements of K with integer coefficients). The simplest example of a
generator of Z3 is

K = {(1, 0, 0), (0, 1, 0), (0, 0, 1)},

in which case dimE(K) = 12. We also establish approximate controllability
of the system in question by controls having two vanishing components. More
precisely, the space E can be chosen of the form

E = Π{(0, 0, 1)ζ : ζ ∈ H}, (0.7)

where
H := span{sin〈m,x〉, cos〈m,x〉 : m ∈ K}

and K := {(1, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 1)} (i.e., dimE = 8). In (2.32) an ex-
ample of a 6-dimensional subspace is given which guarantees the controllability
of the 3D NS system.

The strategy of the proof of Main Theorem is based on some methods in-
troduced by Agrachev and Sarychev in [AS05] and [AS06]. In that papers
they prove approximate controllability for the 2D NS and Euler systems by
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a finite-dimensional force. This method is then developed and generalised
by several authors for various PDE’s. Rodrigues [Rod07] proves controlla-
bility for the 2D NS system on a rectangle with Lions boundary conditions.
Shirikyan [Shi06, Shi07, Shi13] studies controllability for the 3D NS system
on the torus and 1D viscous Burgers equation on the real line. The case
of incompressible and compressible 3D Euler equations is considered by Ner-
sisyan in [Ner10, Ner11], and the controllability for the 2D defocusing cubic
Schrödinger equation is established by Sarychev in [Sar12].

All the above papers are concerned with the problem of controllability of
the velocity field. The controllability of the Lagrangian trajectories of 2D and
3D Euler equations is studied by Glass and Horsin [GH10, GH12], in the case
of boundary controls. For given two smooth contractible sets γ1 and γ2 of fluid
particles which surround the same volume, they construct a control such that the
corresponding flow drives γ1 arbitrarily close to γ2. In the context of our paper,
a similar property can be derived from our main result. Indeed, Krygin shows
in [Kry71] that there is a diffeomorphism ψ ∈ SDiff(T3) such that ψ(γ1) = γ2.
Thus we can find an E-valued control η such that φuT (γ1) is arbitrarily close
to γ2, and, moreover, at time T the particles will have approximately the desired
velocity.

When E is of the form (0.7), our Main Theorem is related to the recent
paper [CL12] by Coron and Lissy. In that paper, the authors establish local null
controllability of the velocity for the 3D NS system controlled by a distributed
force having two vanishing components (i.e., the controls are valued in a space
of the form (0.7), where H is the space of space-time L2-functions supported
in a given open subset). The reader is referred to the book [Cor07] for an
introduction to the control theory of the NS system by distributed controls and
for references on that topic.

Let us give a brief (and not completely accurate) description of how the
Agrachev–Sarychev method is adapted to establish approximate controllability
in the above-defined sense. We assume that E is given by (0.6) for some genera-
tor K of Z3. Let ψ ∈ SDiff(T3) and let h(t, x) be a smooth isotopy connecting it
to the identity: h(0, x) = x and h(T, x) = ψ(x). Then û(t, x) := ḣ(t, h−1(t, x))
is a divergence-free vector field such that φût (x) = h(t, x) for all t ∈ [0, T ]. In
particular, φûT = ψ. The mapping u 7→ φuT is continuous from L1([0, T ], Hk

σ)
to C1(T3), where L1([0, T ], Hk

σ) is endowed with the relaxation norm

|||u|||T,k := sup
t∈[0,T ]

∥∥∥∥∫ t

0

u(s)ds

∥∥∥∥
Hk(T3)

.

Hence we can choose a smooth vector field u sufficiently close to û with respect
to this norm, so that

u(0) = u0, u(T ) = u1, ‖φuT − ψ‖C1(T3) < ε.

Then u is a solution of our system corresponding to a control η0, which can
be explicitly expressed in terms of u and h from equation (0.5). In general,
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this control η0 is not E-valued, so we need to approach u appropriately with
solutions corresponding to E-valued controls. To this end, we define the sets

K0 := K, Kj = Kj−1 ∪ {m± n : m,n ∈ Kj−1}, j ≥ 1.

As K is a generator of Z3, one easily gets that ∪j≥1Kj = Z3, hence ∪j≥1E(Kj)
is dense in Hk

σ . Let PN be the orthogonal projection onto E(KN ) in H. Then
a perturbative result implies that, for a sufficiently large N ≥ 1, system (0.5),
(0.2) with control PNη0 has a smooth solution uN verifying

‖uN (T )− u1‖Hk(T3) + ‖φuNT − ψ‖C1(T3) < ε.

On the other hand, if we consider the following auxiliary system

u̇+ νL(u+ ζ) +B(u+ ζ) = h+ η (0.8)

with two controls ζ and η, then the below two properties hold true

Convexification principle. For any ε > 0 and any solution uj of (0.5), (0.2)
with an E(Kj)-valued control η1, there are E(Kj−1)-valued controls ζ
and η and a solution ũj−1 of (0.8), (0.2) such that

‖uj(T )− ũj−1(T )‖Hk(T3)+|||uj − ũj−1|||T,k < ε.

Extension principle. For any ε > 0 and any solution ũj of (0.8), (0.2) with
E(Kj)-valued controls ζ and η, there is an E(Kj)-valued control η2 and a
solution uj of (0.5), (0.2) such that

‖uj(T )− ũj(T )‖Hk(T3)+|||uj − ũj |||T,k < ε.

These two principles and the above-mentioned continuity property of φuT
with respect to the relaxation norm imply that, for any solution uj of (0.5),
(0.2) with an E(Kj)-valued control η1, there is an E(Kj−1)-valued control η2
and a solution uj−1 of (0.5), (0.2) such that

‖uj(T )− ũj−1(T )‖Hk(T3) + ‖φujT − φ
uj−1

T ‖Hk(T3) < ε.

Combining this with the above-constructed solution uN , we get the approxi-
mate controllability of (0.5) by a control valued in E(K) = E. The proofs of
convexification and extension principles are strongly inspired by [Shi06].
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Notation

We denote by Td the standard d-dimensional torus Rd/2πZd. It is endowed
with the metric and the measure induced by the usual Euclidean metric and the
Lebesgue measure on Rd. More precisely, if Π : Rd → Td denotes the canonical
projection, we have

d(x, y) = inf{|x̃− ỹ| : Πx̃ = x,Πỹ = y, x̃, ỹ ∈ Rd} for any x, y ∈ Td,
d(A) = (2π)−ddRd(Π−1(A) ∩ [0, 2π]d) for any Borel subset A ⊂ Td,

where |x| = |x1| + · · · + |xd|, x = (x1, . . . , xd) ∈ Rd and dRd is the Lebesgue
measure on Rd.
Lp(Td,Rd) and Hs(Td,Rd) stand for spaces of vector functions u = (u1, . . . , ud)
with components in the usual Lebesgue and Sobolev spaces on Td.
Ck,λ(Td,Rd), k ≥ 0, λ ∈ (0, 1] is the space of vector functions u = (u1, . . . , ud)
with components that are continuous on Td together with their derivatives up to
order k, and whose derivatives of order k are Hölder-continuous of exponent λ,
equipped with the norm

‖u‖Ck,λ :=
∑
|α|≤k

sup
x∈Td

|Dαu(x)|+
∑
|α|=k

sup
x,y∈Td,x 6=y

|Dαu(x)−Dαu(y)|
d(x, y)λ

.

Hk
σ(Td,Rd) := Hk(Td,Rd)∩H and Ck,λσ (Td,Rd) := Ck,λ(Td,Rd)∩H, where H

is given by (0.4) (with d instead of 3). In what follows, when the space dimen-
sion d is 3, we shall write Lp, Hk, . . . instead of Lp(T3,R3), Hk(T3,R3), . . ..

C1(Td) is the space of continuously differentiable maps from Td to Td endowed
with the usual distance ‖ψ1 − ψ2‖C1(Td), ψ1, ψ2 ∈ C1(Td).

Let X be a Banach space endowed with a norm ‖ · ‖X and JT := [0, T ]. For
1 ≤ p < ∞, let Lp(JT , X) be the space of measurable functions u : JT → X
such that

‖u‖Lp(JT ,X) :=

(∫ T

0

‖u(s)‖pXds

) 1
p

<∞.

The spaces C(JT , X) and W k,p(JT , X) are defined in a similar way. We define
the relaxation norm on L1(JT , X) by

|||u|||T,X := sup
t∈JT

∥∥∥∥∫ t

0

u(s)ds

∥∥∥∥
X

.

