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Abstract

We study the problem of exponential mixing and large deviations for

discrete-time Markov processes associated with a class of random dynam-

ical systems. Under some dissipativity and regularisation hypotheses for

the underlying deterministic dynamics and a non-degeneracy condition

for the driving random force, we discuss the existence and uniqueness of

a stationary measure and its exponential stability in the Kantorovich–

Wasserstein metric. We next turn to the large deviation principle and

establish its validity for the occupation measures of the Markov processes

in question. The obtained results extend those established in [JNPS12]

for the case of the bounded noise and can be applied to the 2D Navier–

Stokes system in a bounded domain and to the complex Ginzburg–Landau

equation.
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0 Introduction

The goal of the present paper is to study the problem of large deviations from a
stationary distribution for a class of PDE’s perturbed by a smooth random force.
This question was already investigated by the authors in [JNPS12] for PDE’s
with bounded perturbations in which case the validity of the large deviation
principle (LDP) was established for initial data belonging to the support of the
unique stationary measure. In this paper, we extend that result to the situation
in which the random noise is unbounded. Let us mention straightaway that,
as is well known from the case of a locally compact phase space (e.g., see the
discussion in the introduction of [DV76]), the generalisation of the LDP to the
unbounded case involves some new phenomena, and the mere verification of
exponential tightness is far from being su�cient.

To describe the main result of this paper, we consider a bounded domain
D ⇢ R2 with C2-smooth boundary @D and the Navier–Stokes system in D
supplemented with the Dirichlet boundary condition:

u̇ + hu,riu� ⌫�u +rp = h(x) + ⌘(t, x), div u = 0, u
��
@D

= 0. (0.1)
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Here u = (u
1

, u
2

) and p are unknown velocity field and pressure of the fluid,

hu,ri = u
1

@
1

+ u
2

@
2

, � = @2

1

+ @2

2

,

and h and ⌘ are deterministic and random external forces, respectively. Let us
introduce the phase space

H =
�
u 2 L2(D, R2) : div u = 0 in D, hu,ni = 0 on @D

 
, (0.2)

where n stands for the outward unit normal vector to @D, and endow it with
the usual L2 norm. We assume that h 2 H and that ⌘ is a kick process of the
form

⌘(t, x) =
1X

k=1

⌘k(x)�(t� k), (0.3)

where �(t) stands for the Dirac measure on R concentrated at zero and {⌘k}
is a sequence of i.i.d. random variables in H. Problem (0.1), (0.3) generates a
discrete-time Markov process in H. Namely, for any u

0

2 H, there is a unique
solution u(t, x) for (0.1), (0.3) that is right-continuous in time and satisfies the
initial condition

u(0, x) = u
0

(x), (0.4)

and the restrictions of all solutions to the non-negative integers Z
+

form a
discrete-time Markov process, which will be denoted by (uk, Pu). The ergodic
properties of this process are by now well understood; see [FM95, KS00, EMS01,
BKL02] for the first results on the ergodic behaviour of the random flow gen-
erated by (0.1) and the book [KS12] for further references. In particular, there
is a unique stationary distribution µ, which attracts exponentially fast all other
trajectories, and the strong law of large numbers holds for a broad class of
Hölder-continuous functionals f : H ! R which may grow at infinity. The
latter means that

Pu

⇢
1
k

k�1X

n=0

f(un) ! hf, µi
�

= 1 for any u 2 H,

where hf, µi denotes the integral over H of the function f with respect to µ.
Now let P(H) be the set of all probability measures on H. Our aim is to study
the asymptotic behaviour, as k !1, of the probabilities

 k(�, f,�) := P�

⇢
1
k

k�1X

n=0

f(un) 2 hf, µi+ �
�

, � 2 P(H),

where P� stands for the probability law corresponding to the initial distribu-
tion �, and � ⇢ R is a Borel subset. The following theorem, which is a particular
case of the main result of this paper, gives a complete description of the large-
time behaviour of  k(�, f,�) on the logarithmic scale and establishes the level-1
LDP for the Markov process (uk, Pu). We refer the reader to Section 1.3 for
more general results in an abstract setting and to Section 2 for their application
to the 2D Navier–Stokes system and the complex Ginzburg–Landau equation.
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Main Theorem. Let us assume that the i.i.d. random variables ⌘k are dis-

tributed according to a non-degenerate Gaussian law on H concentrated on the

Sobolev space of order 2 and let f : H ! R be a continuous function that is

bounded on balls of H and is such that

|f(v)|
kvk2 ! 0 as kvk ! 1. (0.5)

Then there is a function If : R ! [0,+1] with compact level sets such that, for

any initial measure � 2 P(H) satisfying the condition

Z

H

e�kvk2�(dv) < 1 for some � > 0, (0.6)

we have

� inf
y2 ˙

�

If (y)  lim inf
k!1

1
k

log k(�, f,�)  lim sup
k!1

1
k

log k(�, f,�)  � inf
y2�

If (y),

(0.7)
where � ⇢ R is an arbitrary Borel set, and �̇ (respectively, �) stands for its in-

terior (closure) in H. In particular, inequalities (0.7) are true for the stationary

solution, as well as for solutions issued from any deterministic point v 2 H.

Let us emphasise that the Gaussian structure of the noise does not play any
role, and the result remains valid for a large class of decomposable measures
(see Condition (C) in Section 1.1). Moreover, the LDP holds also for occupation
measures of solutions (level-2) and of full trajectories (level-3).

Before presenting the main ideas of the proof of the above theorem, we
briefly mention some earlier results related to the present work. The theory of
large deviations from a stationary measure for Markov processes was initiated by
Donsker and Varadhan [DV75, DV76], who carried out a comprehensive study of
the problem for strong Feller processes with a compact and later a general phase
space. Their results were developed and extended by many others; e.g., see the
papers [dA90, Jai90, BDT95, Wu00] and the references in [DS89]. These works
concern the case in which the Markov process in question possesses the strong
Feller property. In the context of randomly forced PDE’s, the problem of large
deviation from a stationary measure was studied in [Gou07b, Gou07a, JNPS14]
for various types of rough noise and in [JNPS12] for a smooth kick noise. The
present work continues the investigation started in the latter paper and extends
its result to the case of unbounded perturbations.

We now discuss some ideas of the proof and describe the main novelty of
this paper. As in the case of a bounded perturbation, the proofs are based on
Ki↵er’s criterion [Kif90] and the key points are the existence of the pressure
function and the uniqueness of equilibrium state. These two properties are
closely related to the large-time asymptotics of a generalised Markov semigroup
PV

k : Cb(H) ! Cb(H) defined by

(PV
k f)(u) = lim

k!1

1
k

log Eu

�
exp

�
V (u

1

) + · · ·+ V (uk)
�
f(uk)

 
, f 2 Cb(H),

(0.8)
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where Cb(H) stands for the space of bounded continuous real-valued functions
on H, Eu denotes the mean value corresponding to the trajectory issued from u,
and V 2 Cb(H) is an arbitrary function. In the case when the random vari-
ables ⌘k are bounded, it was proved in [JNPS12] that a su�cient condition for
the existence and stability of a maximal eigenvector for {Pk} is given by the
uniform irreducibility and uniform Feller properties (introduced in [KS00]). In
the Markovian situation, stratified versions of these properties are also su�-
cient; see [KS01]. The situation is di↵erent in the case of (0.8), for which one
needs to require in addition the following growth condition (which seems to be
new in this context): there is an integer m � 1 and positive numbers R

0

and C
such that

sup
u2H

�
wm(u)�1(PV

k wm)(u)
  C sup

kukR0

(PV
k 1)(u) for all k � 0, (0.9)

where 1 is the function identically equal to 1 and wm(u) = (1 + kuk)m. The
verification of this and uniform Feller properties are the key points of this work.
They are based on the hyper-exponential recurrence and a coupling argument,
respectively. We refer the reader to Section 1.4 for more details on the proof of
our main result.

The paper is organised as follows. In Section 1, we describe the abstract
model we deal with, formulate our main result in full generality, and outline
its proof. Applications of the main theorem to concrete examples of randomly
forced PDE’s are discussed in Section 2. In Sections 3 and 4, we present two
auxiliary results. The first of them is an extension of Kifer’s criterion to an
unbounded phase space, and the second is a general result on large-time asymp-
totics of generalised Markov semigroups. The details of the proof of the main
result are given in Sections 5–6, and the appendix gathers some auxiliary asser-
tions used in the main text.
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Notation

Given a Polish space X, we denote by BX(a, R) (respectively, B̊X(a, R)) the
closed (open) ball in X of radius R centred at a. In the case when X is a Banach
space and a = 0, we write BX(R) (respectively, B̊X(R)). We denote by �a
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the Dirac mass concentrated at the point a and by D(⇠) the law of a random
variable ⇠. Given a function V : X ! R, we write OscX(V ) = supX V �
infX V . We denote by Z

+

(respectively, Z�) the set of non-negative (non-
positive) integers and by R

+

be the set of non-negative real numbers.
Let J ⇢ R be a closed interval and D ⇢ Rd be a domain. We shall use the

following spaces:
L1(X) is the space of bounded measurable functions f : X ! R endowed with
the norm kfk1 = supX |f |.
Cb(X) is the space of continuous functions f 2 L1(X).
C(X) is the space of continuous functions f : X ! R. C

+

(X) is the set of
non-negative functions in C(X).
M

+

(X) is the cone of non-negative finite measures on the space X endowed
with the Borel �-algebra B(X). For µ 2 M

+

(X) and an integrable function
f : X ! R we set

hf, µi =
Z

X

f(u)µ(du), |f |µ =
Z

X

|f(u)|µ(du).

P(X) is the set of probability Borel measures on X. We endow it with the
Kantorovich–Wasserstein metric denoted by k · k⇤L; e.g., see (1.14) in [KS12].
Hs(D) is the Sobolev space of order s � 0 on the domain D. We denote by k ·ks

the usual Sobolev norm. In the case s = 0, we write L2(D) and k·k, respectively.
The spaces of scalar and vector functions are denoted by the same symbol, and
we often write Hs and L2 when the context implies in which domains the spaces
are considered.
Hs

0

(D) is the closure in Hs(D) of the space of smooth functions with compact
support in D.
Ck

b (D) is the space of k times continuously di↵erentiable functions f : D ! R
that are bounded together with the derivatives of order  k. In the case k = 0,
we write Cb(D).
Lp(J,X) is the space of measurable functions f from J to a Banach space X
such that

kfkLp
(J,X)

=
✓Z

J

kf(t)kp
Xdt

◆
1/p

< 1.

The middle term should be replaced by ess supt2J kf(t)kX in the case p = 1.

1 Main results

In this section, we present the model studied in the paper and formulate our
results. We begin with the property of exponential mixing in the Kantorovich–
Wasserstein distance for a class of discrete-time Markov processes. This type of
results are by now well known in the literature for the case of the 2D Navier–
Stokes system, and Theorem 1.1 presented below is essentially a reformulation of
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earlier achievements in the abstract framework applicable to other PDE’s with
random perturbations. We next turn to our main result on large deviations from
the stationary distribution for the occupation measures. As a consequence, we
obtain the LDP for a class of observables with moderate growth at infinity.

1.1 Description of the model

Let H be a separable Hilbert space with a norm k · k and let S : H ! H be a
continuous mapping. We consider the random dynamical system

uk = S(uk�1

) + ⌘k, k � 1, (1.1)

where {⌘k, k � 1} is a sequence of i.i.d. random variables in H. Equation (1.1)
is supplemented with the initial condition

u
0

= u 2 H. (1.2)

We denote by (uk, Pu) the family of Markov processes associated with (1.1),
(1.2), by Pk(u,�) its transition function at time k, and by Pk : Cb(H) ! Cb(H)
and P⇤

k : P(H) ! P(H) the corresponding Markov semigroups. In what follows,
we assume that S satisfies the two conditions below.

(A) Dissipativity. There are positive numbers ↵, �, C, and q < 1 and a

continuous function � : H ! R
+

such that

1 + kuk↵  �(u)  C(1 + kuk)�
for u 2 H, (1.3)

�(S(u) + v)  q �(u) + C �(v) for u, v 2 H. (1.4)

The following hypothesis implies, in particular, that S is compact and gives
some quantitative information about the possibility of approximation of the
elements in the image of S by finite-dimensional subspaces.

(B) Compactness. There is a continuous function p : H ! R
+

bounded

on any ball, an increasing sequence {�N} ⇢ (0,+1) going to +1, and an

increasing sequence of finite-dimensional subspaces HN whose union is dense

in H such that H
0

= {0} and, for any u, v 2 H and N � 0, we have

��(I � PN )
�
S(u)� S(v)

���  ��1

N exp
�
p(u) + p(v)

 ku� vk, (1.5)

where I is the identity operator in H and PN : H ! H denotes the orthogonal

projection onto HN .

Let us note that if this condition is satisfied for one sequence {HN}, then it
holds for any other increasing sequence {H 0

N} of finite-dimensional subspaces,
and the function p entering (1.5) can be taken to be the same. Indeed, denoting
by P0N the orthogonal projection to H 0

N , we note that
��(I � P0N )PMw

��  "MNkwk for any w 2 H,
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where "MN ! 0 as N ! 1 for any fixed M . Setting w = S(u) � S(v) and
using inequality (1.5) with N = 0 and N = M , we derive

��(I � P0N )
�
S(u)� S(v)

���  ��(I � P0N )PMw
��+

��(I � P0N )(I � PM )w
��

 "MNkwk+
��(I � PM )w

��

 �
��1

0

"MN + ��1

M

�
exp

�
p(u) + p(v)

 ku� vk.
The factor in the brackets on the right-hand side of this inequality can be
made arbitrarily small by an appropriate choice of M and N . We thus obtain
inequality (1.5) with PN replaced by P0N and a di↵erent sequence {�N}.

We now formulate the hypothesis imposed on the random variables {⌘k}.
(C) Structure of the noise. The random variables ⌘k can be written as

⌘k =
1X

j=1

bj⇠jkej , (1.6)

where {ej} is an orthonormal basis in H, {⇠jk} are independent random vari-

ables whose laws possess C1

-smooth positive densities ⇢j against the Lebesgue

measure such that Var(⇢j)  1 for all j � 1, and {bj} ⇢ R
+

are numbers

satisfying the condition

B :=
1X

j=1

�j�1

|bj | < 1. (1.7)

Moreover, there is � > 0 such that

m�(L) :=
Z

H

e�(�(u)+p(u)) L(du) < 1, (1.8)

where L = D(⌘
1

).
Let us note that if Condition (C) is satisfied, then the random variables ⌘k

are concentrated on a space compactly embedded into H. Indeed, in view of
the remark following Condition (B), without loss of generality we can assume
that the subspace HN entering Condition (B) coincides with the vector span of
e
1

, . . . , eN , where {ej} is the orthonormal basis in (1.6). Define U ⇢ H as the
space of vectors u 2 H such that

kQNuk  C��1

N for any N � 0,

where QN = I�PN , and C > 0 is a number not depending on N . We endow U
with the norm

kukU = sup
N�0

�
�NkQNuk�. (1.9)

It is straightforward to check that U is a Banach space compactly embedded
into H and that kejkU = �j�1

for any j � 1. It follows from (1.8), (1.6),
and (1.7) that

Ek⌘kkU  CB. (1.10)
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We also note that if Condition (B) is satisfied for some sequence {�N}, then it
holds also for any other sequence of positive numbers {�0N} such that �0N  C�N

for some C > 0. Thus, condition (1.7) imposed on the sequence {bj} can be
relaxed to the following one: there is a sequence of positive numbers {�j} going
to +1 such that series (1.7) converges.

1.2 Exponential mixing

To formulate our result on exponential mixing, we shall need the concept of a
stabilisable functional. Let p : H ! R

+

be a continuous function. We shall
say that p is stabilisable for the Markov family (uk, Pu) if there is an increasing
continuous function Q : R

+

! R
+

and positive numbers c and � such that

Eu exp
�
�
�
p(u

1

) + · · ·+ p(uk)
�  Q(kuk)eck for k � 1, u 2 H. (1.11)

The following theorem is a generalisation of some earlier results on mixing prop-
erties of the Navier–Stokes system proved in [KS01, Shi04]; see also [FM95,
KS00, EMS01, BKL02, HM06] and the references in [KS12, Deb13] for other
related results.

Theorem 1.1. Let Conditions (A), (B), and (C) stated in Section 1.1 be ful-

filled. Assume, in addition, that S(0) 2 U , and the functional p entering (B) is

stabilisable, with a function Q satisfying the inequality

Q(kuk)  e⇢ �(u)

for all u 2 H, (1.12)

where ⇢ > 0 does not depend on u. Then there is an integer N � 1 such that the

Markov family (uk, Pu) associated with (1.1) has a unique stationary measure

µ 2 P(H), provided that

bj 6= 0 for j = 1, . . . , N. (1.13)

Moreover, there are positive constants � and C such that

kP⇤
k�� µk⇤L  C e��k

Z

H

�(u)�(du) for any � 2 P(H), k � 0. (1.14)

The proof of this result is an extension the scheme used in [Shi04] and
Chapter 3 of [KS12] for the case of the Navier–Stokes system perturbed by an
unbounded kick force to the abstract setting of this paper. This extension is
straightforward and we omit the details.

1.3 Large deviations

To formulate our result on LDP, we first recall some definitions from the theory
of large deviations. Let X be a Polish space and let {⇣k} be a sequence of
random probability measures on X defined on a measurable space (⌦,F). In
other words, for any k � 1, we are given a measurable mapping ⇣k : ⌦ ! P(X).

9



Recall that a mapping I : P(X) ! [0,+1] is called a rate function if it is
lower semicontinuous, and a rate function I is said to be good if the set {� 2
P(X) : I(�)  ↵} is compact for any ↵ 2 [0,+1). For a set � ⇢ P(X) we
write I(�) = inf�2�

I(�).

Definition 1.2. Suppose that a family of probability measures {P�,� 2 ⇤} is
given on the measurable space (⌦,F). We say that the sequence {⇣k} satisfies

the LDP with a good rate function I, uniformly with respect to � 2 ⇤, if the
following two properties hold.

Upper bound. For any closed subset F ⇢ P(X), we have

lim sup
k!1

1
k

log sup
�2⇤

P�{⇣k 2 F}  �I(F ).

Lower bound. For any open subset G ⇢ P(X), we have

lim inf
k!1

1
k

log inf
�2⇤

P�{⇣k 2 G} � �I(G).

We now turn to the Markov process (uk, Pu) associated with (1.1). Given a
probability measure � 2 P(H), we denote by P� the induced measure

P�(�) =
Z

X

Pu(�)�(du), � 2 F ,

on (⌦,F). For positive numbers � and M , let ⇤(�,M) be the set of measures
� 2 P(H) that satisfy the inequality

Z

H

e��(v)�(dv)  M.

For any integer ` � 1, we set u`
n = [un, . . . , un+`�1

] and consider the family of
occupation measures

⇣`
k =

1
k

k�1X

n=0

�u`
n
, k � 1, (1.15)

defined on the family of probability spaces (⌦,F , P�), where � 2 P(H). Thus,
for any �, relation (1.15) defines a sequence of random probability measures
on H`. Recall that the space U was introduced at the end of Section 1.1. The
following theorem is the main result of this paper.

Theorem 1.3. In addition to the hypotheses of Theorem 1.1, let us assume

the numbers bj are all non-zero. Then, for any � > 0 and M > 0, the se-

quence {⇣`
k, k � 1} defined on (⌦,F , P�) satisfies the LDP, uniformly with re-

spect to � 2 ⇤(�,M), with a good rate function I` : P(H`) ! [0,+1] not

depending on �. Moreover, I` is given by

I`(�) = sup
V 2Cb(H`

)

�hV,�i �Q`(V )
�
, � 2 P(H`),

where Q` : Cb(H`) ! R is a 1-Lipschitz convex function such that Q`(C) = C
for any C 2 R.
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The scheme of the proof of this theorem is outlined in Section 1.4, the de-
tails are presented in Sections 3–5, and applications to PDE’s with random
perturbation are discussed in Section 2. Here we derive two corollaries from
Theorem 1.3. The first of them concerns the LDP for the time averages of
unbounded functionals.

Corollary 1.4. Under the hypotheses of Theorem 1.3, let f : H` ! R be a

continuous functional bounded on any ball such that

|f(v1, . . . , v`)|
p(v1) + · · ·+ p(v`)

! 0 as kv1k+ · · ·+ kv`k ! 1. (1.16)

Then, for any � > 0 and M > 0, the P�-laws of the random variables

⇣`,f
k =

1
k

k�1X

n=0

f(u`
n), k � 1,

satisfy the LDP, uniformly with respect to � 2 ⇤(�,M), with a good rate func-

tion If
` : R ! [0,+1] not depending on �. Moreover, If

` is given by

If
` (�) = inf{I`(⌫) : ⌫ 2 P(H`), hf, ⌫i = �}, � 2 R,

where the infimum over an empty set is equal to +1.

We shall not give a proof of this corollary, because similar contraction-
principle-type results were established earlier in [Gou07a, JNPS14]. The only
di↵erence is that here we claim that the LDP holds uniformly with respect to
the initial measure �. However, the proofs in the above-mentioned works give
also the uniformity, provided that the LDP for the occupation measures holds
uniformly.

To formulate the second corollary, we denote by H = HZ+ the direct product
of countably many copies of H and, given a solution {uk} for (1.1), define the
occupation measure for full trajectories by the relation

⇣1k =
1
k

k�1X

n=0

�u1n , k � 1,

where we set u1n = [uk, k � n]. The following result is an immediate con-
sequence of Theorem 1.3 and the Dawson–Gärtner theorem (see Section 4.6
in [DZ00]). Its proof can be carried out in exactly the same way as for the case
of bounded kicks (see Section 1.5 in [JNPS12]).