A mapping ψ : Td → Td is volume-preserving if d(ψ−1(A)) = d(A) for any
Borel subset A ⊂ Td. We denote by SDiff(Td) be the group of all diffeomor-
phisms on Td preserving the orientation and volume and isotopic to the identity,
i.e., SDiff(Td) is the set of all functions ψ : Td → Td such that there is a path
h ∈W 1,∞(J1, C

1(Td)) with h(0, x) = x, h(1, x) = ψ(x) for all x ∈ Td, and h(t, ·)
is a diffeomorphism on Td preserving the orientation and volume for all t ∈ J1.
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1 Preliminaries

1.1 Particle trajectories

In this section, we study some existence and stability properties for the La-
grangian trajectories, which are essential for the proofs of the main results.
Let us fix a time T > 0 and an integer d ≥ 1. For any vector field u ∈
L1(JT , C

1(Td,Rd)), we consider the following ordinary differential equation
in Td

ẋ = u(t, x). (1.1)

By standard methods, one can show that for any y ∈ Td this equation admits
a unique solution x ∈ W 1,1(JT ,Td) such that x(0) = y (e.g., see [Hal80]).
Moreover, if φut : Td → Td, t ∈ JT is the corresponding flow sending y to x(t),
then φut is a C1-diffeomorphism on Tn and

φ·T : L1(JT , C
1(Td,Rd))→ C(JT , C

1(Td)), u 7→ φu is continuous. (1.2)

We shall also use the following stability property with respect to a weaker norm
(cf. Chapter 4 in [Gam78]).

Lemma 1.1. For any λ ∈ (0, 1] and R > 0, there is C := C(R, λ, T ) > 0 such
that

‖φu − φû‖L∞(JT ,C1(Td)) ≤ C|||u− û|||
λ/2

T,C1(Td,Rd) (1.3)

for any u, û ∈ L∞(JT , C
1,λ(Td,Rd)) verifying

‖u‖L∞(JT ,C1,λ(Td,Rd)) + ‖û‖L∞(JT ,C1,λ(Td,Rd)) ≤ R.

Proof. Clearly, it suffices to prove this lemma in the case when Td is replaced
by Rd and suppu(t, ·), supp û(t, ·) ⊂ K for some compact K ⊂ Rd for all t ∈ JT .

Step 1. Let us show that there is a constant C := C(R, T ) > 0 such that

‖φu − φû‖L∞(JT×Rd) ≤ C|||u− û|||
1/2

T,L∞(Rd). (1.4)

Indeed, we have

‖φut − φût ‖L∞(Rd) =

∥∥∥∥∫ t

0

(u(s, φus )− û(s, φûs ))ds

∥∥∥∥
L∞(Rd)

≤
∥∥∥∥∫ t

0

(u(s, φus )− u(s, φûs ))ds

∥∥∥∥
L∞(Rd)

+

∥∥∥∥∫ t

0

(u(s, φûs )− û(s, φûs ))ds

∥∥∥∥
L∞(Rd)

=: G1 +G2. (1.5)

Then

G1 ≤ ‖u‖L∞(JT ,C1(Rd))

∫ t

0

‖φus − φûs‖L∞(Rd)ds. (1.6)
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To estimate G2, let us first note that for any η > 0

sup
t1,t2∈JT ,|t1−t2|≤η

‖φût1 − φ
û
t2‖L∞(Rd) ≤ η‖û‖L∞(JT×Rd). (1.7)

Taking a partition τi = it/n, i = 0, . . . , n and using (1.7), we get

G2 ≤
n∑
i=1

∥∥∥∥∥
∫ τi

τi−1

(u(s, φûs )− u(s, φûτi−1
))ds

∥∥∥∥∥
L∞(Rd)

+

n∑
i=1

∥∥∥∥∥
∫ τi

τi−1

(û(s, φûs )− û(s, φûτi−1
))ds

∥∥∥∥∥
L∞(Rd)

+
n∑
i=1

∥∥∥∥∥
∫ τi

τi−1

(u(s, φûτi−1
)− û(s, φûτi−1

))ds

∥∥∥∥∥
L∞(Rd)

≤T
2

n
‖û‖L∞(JT×Rd)(‖u‖L∞(JT ,C1(Rd)) + ‖û‖L∞(JT ,C1(Rd)))

+ 2n|||u− û|||T,L∞(Rd). (1.8)

If |||u−û|||T,L∞(Rd) = 0, then (1.3) holds trivially. Assume that |||u−û|||T,L∞(Rd) >

0. Choosing1 n := [|||u− û|||−1/2
T,L∞(Rd)], we see that

G2 ≤ C|||u− û|||1/2T,L∞(Rd).

Combining this with (1.5) and (1.6) and applying the Gronwall inequality, we
obtain (1.4).

Step 2. For j = 1, . . . , d, we have

‖∂jφut − ∂jφût ‖L∞(Rd) =

∥∥∥∥∫ t

0

(〈∇u(s, φus ), ∂jφ
u
s 〉 − 〈∇û(s, φûs ), ∂jφ

û
s 〉)ds

∥∥∥∥
L∞(Rd)

≤
∥∥∥∥∫ t

0

(〈∇u(s, φus ), ∂jφ
u
s − ∂jφûs 〉)ds

∥∥∥∥
L∞(Rd)

+

∥∥∥∥∫ t

0

(〈∇u(s, φus )−∇u(s, φûs ), ∂jφ
û
s 〉)ds

∥∥∥∥
L∞(Rd)

+

∥∥∥∥∫ t

0

(〈∇u(s, φûs )−∇û(s, φûs ), ∂jφ
û
s 〉)ds

∥∥∥∥
L∞(Rd)

=: I1 + I2 + I3. (1.9)

It is easy to verify that there is a constant C1 := C1(R, T ) > 0 such that

‖φû‖L∞(JT ,C1(Rd)) + ‖φ̇û‖L∞(JT ,C1(Rd)) ≤ C1. (1.10)

1Here [a] stands for the integer part of a ∈ R.
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Using this and (1.4), we get that

I1 ≤ R
∫ t

0

‖∂jφus − ∂jφûs‖L∞(Rd)ds,

I2 ≤ C1R

∫ t

0

‖φus − φûs‖λL∞(Rd)ds ≤ C2|||u− û|||λ/2T,L∞(Rd).

To estimate I3, we integrate by parts and use (1.10)

I3 ≤
∥∥∥∥〈∫ t

0

(∇u(s, φûs )−∇û(s, φûs ))ds, ∂jφ
û
t 〉
∥∥∥∥
L∞(Rd)

+

∥∥∥∥∫ t

0

(
〈
∫ s

0

(∇u(θ, φûθ )−∇û(θ, φûθ ))dθ, ∂j φ̇
û
s 〉
)

ds

∥∥∥∥
L∞(Rd)

≤ C3 sup
s∈[0,t]

∥∥∥∥∫ s

0

(∇u(θ, φûθ )−∇û(θ, φûθ ))dθ

∥∥∥∥
L∞(Rd)

.

Repeating the arguments used in (1.8) and using the fact that ∇u and ∇û are
Hölder continuous with exponent λ, we obtain that

sup
s∈[0,t]

∥∥∥∥∫ s

0

(∇u(θ, φûθ )−∇û(θ, φûθ ))dθ

∥∥∥∥
L∞(Rd)

≤ C4

nλ
+ 2n|||u− û|||T,C1(Rd)

≤ C5|||u− û|||λ/2T,C1(Rd)

for n := [|||u−û|||−1/2
T,C1(Rd)]. Combining this with the estimates for I1, I2 and (1.9),

and applying the Gronwall inequality, we arrive at the required result.

By the Liouville theorem, if we assume additionally that u is divergence-
free, then the flow φut preserves the orientation and the volume. Thus if u ∈
L∞(JT , C

1
σ(Td,Rd)), then φut ∈ SDiff(Td) for any t ∈ JT . The following propo-

sition shows that, using a suitable divergence-free field u, the flow φut can be
driven approximately to any position ψ ∈ SDiff(Td) at time T .

Proposition 1.2. For any ε > 0, k > 1 + d/2, u0, u1 ∈ Hk
σ(Td,Rd), and

ψ ∈ SDiff(Td), there is a vector field u ∈ C∞(JT , H
k
σ(Td,Rd)) such that u(0) =

u0, u(T ) = u1, and
‖φuT − ψ‖C1(Td) < ε.