Corollary 1.5. Let the conditions of Theorem 1.3 be fulfilled. Then, for any

� > 0 and M > 0, the family {⇣1k , k � 1} satisfies the LDP, uniformly in

� 2 ⇤(�,M), with a good rate function I : P(H) ! [0,+1] not depending

on �.

11



1.4 Scheme of the proof of Theorem 1.3

We begin with some definitions. Given a random dynamical system (RDS for
short) of the form (1.1) and an integer ` � 1, we define the Markov `-process
associated with (1.1) in the following way: the phase space is the direct product
of ` copies of H, and the time-1 transition function is given by

P `
1

(v ,�
1

⇥ · · ·⇥ �`) = �v2(�
1

) · · · �v`(�`�1

)P
1

(v`,�`), (1.17)

where v = [v1, . . . , v`] 2 H` and �j 2 B(H) for j = 1, . . . , `. In other words, the
Markov `-process associated with (1.1) is the Markov process corresponding to
the RDS in H` defined by

uk = S(uk�1

) + ⌘k, (1.18)

where uk = [u1

k, . . . , u`
k], ⌘k = [0, . . . , 0, ⌘k], and S : H` ! H` is the mapping

given by
S(v) =

⇥
v2, . . . , v`, S(v`)

⇤
, v = [v1, . . . , v`] 2 H`.

Let us note that if v 2 H and v 2 H` are such that v` = v, then the trajecto-
ries {uk} and {uk} = {[u1

k, . . . , u`
k]} of the RDS (1.1) and (1.18) issued from v

and v , respectively, satisfy the relation

uj
k = uk�`+j for k � `� j, 1  j  `. (1.19)

Denote by ⇣k the occupation measures for (1.18):

⇣k =
1
k

kX

n=1

�un , k � 1. (1.20)

Given � 2 P(H), we denote by �(`) 2 P(H`) the tensor product of `� 1 copies
of �

0

with �; that is, �(`) = �
0

⌦ · · ·⌦ �
0

⌦�. It is straightforward to check that,
for any � > 0 and M > 0, the random measures ⇣k and ⇣`

k corresponding to the
initial laws �(`) and �, respectively, are exponentially equivalent uniformly with
respect to � 2 ⇤(�,M) (cf. Lemma 6.2 in [JNPS12]). We shall thus study the
LDP for the occupation measures (1.20).

Given positive numbers � and M , we denote ⇤(�,M) the set of measures
� 2 P(H`) satisfying the condition

Z

H`

exp
�
�
�
�(v

1

) + · · ·+ �(v`)
� 
�(dv

1

, . . . ,dv`)  M.

Suppose we can prove the following two properties:

Property 1: Existence of a limit. For any V 2 Cb(H`) and � 2 ⇤(�,M),
the limit (called pressure function)

Q`(V ) = lim
k!+1

1
k

log E� exp
✓ kX

n=1

V (un)
◆

(1.21)

exists and does not depend on the initial measure. Moreover, this limit is
uniform with respect to � 2 ⇤(�,M) for any � > 0 and M > 0.

12



Property 2: Uniqueness of the equilibrium state. There is a vector space
V ⇢ Cb(H`) such that, for any compact set K ⇢ H`, the family of re-
strictions to K of the functions in V is dense in C(K), and for any V 2 V
there is at most one �V 2 P(H`) satisfying the relation

Q`(V ) = hV,�V i � I`(�V ), (1.22)

where I`(�) denotes the Legendre transform of Q`.

In this case, a generalisation of a result established by Kifer in the case of a
compact space shows that the LDP holds for {⇣k}, uniformly in � 2 ⇤(�,M),
provided that the RDS (1.18) possesses a property of exponential tightness; see
Theorem 3.3 for the exact formulation. We thus need to prove the above two
properties.

To this end, given a function V 2 Cb(H`), we introduce a generalised Markov
semigroup by the formula

PV
k f(u) := Euf(uk) exp

✓ kX

n=1

V (un)
◆

, f 2 Cb(H`), (1.23)

and denote by PV ⇤
k : M

+

(H`) !M
+

(H`) its dual semigroup. Under some hy-
potheses on the kernel, we describe the asymptotic behaviour of generalised
Markov semigroups in Theorem 4.1. We then construct explicitly a vector
space V ⇢ Cb(H`) such that the hypotheses of Theorem 4.1 are satisfied for {PV

k }
with any V 2 V. It follows that there is a function hV 2 C

+

(H`), a measure
µV 2 P(H`) and a number �V > 0 such that PV

1

hV = �V hV , and for any
R > 0, f 2 Cb(H`), and ⌫ 2 P(H`) we have

��k
V PV

k f ! hf, µV ihV in C(BH`(R)) as k !1, (1.24)

��k
V PV ⇤

k ⌫ ! hhV , ⌫iµV in M
+

(H`) as k !1. (1.25)

Taking f = 1 in (1.24), we obtain Property 1 for V 2 V and � = �u , and an
approximation argument enables one to prove it for any V 2 Cb(H`), uniformly
with respect to � 2 ⇤(�,M).

To establish Property 2, we first show that any equilibrium state �V is a
stationary measure for the following Markov semigroup:

S V
k g := ��k

V h�1

V PV
k (ghV ), g 2 Cb(H`). (1.26)

We then deduce the uniqueness of stationary measure for S V
k from conver-

gence (1.25), showing that �V (dv) = hV (v)µV (dv).
The key point in the above analysis is the proof of the uniform Feller property

(see Theorem 4.1). It is based on a coupling argument and is carried out in
Section 6. The other details of the proof of Theorem 1.3 are presented Section 5.
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2 Applications

In this section, we apply our main results to some concrete examples of PDE’s
with random perturbations. We shall confine ourselves to the 2D Navier–Stokes
system and the complex Ginzburg–Landau equation without nonlinear dissipa-
tion; however, the results apply equally well to other models, such as nonlinear
reaction-di↵usion system and the Ginzburg–Landau equation without linear dis-
persion; see [JNPS14, KN13].

2.1 Navier–Stokes system

Let us consider the 2D Navier–Stokes system in a bounded domain, subject to a
random kick force. After projecting it to the space H of divergence-free square
integrable vector fields with zero normal component (see (0.2)), we obtain the
evolution equation

u̇ + ⌫Lu + B(u) = h + ⌘(t). (2.1)

Here ⌫ > 0 is the viscosity, L = �⇧� is the Stokes operator, B(u) = ⇧(hu,riu)
stands for the bilinear term, ⇧ is the orthogonal projection in L2 onto the closed
subspace H, h 2 H is a deterministic function, and ⌘ is a random process of
the form (0.3), in which {⌘k} is a sequence of i.i.d. random variables in H. The
well-posedness of (2.1) is well known; e.g., see Section 6 in [Lio69, Chapter 1]
or Section 2.3 in [KS12]. Normalising the trajectories to be right-continuous
and setting uk = u(k, x), for any initial state u 2 H we obtain a sequence {uk}
satisfying (1.1).

We wish to prove that Theorems 1.1 and 1.3 are applicable1 to the Markov
process associated with (2.1). Let us denote by St : H ! H the nonlinear
semigroup generated by Eq. (2.1) with ⌘ ⌘ 0 and let S = S

1

.

Proposition 2.1. Conditions (A) and (B) stated in Section 1.1 are satisfied

for S with the following choice of parameters:

�(u) = 1 + kuk2, p(u) = C

Z
1

0

�kSt(u)k2
1

+ 1
�
dt,

�N = ↵
1/2

N+1

, HN = span{e
1

, . . . , eN},
where C is a positive number, k · k

1

stands for the H1

-norm, and {ej} is a

complete set of normalised eigenfunction for the Stokes operator, with a non-

decreasing order of the corresponding eigenvalues {↵j}. Moreover, S(0) belongs

to the space U defined after Condition (C), and if E exp({k⌘
1

k2) < 1 for some

{ > 0, then the functional p is stabilisable with a function Q satisfying (1.12).

Once this result is established, we can claim that the conclusions of The-
orem 1.1 and 1.3 are valid for the 2D Navier–Stokes system (2.1), provided
that the random variables ⌘k satisfy Condition (C) and all coe�cients bj are

1The fact that Theorem 1.1 holds for the Navier–Stokes system is well known; see Sec-
tion 3.4 in [KS12].
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nonzero.2 In particular, it is easy to check that those results are true if the
law of ⌘k is a non-degenerate Gaussian measure concentrated on the Sobolev
space of order 2. Furthermore, in view of Corollary 1.4 and the inequality
kuk2  C(p(u) + 1) which is true for any u 2 H (see Exercise 2.1.23 in [KS12]),
the uniform LDP is valid for the energy functional f(u) = kuk. Considering
the Navier–Stokes system on higher Sobolev spaces, we can establish the LDP
for other physically relevant functionals, such as the enstrophy and correlation
tensors; cf. Section 1.3 in [JNPS12]. However, we do not give any detail here, be-
cause a similar situation is considered in the next subsection for the technically
more complicated case of the complex Ginzburg–Landau equation.

Proof of Proposition 2.1. The fact that S : H ! H is continuous is well known;
e.g., see Sections 1.6 in [BV92]. Inequality (1.3) with ↵ = � = 2 is trivial for the
above choice of �, and (1.4) is the dissipativity property of the Navier–Stokes
dynamics; see Theorem 6.1 in [BV92, Chapter 1].

Let us check Condition (B). The continuity of the resolving operator for
the Navier–Stokes system from H to L2(0, 1;H1) implies that p is a continuous
function on H. We introduce the space V = H \H1

0

(D, R2) and endow it with
the usual H1-norm k · k

1

. It is well known that (e.g., see Proposition 2.1.25
in [KS12])

kS(u)� S(v)k
1

 exp
�
p(u) + p(v)

� ku� vk for u, v 2 H. (2.2)

Applying the Poincaré inequality, we obtain (1.5).
We now prove that the space V is embedded into U . Recalling (1.9), we

write

kuk2U = sup
N�0

�
↵N+1

kQNuk2�  sup
N�0

1X

j=N+1

↵jhu, eji2 = kuk2
1

.

Since S maps continuously H into V , we conclude that S(0) 2 U . Finally,
the stabilisibility of p is established in Step 2 of the proof of Proposition 2.3.8
in [KS12].