Proof. Step 1. We first forget about the endpoint conditions u(0) = u0, u(T ) =
u1 and show that there is a divergence-free vector field û ∈ C∞(R × Td,Rd)
such that

‖φûT − ψ‖C1(Td) < ε/2.

Since ψ ∈ SDiff(Td), there is a path h ∈W 1,∞(JT , C
1(Td)) such that h(0, x) =

x, h(T, x) = ψ(x) for all x ∈ Td, and h(t, ·) is a C1-diffeomorphism on Td
preserving the orientation and the volume for all t ∈ JT . Let us define the
vector field û(t, x) = ḣ(t, h−1(t, x)). Then we have û ∈ L∞(JT , C

1(Td,Rd)) and
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h(t, x) = φût (x), t ∈ JT . As φût preserves the orientation and the volume, for any
g ∈ C1(Td,R)

0 =
d

dt

∫
Td
g(φût (y))dy =

∫
Td
〈∇g(φût (y)), φ̇ût (y)〉dy

=

∫
Td
〈∇g(φût (y)), û(t, φût (y))〉dy =

∫
Td
g(y) div û(t, y)dy.

This shows that û is divergence-free. Taking a sequence of mollifying kernels
ρn, n ≥ 1, we consider ûn := ρn ∗ û ∈ C∞(R × Td,Rd). Then ûn is also
divergence-free and ‖ûn − û‖L∞(JT ,C1(Td,Rd)) → 0 as n → ∞. By (1.2), this

implies that ‖φûnT − φûT ‖C1(Td) → 0 as n → ∞. Since φûT = ψ, we get the
required result with û = ûn for sufficiently large n ≥ 1.

Step 2. By the Sobolev embedding, Hk ⊂ C1(Td), k > 1 + d/2 (e.g.,
see [Ada75]). For any δ > 0, we take an arbitrary u ∈ C∞(JT , H

k
σ(Td,Rd))

satisfying

u(0) = u0, u(T ) = u1,

‖u− û‖L1(JT ,C1(Td,Rd)) < δ.

Then by Step 1 and (1.2), we have

‖φuT − ψ‖C1(Td) ≤ ‖φuT − φûT ‖C1(Td) + ‖φûT − ψ‖C1(Td)

< ε/2 + ε/2 = ε

for sufficiently small δ > 0.

1.2 Existence of strong solutions

In what follows, we shall assume that d = 3, k ≥ 3, and ν = 1. In this section,
we prove a perturbative result on existence of strong solutions for the evolution
equation

u̇+ Lu+B(u) = g, (1.11)

where B(a, b) = Π{〈a,∇〉b} and B(a) = B(a, a). Along with (1.11), we consider
the following more general equation

u̇+ L(u+ ζ) +B(u+ ζ) = g. (1.12)

Let us fix any T > 0 and introduce the space XT,k := C(JT , H
k
σ)∩L2(JT , H

k+1
σ )

endowed with the norm

‖u‖XT,k := ‖u‖L∞(JT ,Hk) + ‖u‖L2(JT ,Hk+1).

The following result is a version of Theorem 1.8 and Remark 1.9 in [Shi06] and
Theorem 2.1 in [Ner10] in the case of the 3D NS system in the spaces Hk, k ≥ 3.
For the sake of completeness, we give all the details of the proof, even though
it is very close to the proofs of the previous results.
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Theorem 1.3. Suppose that for some functions û0 ∈ Hk
σ , ζ̂ ∈ L4(JT , H

k+1
σ ),

and ĝ ∈ L2(JT , H
k−1
σ ) problem (1.12), (0.2) with u0 = û0, ζ = ζ̂, and g = ĝ

has a solution û ∈ XT,k. Then there are positive constants δ and C depending
only on

‖ζ̂‖L4(JT ,Hk+1) + ‖ĝ‖L2(JT ,Hk−1) + ‖û‖XT,k
such that the following statements hold.

(i) If u0 ∈ Hk
σ , ζ ∈ L4(JT , H

k+1
σ ), and g ∈ L2(JT , H

k−1
σ ) satisfy the inequality

‖u0 − û0‖k + ‖ζ − ζ̂‖L4(JT ,Hk+1) + ‖g − ĝ‖L2(JT ,Hk−1) < δ, (1.13)

then problem (1.12), (0.2) has a unique solution u ∈ XT,k.

(ii) Let
R : Hk

σ × L4(JT , H
k+1
σ )× L2(JT , H

k−1
σ )→ XT,k

be the operator that takes each triple (u0, ζ, g) satisfying (1.13) to the
solution u of (1.12), (0.2). Then

‖R(u0, ζ, g)−R(û0, ζ̂, ĝ)‖XT,k ≤ C
(
‖u0 − û0‖k

+ ‖ζ − ζ̂‖L4(JT ,Hk+1) + ‖g − ĝ‖L2(JT ,Hk−1)

)
.

Proof. We use the following standard estimates for the bilinear form B

‖B(a, b)‖k ≤ C‖a‖k‖b‖k+1 for k ≥ 2, (1.14)

|(B(a, b), Lkb)| ≤ C‖a‖k‖b‖2k for k ≥ 3 (1.15)

for any a ∈ Hk
σ and b ∈ Hk+1

σ (see Chapter 6 in [CF88]). We are looking for a
solution of (1.12), (0.2) of the form u = û+w. We have the following equation
for w:

ẇ + L(w + η) +B(w + η, û+ ζ̂) +B(û+ ζ̂, w + η) +B(w + η) = q,

w(0, x) = w0(x), (1.16)

where w0 = u0−û0, η = ζ−ζ̂, and q = g−ĝ. Setting B̃(u, v) = B(u, v)+B(v, u),
we get that

ẇ+Lw+B(w)+B̃(w, η)+B̃(w, û)+B̃(w, ζ̂)=q−(Lη+B(η)+B̃(û, η)+B̃(ζ̂, η)),
(1.17)

Using (1.14), we see that for any ε > 0, we can choose δ > 0 in (1.13) such that

‖w0‖k + ‖q − (Lη +B(η) + B̃(û, η) + B̃(ζ̂, η))‖L2(JT ,Hk−1) < ε.

Then a standard existence result implies that system (1.17), (1.16) has a solu-
tion w ∈ XT,k (see [Tay97]).
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To prove (ii), we multiply (1.17) by Lkw and use estimates (1.14) and (1.15)

1

2

d

dt
‖w‖2k+‖w‖2k+1 ≤ C

(
‖w‖3k + ‖w‖k+1‖w‖k

(
‖η‖k + ‖û‖k + ‖ζ̂‖k

)
+ ‖w‖k+1

(
‖q‖k−1 + ‖η‖k+1 + ‖η‖k(‖η‖k−1 + ‖û‖k + ‖ζ̂‖k)

))
.

This implies that

1

2

d

dt
‖w‖2k +

1

2
‖w‖2k+1 ≤ C1

(
‖w‖3k + ‖w‖2k

(
‖η‖2k + ‖û‖2k + ‖ζ̂‖2k

)
+
[
‖q‖2k−1 + ‖η‖4k+1 + ‖η‖2k(‖û‖2k + ‖ζ̂‖2k)

])
.

Integrating this inequality and setting

A := ‖w0‖2k +

∫ T

0

[
‖q‖2k−1 + ‖η‖4k+1 + ‖η‖2k(‖û‖2k + ‖ζ̂‖2k)

]
dt,

we obtain

‖w‖2k +

∫ t

0

‖w‖2k+1 ≤ 2A+ 2C1

∫ t

0

(
‖w‖3k + ‖w‖2k

(
‖η‖2k + ‖û‖2k + ‖ζ̂‖2k

))
dt.

(1.18)
The Gronwall inequality gives that

‖w‖2k ≤ C2A+ C2

∫ t

0

‖w(s, ·)‖3kds,

where C2 depends only on ‖û‖L2(JT ,Hk) + ‖ζ̂‖L2(JT ,Hk). Another application of
the Gronwall inequality implies that

‖w(t)‖k ≤
C2A

1− C2
2At

≤ 2C2A for any t ≤ 1

2C2
2A

. (1.19)

Let us choose δ > 0 so small that 1
2C2

2A
≥ T . Using (1.19) and (1.18), and

choosing δ > 0 sufficiently small, we get for any t ∈ JT

‖w‖2k +

∫ t

0

‖w‖2k+1 ≤ C3A ≤ C4

(
‖w0‖2k + ‖η‖2L4(JT ,Hk+1) + ‖q‖2L2(JT ,Hk−1)

)
.

This completes the proof of the theorem.

2 Main results

2.1 Approximate controllability of the NS system

In this section, we state the main results of this paper. Let us fix any T > 0
and k ≥ 3, and consider the NS system

u̇+ Lu+B(u) = h(t) + η(t), (2.1)

u(0, x) = u0(x), (2.2)
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where h ∈ L2(JT , H
k−1
σ ) and u0 ∈ Hk

σ are given functions and η is a control
taking values in a finite-dimensional space E ⊂ Hk+1

σ . We denote by Θ(h, u0)
the set of functions η ∈ L2(JT , H

k−1
σ ) for which (2.1), (2.2) has a solution u

in XT,k. By Theorem 1.3, Θ(h, u0) is an open subset of L2(JT , H
k−1
σ ). Recall

that R(·, ·, ·) is the operator defined in Theorem 1.3. To simplify notation, we
write R(·, ·) instead of R(·, 0, ·). The embedding H3 ⊂ C1,1/2 implies that the

flow φ
R(u0,h+η)
t is well defined for any η ∈ Θ(h, u0) and t ∈ JT . We set

YT,k := XT,k ∩W 1,2(JT , H
k−1
σ ).

We shall use the following notion of controllability.

Definition 2.1. Equation (2.1) is said to be controllable at time T by an E-
valued control if for any ε > 0 and any ϕ ∈ YT,k there is a control η ∈ Θ(h, u0)∩
L2(JT , E) such that

‖RT (u0, h+η)−ϕ(T )‖k+|||R(u0, h+ η)−ϕ|||T,k+‖φR(u0,h+η)−φϕ‖L∞(JT ,C1) < ε,

where u0 = ϕ(0) and |||·|||T,k :=|||·|||T,Hk .

Let us recall some notation introduced in [AS05, AS06], and [Shi06]. For any
finite-dimensional subspace E ⊂ Hk+1

σ , we denote by F(E) the largest vector
space F ⊂ Hk+1

σ such that for any η1 ∈ F there are vectors2 η, ζ1, . . . , ζn ∈ E
satisfying the relation

η1 = η −
n∑
i=1

B(ζi). (2.3)

As E is a finite-dimensional subspace and B is a bilinear operator, the set of all
vectors η1 ∈ Hk+1

σ of the form (2.3) is contained in a finite-dimensional space.
It is easy to see that if subspaces G1, G2 ⊂ Hk+1

σ are composed of elements η1
of the form (2.3), then so does G1 + G2. Thus the space F(E) is well defined.
We define Ej by the rule

E0 = E, Ej = F(Ej−1) for j ≥ 1, E∞ =

∞⋃
j=1

Ej . (2.4)

Clearly, Ej is a non-decreasing sequence of subspaces. We say that E is saturat-
ing in Hk−1

σ if E∞ is dense in Hk−1
σ . The following theorem is the main result

of this paper.

Theorem 2.2. Assume that E is a finite-dimensional subspace of Hk+1
σ and

h ∈ L2(JT , H
k−1
σ ). If E is saturating in Hk−1

σ , then (2.1) with η ∈ C∞(JT , E)
is controllable at time T .

We have the following two corollaries of this result.

2 The integer n may depend on η1.
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Corollary 2.3. Under the conditions of Theorem 2.2, if E is saturating in Hk−1
σ ,

then for any ε > 0, u0, u1 ∈ Hk
σ , and ψ ∈ SDiff(T3) there is a control η ∈

Θ(h, u0) ∩ C∞(JT , E) such that

‖RT (u0, h+ η)− u1‖k + ‖φR(u0,h+η)
T − ψ‖C1 < ε.

Let us denote by VPM(T3) the set of all volume-preserving mappings from T3

to T3. According to Corollary 1.5 in [BG03] and Theorem 2.1 in [Shn85], we
have that VPM(T3) is the closure of SDiff(T3) in Lp(T3) for any p ∈ [1,+∞).
Thus we get the following result.

Corollary 2.4. Under the conditions of Theorem 2.2, if E is saturating in Hk−1
σ ,

then for any ε > 0, p ∈ [1,+∞), u0, u1 ∈ Hk
σ , and ψ ∈ VPM(T3) there is a

control η ∈ Θ(h, u0) ∩ C∞(JT , E) such that

‖RT (u0, h+ η)− u1‖k + ‖φR(u0,h+η)
T − ψ‖Lp < ε.

The rest of this subsection is devoted to the proofs of Theorem 2.2 and Corol-
lary 2.3. They are based on the following result which is proved in Section 3.

Theorem 2.5. Under the conditions of Theorem 2.2, for any ε > 0, u0 ∈ Hk
σ ,

and η1 ∈ Θ(h, u0) ∩ L2(JT , E1) there is η ∈ Θ(h, u0) ∩ C∞(JT , E) such that

‖RT (u0, h+ η1)−RT (u0, h+ η)‖k+|||R(u0, h+ η1)−R(u0, h+ η)|||T,k
+‖φR(u0,h+η1) − φR(u0,h+η)‖L∞(JT ,C1) < ε.

Proof of Theorem 2.2. Let us take any ε > 0, δ > 0, and ϕ ∈ YT,k. Then

η0 := ϕ̇+ Lϕ+B(ϕ)− h

belongs to Θ(u0, h) and ϕ(t) = Rt(u0, h+ η0) for any t ∈ JT , where u0 = ϕ(0).
Since E∞ is dense in Hk−1

σ , we have that

‖PEN η0 − η0‖L2(JT ,Hk−1) → 0 as N →∞.

By Theorem 1.3, for sufficiently large N , we have PEN η0 ∈ Θ(h, u0) and

‖R(u0, h+ PEN η0
)− ϕ‖XT,k < δ.

By (1.2), we can choose δ > 0 so small that

‖φR(u0,h+PEN η0) − φϕ‖L∞(JT ,C1) < ε.

Applying N times Theorem 2.5, we complete the proof of Theorem 2.2.

Proof of Corollary 2.3. Let us take any ε > 0, ψ ∈ SDiff(T3), and u0, u1 ∈ Hk
σ .

By Proposition 1.2, there is a vector field u ∈ C∞(JT , H
k
σ) such that u(0) =

u0, u(T ) = u1, and
‖φuT − ψ‖C1 < ε. (2.5)
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Applying Theorem 2.2 with ϕ = u, we find a control η ∈ Θ(h, u0) ∩C∞(JT , E)
such that

‖RT (u0, h+ η)− u(T )‖k + ‖φR(u0,h+η)
T − φuT ‖C1 < ε.

Combining this with (2.5), we get the required result.

2.2 Examples of saturating spaces

In this section, we provide three types of examples of saturating spaces which
ensure the controllability of the 3D NS system in the sense of Definition 2.1.

2.2.1 Saturating spaces associated with the generators of Z3

Let us first introduce some notation. For any ` ∈ Z3
∗, let us define the functions

c`(x) = l(`) cos〈`, x〉, s`(x) = l(`) sin〈`, x〉, (2.6)

where {l(`), l(−`)} is an arbitrary orthonormal basis in

`⊥ := {x ∈ R3 : 〈x, `〉 = 0}.

Then c` and s` are eigenfunctions of L and the family {c`, s`}`∈Z3
∗

is an or-
thonormal basis in H. Let c0 = s0 = 0. For any subset K ⊂ Z3, we denote

E(K) := span{c`, c−`, s`, s−` : ` ∈ K}. (2.7)

When K is finite, the spaces Ej(K) and E∞(K) are defined by (2.4) with E =
E(K). We denote by Z3

K the set of all vectors a ∈ Z3 which can be represented
as finite linear combination of elements of K with integer coefficients. We shall
say that K ⊂ Z3 is a generator if Z3

K = Z3. The following theorem provides a

characterisation of saturating spaces of the form (2.7).

Theorem 2.6. For any finite set K ⊂ Z3, we have the equality

E(Z3
K) = E∞(K). (2.8)

Moreover, E(K) is saturating in H if and only if K is a generator of Z3. If E(K)
is saturating in H, then it is saturating in Hk

σ for any k ≥ 0.

In [Rom04] a similar result is conjectured in the case of finite-dimensional
approximations of the 3D NS system and a proof is given for the saturating
property of E(K) when K = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}3. A 2D version of The-
orem 2.6 is established in [HM06]. In that case, the set K is a generator of Z2

containing at least two vectors with different Euclidian norms (the reader is
referred to the original paper for the exact statement). The proof in the 3D
case, as well as the statement of the result, differ essentially from the 2D case.