2.2 Ginzburg–Landau equations

Let D ⇢ Rd (d  4) be a bounded domain with C2-smooth boundary @D. We
consider the complex Ginzburg–Landau equation with a cubic nonlinearity:

u̇� (⌫ + i)�u + ia|u|2u = h(x) + ⌘(t, x), x 2 D. (2.3)

Here u(t, x) is an unknown complex-valued function, ⌫ and a are positive param-
eters, h 2 H1(D, C) is a deterministic function, and ⌘ is a random force of the

2Note that the orthonormal basis {ej} entering (1.6) does not need to coincide with the
system of eigenvectors for the Stokes operator, because the validity of Condition (B) for one
orthonormal basis implies its validity for any other.
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form (0.3), in which {⌘k} is a sequence of i.i.d. random variables in H1

0

(D, C).
Equation (2.3) is supplemented with the Dirichlet boundary condition,

u
��
@D

= 0, (2.4)

and an initial condition at time t = 0,

u(0, x) = u
0

(x). (2.5)

It is well known that, for any u
0

2 H1

0

(D, C), the problem (2.3)–(2.5) possesses
a unique solution u(t, x) that belongs to the space C(R

+

, H1

0

) \ L2

loc

(R
+

, H2);
see [Caz03] for the more complicated case of Schrödinger equation. Normalising
solutions to be right-continuous and restricting them to the integer lattice, we
obtain a sequence {uk} satisfying (1.1), where S denotes the time-1 shift along
trajectories of (2.3) with ⌘ ⌘ 0. Our aim is to prove that Theorems 1.1 and 1.3
are applicable in this situation.

Let us denote by H the complex Sobolev space H1

0

(D) and regard it as a
real Hilbert space endowed with the scalar product

hu, vi = Re
Z

D

ru ·rv̄ dx

and the corresponding norm k · k
1

. Let St : H ! H be the resolving semigroup
for problem (2.3), (2.4) with ⌘ ⌘ 0 and let S = S

1

. We introduce a continuous
functional H : H ! R by the relation

H(u) =
Z

D

⇣1
2
|ru|2 +

a

4
|u|4

⌘
dx.

Let us denote by ej the eigenfunctions of the Dirichlet Laplacian in D, indexed in
the non-decreasing order of the corresponding eigenvalues {↵j} and normalised
by the condition krejk = 1 (i.e., kejk = 1p

↵j
). Then the vectors {ej , iej , j � 1}

form an orthonormal basis in H.

Proposition 2.2. Conditions (A) and (B) are satisfied for S if we choose

�(u) = 1 +H2(u), p(u) = C

Z
1

0

�krSt(u)k4 + 1
�
dt,

�N = ↵"
N+1

, HN = span{ej , iej , 1  j  N}.

where C > 0 is su�ciently large and " > 0 can be taken arbitrarily small.

Moreover, S(0) belongs to the space U defined after Condition (C), and if

E exp({H2(⌘
1

)) < 1 for some { > 0, then the functional p is stabilisable

with a function Q satisfying (1.12).

Proof. The continuity of S is a standard fact and we omit the proof, referring
the reader to Chapter 1 in [BV92] for a proof of similar properties for various
PDE’s. Inequality (1.3) with ↵ = 4 and � = 8 follows from the definition and
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the Sobolev embedding H1

0

⇢ L4. To prove (1.4), recall that if u(t) is a solution
of (2.3), (2.4), then

d
dt
H(u) + cH(u)  C

1

(khk4L4 + 1),

where c > 0, and we denote by Cj unessential positive numbers; e.g., see in-
equality (1.33) in [JNPS12]. It follows that

d
dt
H2(u) + cH2(u)  C

2

(khk8L4 + 1). (2.6)

Applying the Gronwall inequality, we derive

H2(S(u
0

))  e�cH2(u
0

) + C
3

(khk8L4 + 1).

Since H(w + v)  (1 + ✓)H(w) + C✓H(v) for any ✓ > 0 and a su�ciently large
C✓ > 1, we have

H2(S(u
0

) + v)  e�c(1 + ✓)H2(u
0

) + C
4

(khk8L4 + 1) + C✓H(v), u
0

, v 2 H.

Choosing ✓ > 0 so small that q := e�c(1 + ✓) < 1, we obtain (1.4).
Let us prove (1.5). As is established in [JNPS12] (see inequality (1.39)),

if u
1

and u
2

are two solutions, then the function w = QN (u
1

� u
2

) satisfies the
di↵erential inequality

@tkwk2
1

 ��⌫↵N+1

� C
5

(ku
1

k
1

+ ku
2

k
1

)4
�kwk2

1

.

Application of the Gronwall inequality results in

��QN (u
1

(1)�u
2

(1))
��2  exp

✓
�⌫↵N+1

+C
5

Z
1

0

(ku
1

k
1

+ ku
2

k
1

)4dt

◆
ku0

1

�u0

2

k2,

where u0

i is the initial state of ui. This implies inequality (1.5) in which one
can take for �N an arbitrary sequence such that exp(�⌫↵N+1

)  C��1

N . In
particular, if we choose �N = ↵"

N+1

with " 2 (0, 1], then

kuk2U = sup
N�0

�
↵2"

N+1

kQNuk2
1

�
= sup

N�0

⇣
↵2"

N+1

1X

j=N+1

↵j

�hu, eji2 + hu, ieji2
�⌘

= sup
N�0

1X

j=N+1

↵1+2"
j

�hu, eji2 + hu, ieji2
�

= kuk2
1+".

Thus, the space H1

0

\H1+2" is continuously embedded into U , and the regular-
ising property of the Ginzburg–Landau dynamics implies that S(0) 2 U .

It remains to prove the stabilisability of p. To this end, let us take any
solution u(t) of problem (2.3)–(2.5) in which ⌘ is given by (0.3). Denoting by u�l
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the left-hand limit of u at the point t = l and integrating (2.6) in t 2 (l � 1, l),
we derive

H2(u�l ) + c

Z l

l�1

H2(u) dt  H2(ul�1

) + C
4

(khk8L4 + 1). (2.7)

Taking the sum over l = 1, . . . , k + 1 and recalling the definition of p and �, we
see that

kX

l=0

p(ul)  C
6

kX

l=0

�(ul),

where C
6

depends on khkL4 , but not on the solution. The required assertion
follows now from Lemma 7.1 (see (7.2)).

We have thus checked Conditions (A) and (B) for S and the stabilisability
of p under a suitable hypothesis on the law of ⌘k. Therefore, if {⌘k} satisfies
Condition (C), with all coe�cients bj nonzero, then the conclusions of Theo-
rems 1.1 and 1.3 are valid. Moreover, it follows from (2.7) with l = 0 that
p(u)  C�(u). Hence, inequality (1.8) is equivalent to

Z

H

exp
�
�H2(u)

�L(du) < 1 for some � > 0, (2.8)

and the hypotheses of Corollary 1.4 are satisfied for the energy functional H(u).
Finally, let us mention that condition (2.8) is rather restrictive and is not

satisfied for Gaussian measures on H. On the other hand, if we replace the
cubic term in (2.3) by the weaker nonlinearity a|u|2�u, where � 2 [0, 2/d] for
d = 3, 4, then the nondegenerate Gaussian measures concentrated on smooth
functions satisfy all required conditions. The proof of this fact is an immediate
consequence of the arguments used in this section.

3 Kifer’s criterion

Let X be a Polish space and let P(X) be the set of probability Borel measures
on X endowed with the weak topology and the corresponding Borel �-algebra.
We consider a directed set ⇥ and a family {⇣✓, ✓ 2 ⇥} of random probability
measures on X that are defined on some probability spaces (⌦✓,F✓, P✓). In
other words, for any ✓ 2 ⇥, we have a measurable mapping ⇣✓ : ⌦✓ ! P(X).
In what follows, we often omit the parameter ✓ from the notation of the prob-
ability space and write simply (⌦,F , P), and the corresponding expectation is
denoted by E; this will not lead to a confusion. In the case when X is compact,
Kifer [Kif90] obtained a su�cient condition ensuring the validity of the LDP for
the family {⇣✓}. In this section, we extend Kifer’s result to the case of a general
Polish space X under some additional hypotheses on {⇣✓}. The possibility of
such an extension was hinted in Remark 2.2 of [Kif90]. Since this extension
of Ki↵er’s criterion plays a central role in our work, in this section we give its
detailed proof.
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As in [Kif90], we assume that the following limit exists for any V 2 Cb(X):

Q(V ) = lim
✓2⇥

1
r(✓)

log
Z

⌦

exp
�
r(✓)hV, ⇣!

✓ i
�
dP(!), (3.1)

where r : ⇥ ! R is a given positive function such that lim✓2⇥

r(✓) = +1.
Then Q : Cb(X) ! R is a convex 1-Lipschitz function such that Q(V ) � 0
for any V 2 C

+

(X) and Q(C) = C for any constant C 2 R. Recall that the
Legendre transform of Q is defined on the space M(X) by

I(�) = sup
V 2Cb(X)

�hV,�i �Q(V )
�

for � 2 P(X), (3.2)

and I(�) = +1 otherwise. It is well known that I(�) is a convex function lower
semicontinuous in the weak topology, and the function Q can be reconstructed
by the formula

Q(V ) = sup
�2P(X)

�hV,�i � I(�)
�
.

Any measure �V 2 P(X) satisfying the relation

Q(V ) = hV,�V i � I(�V )

is called an equilibrium state for V .

Definition 3.1. The family {⇣✓} is said to be exponentially tight with speed r(✓)
if for any a > 0 there is a compact set Ka ⇢ P(X) such that

lim sup
✓2⇥

1
r(✓)

log P{⇣✓ 2 Kc
a}  �a. (3.3)

A su�cient condition for the exponential tightness for a family of random
probability measures is given by the following lemma.

Lemma 3.2. Let � : X ! [0,+1] be a function with compact level sets A↵ :=
{u 2 X : �(u)  ↵} for all ↵ > 0 such that

E exp
�
r(✓)h�, ⇣✓i

�  Cecr(✓)

for ✓ 2 ⇥, (3.4)

where C and c are positive numbers. Then, for any a � 0, the level set

Ka := {� 2 P(X) : h�,�i  a} (3.5)

is compact in P(X), and {⇣✓} is an exponentially tight family in P(X).

Proof. Since � : X ! [0,+1] is lower semicontinuous, the set {� > ↵} ⇢ X
is open for any ↵ � 0. Using the Fatou lemma and the portmanteau theorem,
for any sequence {µn} ⇢ P(X) converging weakly to a limit µ 2 P(X), we can
write

lim inf
n!1

h�, µni = lim inf
n!1

Z 1

0

µn({� > ↵}) d↵ �
Z 1

0

lim inf
n!1

µn({� > ↵}) d↵

�
Z 1

0

µ({� > ↵}) d↵ = h�, µi,
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whence we conclude that the function h�, ·i : P(X) ! R is also lower semicon-
tinuous. It follows that the level set Ka is closed for any a � 0. For any � 2 Ka

and " > 0, we have

�(Ac
a/") 

Z

Ac
a/"

"�(u)
a

�(du)  "

a
h�,�i  ".

Since the set Aa/" is compact in X, the Prokhorov compactness criterion (see
Theorem 11.5.4 in [Dud02]) implies that Ka is compact. The Chebyshev in-
equality combined with (3.4) now gives

lim sup
✓2⇥

1
r(✓)

log P{⇣✓ 2 Kc
a}  c� a. (3.6)

This proves that {⇣✓} is exponentially tight in P(X).