In view of Theorem 2.6, the following simple criterion is useful for construct-
ing saturating spaces (see Section 3.7 in [Jac85]).

3In that case one has dimE(K) = 12. In Proposition 2.14, we give an example of a
6-dimensional saturating space.
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Theorem 2.7. A set K ⊂ Z3 is a generator if and only if the greatest com-
mon divisor of the set {det(a, b, c) : a, b, c ∈ K} is 1, where det(a, b, c) is the
determinant of the matrix with rows a, b and c.

The proof of Theorem 2.6 is deduced from the following auxiliary result.

Proposition 2.8. Assume that W ⊂ Z3 is a finite set containing a linearly
independent family {p, q, r} ⊂ Z3. Then for any non-parallel vectors m,n ∈ W
we have Am±n,Bm±n ⊂ E5(W), where

A` := span{c`, c−`}, B` := span{s`, s−`}, ` ∈ Z3
∗.

Proof of Proposition 2.8. We shall confine ourselves to the proof of the inclu-
sion Am+n ⊂ E5(W). The other conclusions of the proposition are checked in
the same way.

Step 1. We shall write m ∦ n when the vectors m,n ∈ R3 are non-parallel.
For any m,n ∈ W such that m ∦ n, let us denote by d := d(m,n) one of the
two unit vectors belonging to m⊥ ∩ n⊥. Let us show that

d cos〈m± n, x〉, d sin〈m± n, x〉 ∈ E1(W). (2.9)

Indeed, for any a ∈ R3
∗, let us denote by Pa the orthogonal projection in R3

onto a⊥. Then we have

Π(a cos〈l, x〉) = (Pla) cos〈l, x〉, Π(a sin〈l, x〉) = (Pla) sin〈l, x〉

for any l ∈ Z3
∗. Combining this with some trigonometric identities and the

definition of B, one gets that

2B(a cos〈m,x〉+ b sin〈n, x〉) = cos〈m− n, x〉Pm−n (〈a, n〉b− 〈b,m〉a)

+ cos〈m+ n, x〉Pm+n (〈a, n〉b+ 〈b,m〉a) ,
(2.10)

for any a ∈ m⊥ and b ∈ n⊥ (see Step 1 of the proof of Proposition 2.8 in [Shi06]).
This implies that

2B(b cos〈n, x〉+ a sin〈m,x〉) = − cos〈m− n, x〉Pm−n (〈a, n〉b− 〈b,m〉a)

+ cos〈m+ n, x〉Pm+n (〈a, n〉b+ 〈b,m〉a) .
(2.11)

Taking the sum of (2.10) and (2.11), we obtain that

cos〈m+ n, x〉Pm+n (〈a, n〉b+ 〈b,m〉a) = B(a cos〈m,x〉+ b sin〈n, x〉)
+B(b cos〈n, x〉+ a sin〈m,x〉). (2.12)

Let us fix any λ ∈ R and choose in this equality a = d and 〈b,m〉 = λ. This
choice is possible since m ∦ n. Then we have

λd cos〈m+ n, x〉 = B(d cos〈m,x〉+ b sin〈n, x〉) +B(b cos〈m,x〉+ d sin〈n, x〉).
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Since λ ∈ R is arbitrary, from the definition of E1(W) we get that d cos〈m +
n, x〉 ∈ E1(W). To prove that d cos〈m − n, x〉 ∈ E1(W), it suffices to replace b
by −b in (2.11), take the sum of the resulting equality with (2.10):

cos〈m− n, x〉Pm−n (〈a, n〉b− 〈b,m〉a) = B(a cos〈m,x〉+ b sin〈n, x〉)
+B(−b cos〈n, x〉+ a sin〈m,x〉),

(2.13)

and choose a = d and 〈b,m〉 = −λ

λd cos〈m− n, x〉 = B(d cos〈m,x〉+ b sin〈n, x〉) +B(−b cos〈n, x〉+ d sin〈n, x〉).

The fact that d sin〈m ± n, x〉 ∈ E1(W) is proved in a similar way using the
following identities

2B(a cos〈m,x〉+ b cos〈n, x〉) = sin〈m− n, x〉Pm−n (〈a, n〉b− 〈b,m〉a)

− sin〈m+ n, x〉Pm+n (〈a, n〉b+ 〈b,m〉a) ,

2B(a sin〈m,x〉+ b sin〈n, x〉) = sin〈m− n, x〉Pm−n (〈a, n〉b− 〈b,m〉a)

+ sin〈m+ n, x〉Pm+n (〈a, n〉b+ 〈b,m〉a) .

Step 2. Let us take any vector r ∈ W such that E := {m,n, r} is a basis
in R3 (E is not necessarily a generator of Z3). This choice is possible, by the
conditions of the proposition. For any α, β, γ ∈ R, we shall write (α, j, k)E
instead of αm+ βn+ γr. Since

(1, 1, 0)E = (1, 0, 0)E + (0, 1, 0)E = m+ n,

we get from Step 1 that

d(m,n) cos〈(1, 1, 0)E , x〉 ∈ E1(W).

Applying (2.12), we obtain for any b ∈ (0, 0, 1)⊥E

cos〈(1, 1, 1)E , x〉P(1,1,1)E (〈d(m,n), (0, 0, 1)E〉b+ 〈b, (1, 1, 0)E〉d(m,n))

= B(d(m,n) cos〈(1, 1, 0)E , x〉+ b sin〈(0, 0, 1)E , x〉)
+B(b cos〈(0, 0, 1)E , x〉+ d(m,n) sin〈(1, 1, 0)E , x〉) ∈ E2(W). (2.14)

Let us define the set

G := {〈d(m,n), (0, 0, 1)E〉b+ 〈b, (1, 1, 0)E〉d(m,n) : b ∈ (0, 0, 1)⊥E }.

Since 〈d(m,n), (0, 0, 1)E〉 6= 0, G is a two-dimensional subspace of R3 contained
in (1, 1,−1)⊥E . This shows that G = (1, 1,−1)⊥E . Let us assume that

(1, 1, 1)E /∈ (1, 1,−1)⊥E . (2.15)

This assumption implies that the orthogonal projection P(1,1,1)EG coincides with

(1, 1, 1)⊥E and proves that A(1,1,1)E ⊂ E2(W). Similarly, one can show that
B(1,1,1)E ⊂ E2(W). Finally, writing

(1, 1, 0)E = (1, 1, 1)E − (0, 0, 1)E
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and applying the result of Step 1 to the set W1 := W ∪ {(1, 1, 1)E , (0, 0, 1)E},
we see that

d((1, 1, 1)E , (0, 0, 1)E) cos〈(1, 1, 0)E , x〉 ∈ E1(W1) = F(E(W1))

⊂ F(E2(W)) = E3(W).

Since d((1, 1, 1)E , (0, 0, 1)E) ∦ d(m,n), we get that Am+n ⊂ E3(W), under con-
dition (2.15).

The same proof gives the result if at least one of the following conditions is
satisfied: (1, 1, 1)E /∈ (1,−1, 1)⊥E , (1, 1, 1)E /∈ (−1, 1, 1)⊥E .

Step 3. Let us assume now that

(1, 1, 1)E ∈ (1, 1,−1)⊥E , (1, 1, 1)E ∈ (1,−1, 1)⊥E , (1, 1, 1)E ∈ (−1, 1, 1)⊥E .
(2.16)

Then (1, 1, 1)E ∈ (1, 1,−1)⊥E = G, hence the projection P(1,1,1)EG is a one-
dimensional subspace of G. Let f ∈ P(1,1,1)EG be a unit vector. From the
definition of G it follows that

f /∈ (0, 0, 1)⊥E . (2.17)

By (2.14),
f cos〈(1, 1, 1)E , x〉 ∈ E2(W).

In the same way, one proves that

f sin〈(1, 1, 1)E , x〉 ∈ E2(W).

Now applying (2.13), we obtain for any b ∈ (0, 0, 1)⊥E

cos〈(1, 1, 0)E , x〉P(1,1,0)E (〈f, (0, 0, 1)E〉b− 〈b, (1, 1, 1)E〉f)

= B(f cos〈(1, 1, 1)E , x〉+ b sin〈(0, 0, 1)E , x〉)
+B(−b cos〈(0, 0, 1)E , x〉+ f sin〈(1, 1, 1)E , x〉) ∈ E3(W). (2.18)

Since we have (2.17), the set

G̃ := {〈f, (0, 0, 1)E〉b− 〈b, (1, 1, 1)E〉f : b ∈ (0, 0, 1)⊥E }

is a two-dimensional subspace of R3 contained in (1, 1, 2)⊥E . This shows that
G̃ = (1, 1, 2)⊥E . Let us assume that

(1, 1, 0)E /∈ (1, 1, 2)⊥E . (2.19)

Then the orthogonal projection P(1,1,0)E G̃ coincides with (1, 1, 0)⊥E , and we get
that A(1,1,0)E ,B(1,1,0)E ⊂ E3(W).

By symmetry, if (1, 0, 1)E /∈ (1, 2, 1)⊥E , then A(1,0,1)E ,B(1,0,1)E ⊂ E3(W).
Then by Step 1,

d((1, 0, 1)E , (0, 1, 0)E) cos〈(1, 1, 1)E , x〉 ∈ E4(W).
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It is easy to verify that d((1, 0, 1)E , (0, 1, 0)E) /∈ G, thus A(1,1,1)E ⊂ E4(W) and
B(1,1,1)E ⊂ E4(W). From the arguments of the last part of Step 2 it follows now

that Am+n ⊂ E5(W). The case (0, 1, 1)E /∈ (2, 1, 1)⊥E is similar.

Step 4. It remains to consider the case when (2.15) holds and

(1, 1, 0)E ∈ (1, 1, 2)⊥E , (1, 0, 1)E ∈ (1, 2, 1)⊥E , (0, 1, 1)E ∈ (2, 1, 1)⊥E . (2.20)

In fact (2.16) and (2.20) are incompatible. Indeed, (2.20) and (2.16) are equiv-
alent to, respectively,

‖m+n‖2+2〈m+n, r〉 = 0, ‖m+r‖2+2〈m+r, n〉 = 0, ‖r+n‖2+2〈r+n,m〉 = 0,
(2.21)

‖m+ n‖ = ‖r‖, ‖m+ r‖ = ‖n‖, ‖r + n‖ = ‖m‖. (2.22)

Taking the sum of the three equalities in (2.21) and using (2.22), we get

‖m‖2 + ‖n‖2 + ‖r‖2 + 4(〈m,n〉+ 〈m, r〉+ 〈r, n〉) = 0. (2.23)

On the other hand, (2.22) is equivalent to

‖m‖2 + 2〈m,n〉+ ‖n‖2 = ‖r‖2, ‖m‖2 + 2〈m, r〉+ ‖r‖2 = ‖n‖2,
‖r‖2 + 2〈r, n〉+ ‖n‖2 = ‖m‖2.

Summing these equalities, we obtain

‖m‖2 + ‖n‖2 + ‖r‖2 + 2(〈m,n〉+ 〈m, r〉+ 〈r, n〉) = 0.

Comparing this with (2.23), we see that

〈m,n〉+ 〈m, r〉+ 〈r, n〉 = 0.

Again using (2.23), we get m = n = r = 0, which is a contradiction. This
completes the proof of Proposition 2.8.

Proof of Theorem 2.6. Step 1. Let us show that

E(Z3
K) ⊂ E∞(K). (2.24)

To this end, we introduce the sets

K0 := K, Kj = Kj−1 ∪ {m± n : m,n ∈ Kj−1,m ∦ n}, j ≥ 1.

From Proposition 2.8 it follows that

E(Kj) ⊂ E5(Kj−1) = F5(E(Kj−1)) ⊂ F10(E(Kj−2)) ⊂ . . . ⊂ F5j(E(K))

= E5j(K). (2.25)

On the other hand, since K is a generator of Z3
K, one easily checks that ∪∞j=1Kj =

Z3
K. Combining this with (2.25), we get (2.24).
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Step 2. Now let us prove that

E∞(K) ⊂ E(Z3
K). (2.26)

For any η1 ∈ E1(Kj−1) and j ≥ 1, there are vectors η, ζ1, . . . , ζp ∈ E(Kj−1)
satisfying the relation

η1 = η −
p∑
i=1

B(ζi).

Here we use the following simple lemma.

Lemma 2.9. For any j ≥ 1, we have

{B(ζ) : ζ ∈ E(Kj−1)} ⊂ E(Kj).

This lemma implies that

E1(Kj−1) ⊂ E(Kj).

Iterating this, we get
Ej(K) ⊂ E(Kj),

hence

E∞(K) =

∞⋃
j=1

Ej(K) ⊂
∞⋃
j=1

E(Kj) ⊂ E

 ∞⋃
j=1

Kj

 = E(Z3
K).

This proves (2.26) and (2.8).

Step 3. If K is a generator of Z3, then (2.8) implies that E(K) is saturating
in Hk

σ for any k ≥ 0.

Now let us assume that K is not a generator of Z3, i.e., there is ` ∈ Z3 such
that ` /∈ Z3

K. Then it follows from (2.8) that c` is orthogonal to E∞(K) in H.
This shows that E(K) is not saturating in H and completes the proof of the
theorem.

Proof of Lemma 2.9. For any ζ ∈ E(Kj−1), we have

ζ =
∑

`∈±Kj−1

(a`c` + b`s`)

for some a`, b` ∈ R. It follows that

B(ζ) =
∑

m,n∈±Kj−1

(amanB(cm, cn) + bmbnB(sm, sn)

+ ambnB(cm, sn) + bmanB(sm, cn)).

Using some trigonometric identities, it is easy to verify that

B(cm, cn) ∈ span{sm+n, sm−n} ⊂ E(Kj).

In a similar way, one gets B(sm, sn), B(cm, sn), B(sm, cn) ∈ E(Kj).
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For any finite set K ⊂ Z3 and k ≥ 3, let us define the space

Hk
σ,K := E∞(K)

Hk

.

From the structure of the nonlinearity it follows that Hk
σ,K is invariant for (2.1)

when h, η ∈ L2(JT , H
k−1
σ,K ). Moreover, Hk

σ,K = Hk
σ if and only if K is a generator

of Z3. As a corollary we get the following characterisation of the controllability
in Hk

σ .

Theorem 2.10. Let K ⊂ Z3 be a finite set and h ∈ L2(JT , H
k−1
σ,K ). Then

equation (2.1) with η ∈ C∞(JT , E(K)) is controllable in the space Hk
σ at time

T if and only if K is a generator of Z3.

It is also interesting to study the controllability properties of the NS system
when E(K) given by (2.7) is not saturating (i.e., K is not a generator of Z3). Let
us note that the space E(K) is saturating in Hk

σ,K for any K ⊂ Z3 and k ≥ 0 (in

the sense that E∞(K) is dense in Hk
σ,K). We have the following refined version

of Theorem 2.2.

Theorem 2.11. For any non-empty finite K ⊂ Z3 and h ∈ L2(JT , H
k−1
σ,K ),

equation (2.1) with η ∈ C∞(JT , E(K)) is controllable in the space Hk
σ,K at

time T , i.e., for any ε > 0 and any

ϕ ∈ C(JT , H
k
σ,K) ∩ L2(JT , H

k+1
σ,K ) ∩W 1,2(JT , H

k−1
σ,K )

there is a control η ∈ Θ(h, u0) ∩ C∞(JT , E(K)) such that

‖RT (u0, h+η)−ϕ(T )‖k+|||R(u0, h+ η)−ϕ|||T,k+‖φR(u0,h+η)−φϕ‖L∞(JT ,C1) < ε,

where u0 = ϕ(0).

The proof of this result literally repeats the arguments of the proof of The-
orem 2.2, so we omit the details.

2.2.2 Controls with two vanishing components

In this section, we consider the NS system

u̇− ν∆u+ 〈u,∇〉u+∇p = h(t, x) + (0, 0, 1)η(t, x), div u = 0, (2.27)

u(0) = u0, (2.28)

where η is a control taking values in a finite-dimensional space of the form

H(K) := span{cos〈m,x〉, sin〈m,x〉 : m ∈ K},

where K is a subset of Z3, and h is a given smooth divergence-free function. Let
us rewrite (2.27) in an equivalent form

u̇− ν∆u+B(u) = h(t, x) + η̃(t, x), (2.29)
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where η̃ := Π(eη) and e := (0, 0, 1). Then the control η̃ takes values in the space

Ẽ(K) := span{(Pme) cos〈m,x〉, (Pme) sin〈m,x〉 : m ∈ K}. (2.30)

For an appropriate choice of K, this space is saturating.

Proposition 2.12. Let

K := {(1, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 1)}. (2.31)

Then Ẽ(K) is an 8-dimensional saturating space in Hk
σ for any k ≥ 0.