Recal that I(�) = inf�2�

I(�), � ⇢ P(X). The following theorem is the main
result of this section. Its proof is based on the arguments of the paper [Kif90]
and uses some intermediate results from there.

Theorem 3.3. Suppose that limit (3.1) exists for any V 2 Cb(X), and that the

conditions of Lemma 3.2 are satisfied. Then the relation (3.2) defines a good rate

function I, and the following upper bound holds for any closed subset F ⇢ P(X) :

lim sup
✓2⇥

1
r(✓)

log P{⇣✓ 2 F}  �I(F ). (3.7)

Furthermore, suppose that there exists a vector space V ⇢ Cb(X) such that the

restrictions of its functions to any compact set K ⇢ X form a dense subspace

in C(K), and that, for any V 2 V, there is at most one equilibrium state. Then

the following lower bound holds for any open subset G ⇢ P(X) :

lim inf
✓2⇥

1
r(✓)

log P{⇣✓ 2 G} � �I(G). (3.8)

Proof. Step 1. Let us show that I is a good rate function. We need to prove
that the set Ta := {� 2 P(X) : I(�)  a} is compact for any a � 0. Since I
is lower semicontinuous, Ta is closed. In view of Lemma 3.2, it su�ces to show
that Ta ⇢ Kb for some b � 0.

Let Vn 2 Cb(X) be any sequence of non-negative functions converging point-
wise to � and satisfying the inequality Vn(u)  �(u) for all u 2 X. For example,
one can take Vn(u) = n ^ infv2X(�(v) + nd(u, v)) for any n � 1 and u 2 X. It
follows from (3.1) and (3.4) that

Q(Vn)  lim sup
✓2⇥

1
r(✓)

log E exp (r(✓)h�, ⇣✓i))  c for all n � 1.

Combining this with (3.2), we get

hVn,�i  a + c for any � 2 Ta and n � 1.
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Using Fatou’s lemma to pass to the limit as n !1, we get h�,�i  a+ c. This
shows that Ta ⇢ Ka+c. Thus, I is a good rate function.

Step 2. The proof of the upper bound (3.7) is essentially the same as the
one given by Kifer [Kif90] (who follows the argument in [dA85, Theorem 2.1]).
Since {⇣✓} is exponentially tight, in view of Lemma 1.2.8 in [DZ00], it su�ces to
establish (3.7) for compact sets F ⇢ P(X). The case I(F )  0 is trivial, since
the left-hand side of (3.7) is non-positive. Let us assume that 0 < I(F ) < 1
and fix any " > 0. Given W 2 Cb(X), we introduce the open set

�"(W ) = {⌫ 2 P(X) : hW, ⌫i �Q(W ) > I(F )� "} .

By definition of I, we have

F ⇢ {⌫ 2 P(X) : I(⌫) > I(F )� "} =
[

W2Cb(X)

�"(W ).

Since F is compact, there are finitely many functions W
1

, . . . ,Wl 2 Cb(X) such
that

F ⇢
l[

i=1

�"(Wi).

Combining this with the Chebyshev inequality, we get

P{⇣✓ 2 F} 
lX

i=1

P{⇣✓ 2 �"(Wi)}

=
lX

i=1

P{hWi, ⇣✓i > Q(Wi) + I(F )� "}


lX

i=1

exp
��r(✓)(Q(Wi) + I(F )� ")

� Z

⌦✓

exp
�
r(✓)hWi, ⇣✓i

�
dP.

This implies that

lim sup
✓2⇥

1
r(✓)

log P{⇣✓ 2 F}  �I(F ) + ".

Since " > 0 is arbitrary, we obtain (3.7).
We now assume that I(F ) = 1 and fix an arbitrary N > 0. Repeating the

above arguments and using the open sets

�N (W ) = {⌫ 2 P(X) : hW, ⌫i �Q(W ) > N}

instead of �"(W ), we arrive at

lim sup
✓2⇥

1
r(✓)

log P{⇣✓ 2 F}  �N.
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Since N > 0 is arbitrary, we get (3.7).

Step 3. Let us turn to the proof of the lower bound (3.8). As in [Kif90], we
first prove it for an auxiliary family of Rn-valued random variables {⇣n

✓ }. More
precisely, taking any functions V

1

, . . . , Vn 2 V, we define the mapping

fn : P(X) ! Rn, fn(µ) =
�hV

1

, µi, . . . , hVn, µi�, (3.9)

and denote ⇣n
✓ := fn(⇣✓). The following result is a generalisation of Lemma 2.1

in [Kif90]; its proof is given at the end of this section.

Proposition 3.4. Under the conditions of Theorem 3.3, for any closed set

M ⇢ Rn
,

lim sup
✓2⇥

1
r(✓)

log P{⇣n
✓ 2 M}  �Jn(M), (3.10)

and for any open set U ⇢ Rn
,

lim inf
✓2⇥

1
r(✓)

log P{⇣n
✓ 2 U} � �Jn(U), (3.11)

where Jn(�) = inf�2f�1
n (�)

I(�) for � ⇢ Rn.

Step 4. We can now complete the proof of (3.8). For any sequence {Vk} ⇢ V
such that kVkk1 = 1, define the following function on P(X)⇥ P(X):

d(µ, ⌫) :=
1X

k=1

2�k|hVk, µi � hVk, ⌫i|. (3.12)

We claim that, given a compact subset K ⇢ P(X), one can choose a sequence
{Vk} ⇢ V such that the restriction of d to K⇥K is a metric on K compatible with
the weak topology. Indeed, d is a non-negative symmetric function satisfying
the triangle inequality. Therefore we only need to ensure that d separates points
and the convergence for d is equivalent to the weak convergence.

In view of the Prokhorov compactness criterion, there is an increasing se-
quence of compact subsets Kn ⇢ X such that µ(Kc

n) < 1

n for any µ 2 K. By
assumption, the restriction of the functions in V to Kn is dense in C(Kn) for
any n � 1. Since C(Kn) is separable, we can find a sequence {Vk} ⇢ V such
that kVkk1 = 1 for any k � 1, and that the restriction to Kn of the functions
in the vector span of {Vk} is dense for any n � 1. It is straightforward to check
that metric (3.12) with this choice of {Vk} separates points and generates weak
convergence.

To prove (3.8), we consider an open set G ⇢ P(X). The case I(G) = 1 is
trivial, so let us assume that I(G) < 1 and fix any " > 0. Then there is ⌫" 2 G
such that

I(⌫")  I(G) + ". (3.13)

Furthermore, for a = I(G) + c + 1 + ", the compact set Ka ⇢ P(X) is such
that (3.6) holds and ⌫" 2 Ka. Let {Vk} ⇢ V be a sequence of functions of

22



norm 1 such that (3.12) metrizes the weak convergence on Ka. Since G is open,
we can find a number � > 0 and an integer n � 1 such that if ⌫ 2 Ka satisfies
the inequality

nX

k=1

2�k|hVk, ⌫i � hVk, ⌫"i| < �,

then ⌫ 2 G. Let us endow Rn with the norm

kxkn =
nX

k=1

2�k|xk|, x = (x
1

, . . . , xn).

We now define a mapping fn by (3.9) and set x" = fn(⌫") and ⇣n
✓ = fn(⇣✓).

The construction implies that the set f�1

n

�
B̊Rn(x", �)

�\Ka is contained in G. It
follows that

P{⇣✓ 2 G} � P{⇣✓ 2 G \Ka} � P
�
⇣✓ 2 f�1

n

�
B̊Rn(x", �)

�\Ka

 

= P{⇣n
✓ 2 B̊Rn(x", �)}� P{⇣✓ 2 Kc

a}.

Furthermore, for 0 < v  u/2 we have log(u � v) � log u � log 2. Combining
these inequalities with (3.6), (3.11), and (3.13), we see that

lim inf
✓2⇥

1
r(✓)

log P{⇣✓ 2 G} � lim inf
✓2⇥

1
r(✓)

�
log P{⇣n

✓ 2 B̊Rn(x", �)}� log 2
�

� �Jn(B̊Rn(x", �)) � �In(x")
� �I(⌫") � �I(G)� ".

Since " > 0 is arbitrary, we obtain (3.8). This completes the proof of the
theorem.

Proof of Proposition 3.4. The upper bound (3.10) follows immediately from (3.7).
To prove the lower bound (3.11), we follow the scheme used in [Kif90] (see
Lemma 2.1). The additional di�culty in our case comes from the fact that the
image Ln := fn(P(X)) is not necessarily a compact subset of Rn.

Step 1: Construction of a shifted measure. Let us fix an open set U ⇢ P(X)
and, given � = (�

1

, . . . ,�n) 2 Rn, define V� =
Pn

j=1

�jVj and Qn(�) = Q(V�).
We set

In(↵) = inf
�2f�1

n (↵)

I(�),

where the infimum over an empty set equals +1. Direct verification shows that

Qn(�) = sup
↵2Rn

(h�,↵in � In(↵)), (3.14)

Jn(U) = inf
↵2U

In(↵), (3.15)

where h·, ·in denotes the scalar product in Rn. Thus, for any " > 0, there
is ↵" 2 U such that In(↵") < Jn(U) + ". Without loss of generality, we can
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assume that In(↵") < 1. In view of Proposition 7.4, we can choose ↵" in such
a way that, for some �" 2 Rn, the following equality holds:

Qn(�") = h�",↵"in � In(↵"). (3.16)

We now define a new measure P(�")

✓ on ⌦✓ whose density with respect to P✓ is
equal to

dP(�")

✓

dP✓
= e�r(✓)Q✓

n(�") exp
�
r(✓)hV�"

, ⇣✓i
�
,

where we set
Q✓

n(�") =
1

r(✓)
log E✓ exp

�
r(✓)hV�" , ⇣✓i

�
.

Using the relation hV� , ⇣✓i = h�, ⇣n
✓ in, it is straightforward to check that

E(�")

✓ g(⇣n
✓ ) = e�r(✓)Q✓

n(�")E✓

�
exp

�
r(✓)h�", ⇣

n
✓ in

�
g(⇣n

✓ )
 
, (3.17)

where E(�")

✓ denotes the expectation defined by P(�")

✓ and g : Rn ! R is any
non-negative Borel function.

Step 2: Exponential tightness of ⇣n
✓ for the shifted measure. We claim that

for any a > 0 there is ⇢a > 0 such that

lim sup
✓2⇥

1
r(✓)

log P(�")

✓ {⇣n
✓ /2 BRn(0, ⇢a)}  �a. (3.18)

Indeed, taking g(x) = I
�

(x) with � = BRn(0, ⇢)c in (3.17) and using (3.1) and
the Cauchy–Schwarz inequality, we obtain

lim sup
✓2⇥

1
r(✓)

log P(�")

✓ {⇣n
✓ /2 BRn(0, ⇢)c}

= � lim
✓2⇥

Q✓
n(�") + lim sup

✓2⇥

1
r(✓)

log E✓

�
exp

�
r(✓)h�", ⇣

n
✓ in

�
IBRn

(0,⇢)

c(⇣n
✓ )
 

 �Q(V�"
) +

1
2
Q(2V�"

) + lim sup
✓2⇥

1
2r(✓)

log P✓{⇣n
✓ /2 BRn(0, ⇢)c}. (3.19)

Since {⇣✓} is exponentially tight for P✓ and the mapping fn is continuous, it fol-
lows that {⇣n

✓ } is exponentially tight in Rn. Hence, the right-hand side of (3.19)
can be made smaller than �a by choosing a su�ciently large ⇢ > 0.