Combining this proposition with Theorem 2.2, we get immediately the fol-
lowing result.

Theorem 2.13. Let h ∈ L2(JT , H
k−1
σ ), k ≥ 3, and T > 0. If K is defined

by (2.31), then system (2.29) with η̃ ∈ C∞(JT , Ẽ(K)) is controllable at time T .

Proof. Step 1. Let us first show that A(0,0,1) ⊂ F(Ẽ(K)). Using (2.13), we get
for any λ ∈ R

λ(−1/2, 0, 0) cos〈(0, 0, 1), x〉
= B(λ(P(1,0,0)e) cos〈(1, 0, 0), x〉+ (P(1,0,1)e) sin〈(1, 0, 1), x〉)

+B(−(P(1,0,1)e) cos〈(1, 0, 1), x〉+ λ(P(1,0,0)e) sin〈(1, 0, 0), x〉),
λ(0,−1/2, 0) cos〈(0, 0, 1), x〉

= B(λ(P(0,1,0)e) cos〈(0, 1, 0), x〉+ (P(0,1,1)e) sin〈(0, 1, 1), x〉)
+B(−(P(0,1,1)e) cos〈(0, 1, 1), x〉+ λ(P(0,1,0)e) sin〈(0, 1, 0), x〉).

The definition of F implies that A(0,0,1) ⊂ F(Ẽ(K)). A similar computation

gives that B(0,0,1) ⊂ F(Ẽ(K)).

Step 2. Again using (2.13), we obtain for any b := (b1, b2, 0) ∈ R3

(0, b2/2,−b1/2) cos〈(1, 0, 0), x〉 = B((P(1,0,1)e) cos〈(1, 0, 1), x〉+ b sin〈(0, 0, 1), x〉)
+B(−b cos〈(0, 0, 1), x〉+ (P(1,0,1)e) sin〈(1, 0, 1), x〉) ∈ F2(Ẽ(K)).

This shows that A(1,0,0) ⊂ F2(Ẽ(K)). Similarly one proves also

B(1,0,0),A(0,1,0),B(0,1,0) ⊂ F2(Ẽ(K)).

Thus the result follows from the fact that {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is a gener-
ator of Z3.

2.2.3 6-dimensional exemple

The following result, combined with Theorem 2.2, shows that that the 3D NS
system can be controlled with η taking values in a 6-dimensional space.
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Proposition 2.14. Let us define the following 6-dimensional space

Ê := span{a cos〈(1, 0, 1), x〉, a sin〈(1, 0, 1), x〉,
e cos〈(0, 1, 1), x〉, e sin〈(0, 1, 1), x〉,
b cos〈(0, 0, 1), x〉, b sin〈(0, 0, 1), x〉}, (2.32)

where a := (1, 1, 1), b := (1, 0, 0), e := (0, 0, 1). Then Ê is saturating in Hk
σ for

any k ≥ 0.

Proof. Step 1. Let us first show that A(1,−1,0) ⊂ F2(Ê). Using (2.13), we get
for any λ ∈ R

λ(0,−1,−1) cos〈(1, 0, 0), x〉 = B(λa cos〈(1, 0, 1), x〉+ b sin〈(0, 0, 1), x〉)
+B(−b cos〈(0, 0, 1), x〉+ λa sin〈(1, 0, 1), x〉) ∈ F(Ê),

λ(1, 0, 0) cos〈(0, 1, 0), x〉 = B(λe cos〈(0, 1, 1), x〉+ b sin〈(0, 0, 1), x〉)
+B(−b cos〈(0, 0, 1), x〉+ λe sin〈(0, 1, 1), x〉) ∈ F(Ê)

and (0,−1,−1) sin〈(1, 0, 0), x〉, (1, 0, 0) sin〈(0, 1, 0), x〉 ∈ F(Ê), similarly. Writ-
ing

(1,−1, 0) = (1, 0, 0)− (0, 1, 0) = (1, 0, 1)− (0, 1, 1)

and applying (2.13), we see that

λ(0, 0, 1) cos〈(1,−1, 0), x〉 = B(λ(0,−1,−1) cos〈(1, 0, 0), x〉+ b sin〈(0, 1, 0), x〉)
+B(−b cos〈(0, 1, 0), x〉+ λ(0,−1,−1) sin〈(1, 0, 0), x〉) ∈ F2(Ê),

λ(−1,−1, 1) cos〈(1,−1, 0), x〉 = B(λa cos〈(1, 0, 1), x〉+ e sin〈(0, 1, 1), x〉)
+B(−e cos〈(0, 1, 1), x〉+ λa sin〈(1, 0, 1), x〉) ∈ F2(Ê).

This proves that A(1,−1,0) ⊂ F2(Ê). A similar computation establishes that

B(1,−1,0) ⊂ F2(Ê).

Step 2. Let us show that A(1,0,0),B(1,0,0) ⊂ F3(Ê). Taking any vector

f := (f1, f1, f2) ∈ (1,−1, 0)⊥, we apply (2.12)

(0, f1, f2) cos〈(1, 0, 0), x〉 = B(f cos〈(1,−1, 0), x〉+ b sin〈(0, 1, 0), x〉)
+B(b cos〈(0, 1, 0), x〉+ f sin〈(1,−1, 0), x〉) ∈ F3(Ê).

This proves that A(1,0,0) ⊂ F3(Ê), and B(1,0,0) ⊂ F3(Ê) is similar.

Step 3. Let us show that A(0,0,1). Again we shall prove only the first inclu-
sion. For any g := (0, g1, g2) ∈ R3, we apply (2.13)

(−g2, g1 − g2, 0) cos〈(0, 0, 1), x〉 = B(a cos〈(1, 0, 1), x〉+ g sin〈(1, 0, 0), x〉)
+B(−g cos〈(1, 0, 0), x〉+ a sin〈(1, 0, 1), x〉) ∈ F3(Ê).

This proves that A(0,0,1) ⊂ F4(Ê) and B(0,0,1) ⊂ F4(Ê) is similar. By The-
orem 2.7, we have that the family {(1, 0, 0), (0, 0, 1), (1,−1, 0)} is a generator
of Z3. Thus applying Theorem 2.6, we complete the proof.
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It would be interesting to get a characterisation of finite-dimensional satu-
rating spaces of the following general form

E(Kc,Ks, a, b) := span{am cos〈m,x〉; bn sin〈n, x〉 : m ∈ Kc, n ∈ Ks},

where Kc,Ks ⊂ Z3, a := {am}m∈Kc ⊂ R3
∗, and b := {bn}n∈Ks ⊂ R3

∗. From
the results of Subsection 2.2.1 it follows that both Kc and Ks are necessarily
generators of Z3.

3 Proof Theorem 2.5

The proof follows the arguments of [AS05, AS06], and [Shi06]. We consider the
following system

u̇+ L(u+ ζ) +B(u+ ζ) = h+ η (3.1)

with two E-valued controls η, ζ. We denote by Θ̂(u0, h) the set of (η, ζ) ∈
L2(JT , H

k−1
σ ) × L4(JT , H

k+1
σ ) for which problem (3.1), (0.2) has a solution

in XT,k. Theorem 2.5 is deduced from the following proposition which is proved
at the end of this section (cf. Proposition 3.2 in [Shi06]).

Proposition 3.1. For any η1 ∈ Θ(u0, h) ∩ L2(JT , E1), there is a sequence
(ηn, ζn) ∈ Θ̂(u0, h) ∩ C∞(JT , E × E) such that

‖R(u0, h+ η1)−R(u0, h+ ηn, ζn)‖L∞(JT ,Hk)+|||ζn|||T,k → 0 as n→∞, (3.2)

sup
n≥1

(‖R(u0, h+ ηn, ζn)‖XT,k+‖ζn‖L∞(JT ,Hk+1) + ‖ηn‖L2(JT ,Hk−1)) <∞. (3.3)

Proof of Theorem 2.5. Let us take any u0 ∈ Hk
σ and η1 ∈ Θ(h, u0)∩L2(JT , E1),

and let (ηn, ζn) ∈ Θ̂(u0, h) ∩ C∞(JT , E × E) be any sequence satisfying (3.2)

and (3.3). Let ζ̂n ∈ C∞(JT , E) be such that ζ̂n(0) = ζ̂n(T ) = 0 and

‖ζn − ζ̂n‖L4(JT ,Hk+1) → 0 as n→∞,

sup
n≥1
‖ζ̂n‖L∞(JT ,Hk+1) < +∞. (3.4)

By Theorem 1.3 and (3.3), for sufficiently large n ≥ 1, we have (ηn, ζ̂n) ∈
Θ̂(u0, h) and

‖R(u0, h+ ηn, ζn)−R(u0, h+ ηn, ζ̂n)‖XT,k → 0 as n→∞. (3.5)

Notice that

Rt(u0, h+ ηn, ζ̂n) = Rt(u0, h+ η̂n)− ζ̂n(t) for t ∈ JT , (3.6)

RT (u0, h+ ηn, ζ̂n) = RT (u0, h+ η̂n),
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where η̂n := η +
˙̂
ζn. Thus (3.5) implies that

‖RT (u0, h+ η1)−RT (u0, h+ η̂n)‖k → 0 as n→∞.

Using (3.2), (3.5), (3.6), and the fact that

|||ζ̂n|||T,k → 0 as n→∞, (3.7)

we obtain

|||R(u0, h+ η1)−R(u0, h+ η̂n)|||T,k
≤ T‖R(u0, h+ η1)−R(u0, h+ ηn, ζn)‖L∞(JT ,Hk)

+ T‖R(u0, h+ ηn, ζn)−R(u0, h+ ηn, ζ̂n)‖XT,k
+|||R(u0, h+ ηn, ζ̂n)−R(u0, h+ η̂n)|||T,k
→ 0 as n→∞.

Combining this with the embedding H3 ⊂ C1,1/2, (3.3), (3.6), and applying
Lemma 1.1 with λ = 1/2, we get that

‖φR(u0,h+η1) − φR(u0,h+η̂n)‖L∞(JT ,C1) → 0 as n→∞.

This completes the proof of Theorem 2.5.

Proof of Proposition 3.1. Step 1. Without loss of generality, we can assume that
η1 ∈ Θ(u0, h) ∩ E1 is constant. Indeed, the general case is then obtained by
approximating with piecewise constant controls and successive applications of
the result on the intervals of constancy.

By the definition of F(E), for any η1 ∈ E1, there are vectors ξ1, . . . , ξn, η ∈ E
such that

η1 = η −
n∑
i=1

B(ξi).

Choosing m = 2n and

ζi := −ζi+n :=
1√
2
ξi, i = 1, . . . , n,

it is easy to see that

B(u)− η1 =
1

m

m∑
j=1

(
B(u+ ζj) + Lζj

)
− η for any u ∈ H1

σ. (3.8)

Then u1 := R(u0, h+ η1) ∈ XT,k satisfies the following equation

u̇1 + Lu1 +
1

m

m∑
j=1

(
B(u+ ζj) + Lζj

)
= h(t) + η. (3.9)
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Let us define ζn(t) = ζ(ntT ), where ζ(t) is a 1-periodic function such that

ζ(s) = ζj for s ∈ [(j − 1)/m, j/m) , j = 1, . . . ,m.

Equation (3.9) is equivalent to

u̇1 + L(u1 + ζn) +B(u1 + ζn) = h(t) + η + fn(t),

where

fn(t) :=Lζn +B(u1 + ζn)− 1

m

m∑
j=1

(
B(u1 + ζj) + Lζj

)
. (3.10)

For any f ∈ L2(JT , H), let us set

Kf(t) =

∫ t

0

e−(t−s)Lf(s)ds.

It is easy to check that

K is continuous from L2(JT , H
p−1
σ ) to XT,p for any p ≥ 1, (3.11)

and vn = u1 −Kfn is a solution of the problem

v̇n + L(vn + ζn) +B(vn + ζn +Kfn) = h(t) + η, (3.12)

vn = u0.

Step 2. Let us show that

‖Kfn‖L∞(JT ,Hk) → 0 as n→∞. (3.13)

Indeed, the definition of ζn gives that

sup
n≥1
‖ζn‖L∞(JT ,Hk+1) <∞. (3.14)

Combining this with (3.10), (1.14), and the fact that u1 ∈ XT,k, we get

sup
n≥1
‖fn‖L∞(JT ,Hk−1) <∞. (3.15)

This implies that

sup
n≥1
‖Kfn‖L∞(JT ,H

k+1/2
σ )

≤ C sup
n≥1,t∈[0,T ]

∫ t

0

‖L3/4e−(t−s)L‖L(H)‖fn(s)‖k−1ds

≤ C1 sup
n≥1,t∈[0,T ]

∫ t

0

(t− s)−3/4‖fn(s)‖k−1ds

≤ C2 sup
n≥1
‖fn‖L∞(JT ,Hk−1) <∞, (3.16)
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where we used the inequality

‖Lre−tL‖L(H) ≤ C3t
−r for any r ≥ 0, t > 0.

In Step 4 of the proof of Proposition 3.2 in [Shi06], it is established that

‖Kfn‖L∞(JT ,H1) → 0.

Using this with (3.16) and an interpolation inequality, we get (3.13). Combining
(3.11) with (3.15), we obtain also that

sup
n≥1
‖Kfn‖XT,k <∞. (3.17)

Step 3. Equation (3.12) can be rewritten as

v̇n + L(vn + ζn) +B(vn + ζn) = h(t) + η + gn(t), (3.18)

where

gn(t) := −(B(vn + ζn,Kfn) +B(Kfn, vn + ζn) +B(Kfn)).

From (3.13), (3.3), and (1.14) it is easy to deduce that ‖gn‖L2(JT ,Hk−1) → 0
as n→∞. From (3.17) it follows that

sup
n≥1
‖vn‖XT,k <∞.

Therefore, by Theorem 1.3 and (3.14), we have (η, ζn) ∈ Θ̂(u0, h) for sufficiently
large n ≥ 1 and

‖R(u0, ζn, η)− vn‖XT,k → 0 as n→∞.

On the other hand, by (3.13),

‖vn − u1‖L∞(JT ,Hk) → 0 as n→∞,

whence

‖R(u0, ζn, η)− u1‖L∞(JT ,Hk) → 0 as n→∞,
sup
n≥1
‖R(u0, ζn, η)‖XT,k < +∞.

Step 4. Let us show that

|||ζn|||T,k → 0 as n→∞. (3.19)

We set Lζn(t) :=
∫ t
0
ζn(s)ds. It suffices to check that

(i) the sequence Lζn is relatively compact in C(JT , H
k
σ).
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(ii) for any t ∈ JT , Lζn(t)→ 0 in Hk
σ as n→∞.

To prove the first assertion, we use the Arzelà–Ascoli theorem. The functions ζn
are piecewise constant and the set ζn(t), t ∈ JT is contained in a finite subset
of Hk+1

σ not depending on n. This implies that there is a compact set F ⊂ Hk+1
σ

such that
Lζn(t) ∈ F for all t ∈ JT , n ≥ 1.

From (3.3) it follows that the sequence Lζn is uniformly equicontinuous on JT .
Thus, by the Arzelà–Ascoli theorem, Lζn is relatively compact in C(JT , H

k
σ).

Let us prove (ii). Let t = tl + τ , where tl = lT
n , l ∈ N and τ ∈ [0, Tn ). In

view of the construction of ζn, we have that Lζn(lT/n) = 0. Combining this
with (3.3), we get

Lζn(t) =

∫ t

lT
n

ζn(s)ds→ 0,

which completes the proof of (3.19).

Finally, taking an arbitrary sequence ζ̂n ∈ C∞(JT , E) such that

‖ζn − ζ̂n‖L∞(JT ,E) → 0 as n→∞,

and using Theorem 1.3, we see that the conclusions of Proposition 3.1 hold for
the sequence (η, ζ̂n) ∈ C∞(JT , E × E).
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Linéaire 24 (2007), no. 4, 521–537.

[Shi13] A. Shirikyan, Approximate controllability of the viscous Burgers equa-
tion on the real line, Preprint (2013).

[Shn85] A. I. Shnirel′man, The geometry of the group of diffeomorphisms
and the dynamics of an ideal incompressible fluid, Mat. Sb. (N.S.)
128(170) (1985), no. 1, 82–109.

[Tay97] M. E. Taylor, Partial Differential Equations. I–III, Springer-Verlag,
New York, 1996-97.

30


	Introduction
	Preliminaries
	Particle trajectories
	Existence of strong solutions 

	Main results
	Approximate controllability of the NS system
	Examples of saturating spaces
	Saturating spaces associated with the generators of Z3
	Controls with two vanishing components
	6-dimensional exemple


	Proof Theorem 2.5
	Bibliography