Step 3: LD upper bound for ⇣n
✓ for the shifted measure. Let us define

I(�")

n (↵) = In(↵)� �h�",↵i �Qn(�")
�
. (3.20)

We claim that, for any closed subset M ⇢ P(Rn), relation (3.10) holds with P
and Jn replaced by P(�")

✓ and I
(�")

n , respectively. Indeed, in view of Step 2 of
the proof of Theorem 3.3, the LD upper bound will be established if for any
� 2 Rn we prove the existence of the limit (cf. (3.1))

R"(�) := lim
✓2⇥

1
r(✓)

log E(�")

✓ exp
�
r(✓)h�, ⇣n

✓ in
�
. (3.21)
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Relation (3.17) implies that the right-hand side of (3.21) is equal to

� lim
✓2⇥

Q✓
n(�") + lim

✓2⇥

1
r(✓)

log E✓ exp
�
r(✓)hV� + V�"

, ⇣✓i
�
.

Combining this with (3.1), we see that

R"(�) = �Q(V�") + Q(V� + V�") = �Qn(�") + Qn(� + �"). (3.22)

Thus, the LD upper bound holds for {⇣n
✓ } with the rate function

I(�")

n (↵) = sup
�2Rn

�h↵,�in + Qn(�")�Qn(� + �")
�
.

Since In is the Legendre transform of Qn, this expression coincides with (3.20).
Step 4: Completion of the proof. Since U is open and ↵" 2 U , there is � > 0

such that BRn(↵", �) ⇢ U . Setting B = B̊Rn(↵", �), taking

g(x) = exp(�r(✓)h�", x� ↵"in)IB(x)

in (3.17), and using (3.16), we obtain

lim inf
✓2⇥

1
r(✓)

log P✓{⇣n
✓ 2 U} � lim inf

✓2⇥

1
r(✓)

log P✓{⇣n
✓ 2 B}

= lim inf
✓2⇥

1
r(✓)

log
�
er(✓)(Q✓

n(�")�h↵",�"in)E(�")

✓ {e�r(✓)h�",⇣n
✓ �↵"inIB(⇣n

✓ )}�

� �In(↵")� |�"|� + lim inf
✓2⇥

1
r(✓)

log P(�")

✓ {⇣n
✓ 2 B}.

Since �In(↵") > �Jn(U) � " and the positive numbers " and � can be chosen
to be arbitrarily small, the lower bound (3.11) will be established once we prove
that

lim inf
✓2⇥

1
r(✓)

log P(�")

✓ {⇣n
✓ 2 B} = 0.

To this end, it su�ces to show that (recall Ln = fn(P(X)))

lim
✓2⇥

P(�")

✓ {⇣n
✓ 2 Ln \B} = 0.

Furthermore, in view of inequality (3.18), we only need to check that, for any
a > 0,

lim
✓2⇥

P(�")

✓ {⇣n
✓ 2 BRn(0, ⇢a) \B} = 0. (3.23)

Since BRn(0, ⇢a) \B is closed, the LD upper bound established in Step 3 shows
that

lim sup
✓2⇥

1
r(✓)

log P(�")

✓ {⇣n
✓ 2 BRn(0, ⇢a) \B}  � inf

↵2BRn
(0,⇢a)\B

I(�")

n (↵). (3.24)
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The required assertion will be proved if we show that the infimum on the right-
hand side is positive. To this end, it su�ces to check that I

(�")

n (↵) 6= 0 for
↵ 6= ↵".

It follows from (3.16) and (3.20) that I
(�")

n (↵") = 0. Suppose, by contradic-
tion, that I

(�")

n (↵0) = 0 for some ↵0 2 Rn, ↵0 6= ↵". Since the level sets of I are
compact, there exists �" 2 f�1

n (↵") and �0 2 f�1

n (↵0) such that In(↵") = I(�")
and In(↵0) = I(�0). Using (3.14), (3.20), we get that �" and �0 are distinct
equilibrium measures corresponding to the function V�"

2 V. This contradic-
tion proves the required property and completes the proof of Lemma 3.4.

4 Large-time asymptotics for generalised Markov
semigroups

This section is devoted to the study of large-time behaviour of trajectories for
a class of dual semigroups. The main result is a generalisation of Theorem 2.1
in [JNPS12] to the unbounded phase space; see also [Sza97, KS01, LS06] for
some related results in the case of Markov semigroups.

Let X be a Polish space, let M
+

(X) be the cone of non-negative Borel
measures on X, and let {P (u, ·), u 2 X} ⇢ M

+

(X) be a generalised Markov
kernel. The latter means that the function u 7! P (u, ·) is continuous and non-
vanishing from X to the space M

+

(X) (with the topology of weak convergence).
It follows, in particular, that for any compact subset K ⇢ X there is CK > 1
such that

C�1

K  P (u,X)  CK for u 2 K. (4.1)

We denote by Pk(u,�) the iterations of P (u,�) and by Pk : Cb(X) ! Cb(X)
and P⇤

k : M
+

(X) ! M
+

(X) the corresponding semigroups; for the exact
definitions, see Section 2 in [JNPS12]. In the case k = 1, we write P and P⇤,
respectively.

In what follows, we shall deal with a more restrictive class of kernels con-
centrated on the union of a countable family of compact subsets. Namely,
let {XR}1R=1

be an increasing sequence of compact subsets of X and let X1
be the union of {XR}. We shall say that w : X ! [1,+1] is a weight function

on X if it is measurable and its restriction to XR is continuous for any R � 1.
We denote by Cw(X) (respectively, L1w (X)) the space of continuous (measur-
able) functions f : X ! R such that |f(u)|  Cw(u) for all u 2 X. Let us
endow Cw(X) (respectively, L1w (X)) with the seminorm

kfkL1w = sup
u2X

|f(u)|
w(u)

.

The spaces Cw(X1) and L1w (X1) are defined in a similar way. Let Mw(X)
be the space of measures µ 2M

+

(X) such that hw, µi < 1 and let Pw(X) =
Mw(X)\P(X). Note that the integral hf, µi is well defined for any f 2 L1w (X)
and µ 2Mw(X).
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We shall assume that the kernels Pk(u,�) satisfy the following hypothesis.

Growth condition. The subset X1 is dense in X, the measures Pk0(u, ·) are
concentrated on X1 for any u 2 X and an integer k

0

� 1, and there exists
a weight function w : X ! [1,+1] and an integer R

0

� 1 such that 3

M := sup
k�0

kPkwkL1w

kPk1kR0

< 1, (4.2)

where 1 is the function on X identically equal to 1, k · kR denotes the L1

norm on XR, and we set 1/1 = 0.

Note that if Pk satisfy this condition, then the operators Pk are well defined on
the space L1w (X) and map it into itself. Furthermore, inequality (4.2) implies
that

�k(R) := kPkwkR < 1 for all k � 0 and R � 1.

To formulate the main result of this section, we need some additional defini-
tions. Given any family C ⇢ Cb(X), we denote by Cw the vector space of those
functions f 2 L1w (X) that can be approximated, within any accuracy with re-
spect to the norm k · kL1w , by finite linear combinations of functions from C.
Note that the restriction of any function f 2 Cw to XR is continuous. A fam-
ily C ⇢ Cb(X) is said to be determining if any two measures µ, ⌫ 2 M

+

(X)
satisfying the relation hf, µi = hf, ⌫i for all f 2 C coincide. A sequence of func-
tions fk : X ! R is said to be uniformly equicontinuous on XR if for any " > 0
there is � > 0 such that |fk(u) � fk(v)| < " for any u 2 XR, v 2 BXR

(u, �),
and k � 1. Recall that a nonzero µ 2M

+

(X) is called an eigenvector for P⇤ if
there is � 2 R such that

P⇤µ = �µ. (4.3)

Theorem 4.1. Let P (u,�) be a generalised Markov kernel satisfying the growth

condition formulated above and possessing the following properties.

Uniform Feller property. There is a determining family C ⇢ Cb(X) and an

integer R
0

� 1 such that 1 2 C and the sequence {kPk1k�1

R Pkf, k � 0} is

uniformly equicontinuous on XR for any f 2 C and R � R
0

.

Uniform irreducibility. For su�ciently large ⇢ � 1, any integer R � 1, and

any r > 0, there is an integer l = l(⇢, r, R) � 1 and a positive number

p = p(⇢, r), not depending on R, such that

Pl(u,BX⇢(û, r)) � p for all u 2 XR, û 2 X⇢. (4.4)

Then P⇤
has at most one eigenvector µ 2 Pw(X) satisfying the following con-

dition for any k:

�k(R)
Z

X\XR

wdµ ! 0 as R !1. (4.5)

3The expression (Pkw)(u) is understood as the integral of the positive function w against
the positive measure Pk(u, ·).
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Moreover, if such a measure µ exists, then the corresponding eigenvalue � is

positive, the support of µ coincides with X, and there is a non-negative function

h 2 L1w (X) such that hh, µi = 1, the restriction of h to XR belongs to C
+

(XR),

(Ph)(u) = �h(u) for u 2 X, (4.6)

and for any f 2 Cw
and R � 1, we have

��kPkf ! hf, µih in C(XR) \ L1(X,µ) as k !1. (4.7)

Finally, if a Borel set B ⇢ X is such that

sup
u2B

✓Z

X\XR

w(v) Pm(u,dv)
◆
! 0 as R !1 (4.8)

for some integer m � 1, then for any f 2 Cw
we have

��kPkf ! hf, µih in L1(B) as k !1. (4.9)

Proof. We begin with a number of simple remarks. Let � 2 R be an eigen-
value for P⇤ corresponding to an eigenvector µ 2 Pw(X). Since Pk0(u, ·) is
concentrated on X1, it follows from (4.3) that

�k0 =
Z

X

Pk0(u,X)µ(du), (4.10)

�k0µ(X \X1) =
Z

X

Pk0(u,X \X1)µ(du) = 0. (4.11)

The lower bound in (4.1) implies that the right-hand side of (4.10) is positive,
and it follows from (4.11) that µ is concentrated on X1. Furthermore, for any
û 2 X1 and r > 0, the relation P⇤

l µ = �lµ and the uniform irreducibility imply
that

µ
�
B(û, r)

�
= ��l

Z

X

Pl

�
u,B(û, r)

�
µ(du)

� ��l

Z

XR

Pl

�
u,BXR

(û, r)
�
µ(du) � ��lp µ(XR) > 0,

where R � 1 is such that µ(XR) > 0 and û 2 XR, and l = l(R, r,R), p = p(⇢, r)
are the constants in (4.4). Thus,

µ(B(û, r)) > 0 for any û 2 X1 and r > 0. (4.12)

Since X1 is dense in X, the support of µ must coincide with X. Finally, let us
show that if the existence of h is established, then the uniqueness of µ follows
immediately from the normalisation conditions and convergence (4.7). Indeed,
suppose that µ̃ 2 Pw(X) is an eigenvector of P⇤ with an eigenvalue �̃ > 0.
The above argument concerning the support of an eigenvector for P⇤ applies
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also to µ̃, so that supp µ̃ = X. Using convergence (4.7) in C(XR) and inequal-
ity (4.16) established below, we easily prove that

�k := |��kPkf � hf, µih|µ̃ ! 0 as k !1,

where f 2 C is arbitrary. On the other hand, we can write

�k �
����
Z

X

�
��kPkf � hf, µih� dµ̃

���� =
��� ˜�

�

�khf, µ̃i � hf, µihh, µ̃i��.

Comparing the two relations above in which f = 1 and using the fact that
hh, µ̃i 6= 0, we see that �̃ = � and hh, µ̃i = 1. It follows that hf, µ̃i = hf, µi for
any f 2 C. Since C is a determining family, we conclude that µ = µ̃.

We thus assume that P⇤ has an eigenvector µ 2 Pw(X) satisfying (4.5) and
prove that there is h 2 L1w (X) such that the restriction of h to X1 is positive,
hh, µi = 1, and that (4.7) holds. The proof of these facts is split into several
steps. In what follows, replacing P (u,�) by ��1P (u,�) if necessary, we may
assume that � = 1.

Step 1. Let us prove that for any f 2 C and R � 1, we have

kPkfkR  Cf,R for all k � 1, (4.13)

where Cf,R is a constant not depending on k. Clearly, it su�ces to prove that

kPk1kR  C1,R for all k � 1. (4.14)

Let us suppose that there is a sequence kj !1 and an integer R � 1 such that

kPkj
1kR ! +1 as j !1. (4.15)

In view of the uniform Feller property, we can assume that

kPkj
1k�1

R Pkj
1! g in C(XR) as j !1,

where g 2 C(XR) is a non-negative function whose norm is equal to 1. We now
write
Z

XR

g(u)µ(du) = lim
j!1

kPkj
1k�1

R

Z

XR

Pkj
1(u)µ(du)  lim

j!1
kPkj

1k�1

R h1, µi = 0.

On the other hand, since µ(X \ X1) = 0 and g � 0 is a non-zero continuous
function on XR, the left-hand side of this relation is positive for su�ciently
large R. Since the validity of convergence (4.15) for some integer R = R

0

� 1
implies that it is true for any R > R

0

, we arrive at a contradiction. We have
thus established (4.13).

Step 2. Let us prove the existence of a non-negative function h 2 L1w (X) sat-
isfying (4.6) with � = 1. As was mentioned after the formulation of the growth
condition, the operators Pk : Cw(X) ! Cw(X) are well defined. Moreover, the
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fact that P (u, ·) is concentrated on X1 for any u 2 X and inequalities (4.2)
and (4.13) with f = 1 imply that

sup
k�0

kPkfkL1w (X)

 M
1

kfkL1w (X1)

for any f 2 L1w (X1), (4.16)

where M
1

= MC1,R0 . The uniform Feller property and inequality (4.13) imply
that the sequence {Pk1} is uniformly equicontinuous on XR for any R � 1. It
follows that so is the sequence

hk :=
1
k

k�1X

l=0

Pl1.

Applying the diagonal process, we construct a function h : X1 ! R
+

and a
sequence kj !1 such that

khkj
� hkR ! 0 as j !1 for any R � 1. (4.17)

This yields that the restriction of h to XR is continuous for any R � 1. Fur-
thermore, it follows from (4.16) that

���
h

w

���
R
 sup

k�0

khkkL1w  M
1

k1kL1w for all R � 1, (4.18)

and therefore h 2 L1w (X1). We claim that the mean value of h with respect
to µ is equal to 1, and that equality (4.6) holds for any u 2 X1. Indeed,
relations (4.3) and (4.18) and the Lebesgue theorem on dominated convergence
imply that

hh, µi = lim
j!1

hhkj
, µi = h1, µi = 1.

In particular, h is a non-zero function. To prove (4.6) for u 2 X1, note that

(Phkj
)(u) =

Z

X

P (u,dv)hkj
(v) = hkj

(u) +
1
kj

�
Pkj

1(u)� 1(u)
�
.

The Lebesgue theorem combined with (4.18) implies that, for u 2 X1, the left-
hand side of this relation converges to (Ph)(u), while (4.16) and (4.17) show
that its right-hand side converges to h(u).

For any u 2 X, the function (Ph)(u) is well defined and, by (4.16), satisfies
the inequality

kPhkL1w  M
1

khkL1w (X1)

.

Thus, defining h(u) := Ph(u) for any u 2 X\X1, we obtain a non-negative
function h 2 L1w (X) satisfying (4.6) for any u 2 X.

Step 3. Let us prove that h(u) > 0 for all u 2 X1. Indeed, let R � 1
be such that u 2 XR. Since hh, µi = 1, there is an integer ⇢ � 1 and a point
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û 2 X⇢ such that h(û) > 0. By continuity, there is r > 0 such that h(v) � r for
any v 2 BX⇢(û, r). Combining this with (4.6), for any u 2 XR we derive

h(u) = Plh(u) =
Z

X

Pl(u, dv)h(v) �
Z

BX⇢ (û,r)

Pl(u, dv)h(v)

� rPl

�
u,BX⇢

(û, r)
� � rp > 0, (4.19)

where we assumed with no loss of generality that ⇢ is so large that inequal-
ity (4.4) holds, and l = l(⇢, r, R) � 1 and p = p(⇢, r) are the constants appearing
in this inequality.

Step 4. To prove convergence (4.7), we first show that it su�ces to establish
it for functions in C. Indeed, for any f 2 Cw and any " > 0 one can find a
function g 2 Cb(X) which is a finite linear combination of elements of C such
that kf � gkL1w < ". Combining this with (4.16), we now write

��Pkf � hf, µih��
R
 ��Pkg � hg, µih��

R
+ "

�
M

1

kwkR + |w|µkhkR

�
.

Since " > 0 is arbitrary, the second term on the right-hand side of this relation
can be made arbitrary small, while the first one goes to zero as k ! 1. A
similar argument shows that

|Pkf � hf, µih|µ ! 0 as k !1.

Step 5. We now prove (4.7) for f 2 C. Setting g = f�hf, µih and gk = Pkg,
we need to prove that gk ! 0 in C(XR) for any R � 1. Since {gk, k � 0} is
uniformly equicontinuous on XR, the required assertion will be established if we
prove that

|gk|µ ! 0 as k !1. (4.20)

For any ' 2 L1w (X), we have

|P'|µ = h|P'|, µi  hP|'|, µi = h|'|, µi = |'|µ.

Thus, the sequence {|gk|µ} is non-increasing, and it su�ces to show that there
is a sequence of integers kj such that |gkj

|µ ! 0 as j !1.
Let us assume that for any integer ⇢ � 1 there is a sequence kj = kj(⇢) !1

such that
kg+

kj
k⇢ ! 0 as j !1. (4.21)

Passing to a subsequence, we can assume that (4.21) holds for any ⇢ � 1 and a
universal sequence {kj}. Then, in view of (4.16), we have

|g+

kj
|µ =

✓Z

X\X⇢

+
Z

X⇢

◆
g+

kj
dµ  M

1

kgkL1w

Z

X\X⇢

wdµ + kg+

kj
k⇢.

Combining this with (4.21) and the inequality hw, µi < 1 (which follows im-
mediately from (4.5)), we see that |g+

kj
|µ ! 0 as j ! 1. Using the relation

hgk, µi = hg+

k , µi � hg�k , µi = 0, we derive

|gkj
|µ = hg+

k , µi+ hg�k , µi = 2 |g+

kj
|µ ! 0 as j !1.
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A similar argument shows that (4.20) holds as soon as for any ⇢ � 1 there is a
sequence kj(⇢) !1 such that

kg�kj
k⇢ ! 0 as j !1. (4.22)

In the next step, we prove that (4.21) and (4.22) are necessarily satisfied for
all ⇢ � 1.

Step 6. Assume, by contradiction, that for an integer ⇢ � 1 there is no
subsequence kj ! 1 satisfying (4.21) and (4.22). Then one can find se-
quences {u±k } ⇢ X⇢ and a number ↵ > 0 such that

g+

k (u+

k ) = max
u2X⇢

g+

k (u) � ↵, g�k (u�k ) = max
u2X⇢

g�k (u) � ↵.

Let us show that, for any R � 1, we have

Plg
±
k (u)�A(R)�1|g±k |µ + A(R)�1�(R) � 0 for all u 2 XR, (4.23)

where l � 1 is the integer arising in the uniform irreducibility condition,

A(R) = 2(p↵)�1M
1

kgkL1w �l(R), �(R) = M
1

kgkL1w

Z

X\XR

wdµ,

and p is the constant in (4.4). Indeed, since g±k are uniformly equicontinuous,
we can find r > 0 not depending on k such that

g±k (u) � ↵/2 for all u 2 BX⇢(u±k , r). (4.24)

Using (4.16) and (4.24), we obtain

sup
u2XR

Plg
±
k (u)  kg±k kL1w sup

u2XR

(Plw)(u)  M
1

kgkL1w �l(R),

inf
u2XR

Plg
±
k (u) � inf

u2XR

Z

BX⇢ (u±k ,r)

Pl(u,dv)g±k (v) � pl↵

2
.

It follows that
sup

u2XR

Plg
±
k (u)  A(R) inf

u2XR

Plg
±
k (u).

Using again (4.16) and the invariance of µ, we derive

|g±k |µ = |Plg
±
k |µ =

Z

XR

Plg
±
k dµ +

Z

X\XR

Plg
±
k dµ

 A(R) inf
u2XR

Plg
±
k (u) + �(R).

This inequality implies (4.23).
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We now estimate |gk+l|µ = |Plgk|µ. To this end, we fix an integer R � 1
and write

|gk+l|µ =
Z

XR

|Plgk|µ(du) +
Z

X\XR

|Plgk|µ(du)

=
Z

XR

��(Plg
+

k �A(R)�1|g+

k |µ)� (Plg
�
k �A(R)�1|g�k |µ)

�� dµ + �(R)


Z

XR

⇣��Plg
+

k �A(R)�1|g+

k |µ
��+

��Plg
�
k �A(R)�1|g�k |µ

��
⌘

dµ + �(R).

(4.25)

It follows from (4.23) that
Z

XR

��Plg
±
k �A(R)�1|g±k |µ

�� dµ 
Z

XR

�
Plg

±
k �A(R)�1|g±k |µ

�
dµ+2A(R)�1�(R).

Combining this with (4.25) and using the invariance of µ, we obtain

|gk+l|µ 
Z

XR

Pl(g+

k + g�k ) dµ�A(R)�1µ(XR)
�
|g+

k |µ + |g�k |µ
�

+ "(R)

 a(R)|gk|µ + "(R), (4.26)

where we set "(R) = (1 + 4A(R)�1)�(R) and a(R) = 1�A(R)�1µ(XR). Let R
be so large that µ(XR) � 1/2 and a(R) < 1. Then iteration of (4.26) results in

|gjl|µ  a(R)j|g|µ + "(R)
j�1X

n=0

a(R)n  a(R)j|g|µ + "(R)
�
1� a(R)

��1

 a(R)j|g|µ + (2A(R) + 8)�(R)  a(R)j|g|µ + C(�l(R) + 1)
Z

X\XR

wdµ,

where C = C(l,M
1

,↵, g) > 0 does not depend on R. It follows from (4.5)
that the right-hand side of this inequality can be made arbitrarily small by an
appropriate choice of R and j.

We have thus proved that convergence (4.20) holds along a subsequence
k = kj . As was explained in Step 5, this implies that gk ! 0 in C(XR) for any
R > 0, and we arrive at a contradiction.

Step 7. It remains to prove convergence (4.9) under condition (4.8). For any
f 2 Cw, we have

|(Pk+mf)(u)� hf, µih(u)| 
Z

X

|(Pkf)(v)� hf, µih(v)|Pm(u,dv)

=
Z

XR

+
Z

X\XR

=: Ik(R, u) + Jk(R, u).

By (4.7), for any R � 1, we have supu2B Ik(R, u) ! 0 as k !1. Furthermore,
it follows from (4.8) and (4.16) that

sup
u2B

Jk(R, u)  C sup
u2B

✓Z

X\XR

w(v) Pm(u,dv)
◆
! 0 as R !1,
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where C = M
1

kfkL1w + |hf, µi|khkL1w . This completes the proof of Theorem 4.1.

5 Proof of Theorem 1.3

In this section, we prove a number of properties of the random dynamical sys-
tem (1.18) and, taking for granted the uniform Feller property, establish the
main result of this paper. We shall always assume, often without further stipu-
lation, that the hypotheses of Theorem 1.3 are fulfilled.

5.1 Hyper-exponential recurrence

Let ⌧U (R) be the first hitting time of the set BU (R)⇥ · · ·⇥BU (R) (` times) for
the Markov process (uk, Pu) associated with (1.18):

⌧U (R) = min{k � 0 : u1

k, . . . , u`
k 2 BU (R)}.

For any integer m � 1, we set �m(u) = �(u)m, where � is the function entering
Condition (A).

Proposition 5.1. Under the hypotheses of Theorem 1.3, for any � > 0 there

are positive numbers R, C, and m such that

Eu exp
�
�⌧U (R)

�  C �m(u) for any u 2 H`, (5.1)

where u = [u1, . . . , u`] 2 H`
and u = u`

.

Proof. Let us define a stopping time for the Markov process (uk, Pu) associated
with (1.1):

⌧U (R) = min{k � `� 1 : uk�`+1

, . . . , uk 2 BU (R)}.

It follows from (1.19) that the required inequality (5.1) will be established if we
prove that

Eu exp
�
�⌧U (R)

�  C �m(u) for any u 2 H. (5.2)

To this end, we use a standard Lyapunov function technique well-known in the
theory of Markov processes; see Chapter 3 in [Has80] or Chapter 8 in [MT93].

Step 1. Given a number r > 0, we denote by ⌧(r) the first hitting time of
the set {�  r} = {v 2 H : �(v)  r}. We claim that Pu{⌧(r) < 1} = 1
for a su�ciently large r and any u 2 H, and for any � > 0 there are positive
numbers r, m, and C such that

Eu exp
�
3�⌧(r)

�  C �m(u) for any u 2 H. (5.3)

Indeed, it follows from (1.4) that

�m(S(u) + v)  2qm�m(u) + Cm�m(v) for all u, v 2 H, (5.4)
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where m � 1 is an arbitrary integer and Cm does not depend on u and v.
Combining this with (1.8), for any { 2 (2qm, 1) one can find r⇤ > 0 such that

Eu�m(u
1

)  {
�
�m(u) _ r⇤

�
for any u 2 H. (5.5)

Using the Markov property and arguing by induction, we easily prove that if
r � r⇤, then (cf. proof of Lemma 3.6.1 in [KS12])

pk(u) := Eu

�
I{⌧(r)>k}�m(uk)

�  {k�m(u) for all k � 0, u 2 H.

It follows that

Pu{⌧(r) > k}  r�mpk(u)  r�m{k�m(u), (5.6)

and therefore ⌧(r) is Pu-almost surely finite for r � r⇤. Furthermore, given
� > 0 we can choose m � 1 so large that e3�{ < 1 for some { > 2qm. In this
case, inequality (5.6) implies that

Eu exp
�
3�⌧(r)

�  1 +
1X

k=1

e3�kPu{⌧(r) > k � 1}

 1 + r�m�m(u)
1X

k=1

e3�k{k�1  C �m(u).

Step 2. Given a positive number R, let us introduce the event

�(R) = {uj+1

2 BU (R) for j = 1, . . . , `}.
Suppose that, for any r > 0 and p < 1, we can find R such that

Pu

�
�(R)

� � p for any u 2 {�  r}. (5.7)

In this case, we define a sequence of stopping times �0n by the relations

�0
0

= ⌧(r), �0n = min{k � �0n�1

+ `+ 1 : �(uk)  r}, n � 1,

and denote �n = �0n + ` + 1. Let n̂ be the first integer n � 0 such that
u�n�j 2 BU (R) for j = 0, . . . , `�1. It follows from (5.7) and the strong Markov
property that

Pu{n̂ > k}  (1� p)k for any u 2 H, k � 0. (5.8)

Furthermore, using (5.3), (1.4), and the strong Markov property, it is not di�-
cult to check that

Eue3��k  Ck
1

�m(u), (5.9)

where C
1

> 0 does not depend on u 2 H and k � 0. Combining (5.8) and (5.9),
for any integers k, M � 1 we now write

Pu

�
⌧U (R) � M

 
= Pu

�
⌧U (R) � M,�k < M

 
+ Pu

�
⌧U (R) � M,�k � M

 

 Pu

�
⌧U (R) > �k

 
+ Pu

�
�k � M

 
. (5.10)
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Since {⌧U (R) > �k} ⇢ {n̂ > k}, the first term on the left-hand side can be
estimated by (5.8). Furthermore, it follows from (5.9) that

Pu

�
�k � M

  Ck
1

�m(u)e�3�M .

Substituting these inequalities into (5.10), we obtain

Pu

�
⌧U (R) � M

  (1� p)k + Ck
1

�m(u)e�3�M .

Choosing k ⇠ "M , with " > 0 so small that " log C
1

 � and then R > 0 so
large that " log(1� p)�1 � 2�, we obtain

Pu

�
⌧U (R) � M

  2e�2�M�m(u).

This immediately implies the required inequality (5.2).
Step 3. Thus, it remains to establish (5.7). To this end, we introduce the

events

�j
1

(⇢) = {p(uj) + �(uj)  ⇢}, �j
2

(R) = {uj 2 BU (R)}, j � 1,

and notice that, for any sequence of positive numbers ⇢
1

, . . . , ⇢`+1

, we have

�(R) � �1

1

(⇢
1

) \
`+1\

j=2

�
�j

1

(⇢j) \ �j
2

(R)
�
. (5.11)

It follows from inequalities (1.5), (1.10), and (1.11) and the inclusion S(0) 2 U
that, for any � > 0 and ⇢ > 0, one can find positive numbers ⇢0 and R such that

Pv

�
p(u

1

) + �(u
1

)  ⇢0, u
1

2 BU (R)
 � 1� �,

where v 2 H is any vector satisfying the inequality p(v) + �(v)  ⇢. Using
this observation, for any � > 0 one constructs by induction a finite sequence
⇢
1

 · · ·  ⇢`+1

and a number R > 0 such that

Pv

�
p(u

1

) + �(u
1

)  ⇢
1

 � 1� � for v 2 {�  r}, (5.12)

Pv

�
p(u

1

) + �(u
1

)  ⇢j+1

, u
1

2 BU (R)
 � 1� � for v 2 �

1

(⇢j), (5.13)

where j = 1, . . . , `. Combining this with the Markov property and inclu-
sion (5.11), we obtain

Pu

�
�(R)

� � (1� �)` Pu

�
�

1

(⇢
1

)
� � (1� �)`+1,

where u 2 {�  r}. Choosing � > 0 su�ciently small, we obtain the required
inequality (5.7).
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5.2 Exponential tightness

Recall that the occupation measures ⇣k were defined by (1.20) and the concept
of exponential tightness is introduced in Definition 3.1. Given a subset ⇤ ⇢ H`,
we shall say that {⇣k} is exponentially tight uniformly in � 2 ⇤ if for any a > 0
there is a compact subset K ⇢ H` such that

lim sup
k!1

1
k

log sup
�2⇤

P�{⇣k 2 Kc}  �a.

Proposition 5.2. For any � > 0 and M > 0, the family {⇣k} is exponentially

tight uniformly with respect to � 2 ⇤(�,M).

Proof. In view of (1.19) and Lemma 3.2, it su�ces to construct a function
 : H ! [0,+1] with compact level sets and positive numbers c and C such
that4

E� exp
�
 (u

2

) + · · ·+  (uk)
�  Ceck for k � 1, � 2 ⇤(�,M), (5.14)

where {uk} stands for the trajectory of (1.1). We claim that inequality (5.14)
holds for  (u) = � log(1 + kukU ), with a su�ciently small � 2 (0, 1). Indeed,
the function  is continuous on U , and the embedding U ⇢ H is compact.
Hence,  has compact level sets. In view of the Cauchy–Schwarz inequality and
estimates (1.5) (with N = 0 and v = 0) and (1.10), we have

E� exp
✓ kX

n=2

 (un)
◆

= E�

kY

n=2

�
1 + kunkU

��

 E�

k�1Y

n=1

�
1 + kS(un)kU

���1 + k⌘n+1

kU

��

 ec1k E�

k�1Y

n=1

e2�p(un)

�
1 + kunk

�
2�

. (5.15)

Here and henceforth, we denote by ci positive constants not depending on k
and �. Using again the Cauchy–Schwarz inequality, the stabilisability of p,
and (1.8), for 4�  min{↵, �} we obtain

E� exp
✓ kX

n=2

 (un)
◆
 ec2k E�

k�1Y

n=1

�(un).

The required inequality (5.14) follows now from Lemma 7.1.
4We used also Lemma 6.2 in [JNPS12], according to which, for any random sequence, all

the occupation measures corresponding to various initial times are exponentially equivalent,
and therefore the exponential tightness for one of them implies the same property for all
others.
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5.3 Growth condition

As was mentioned in Section 1.4, the proof of Theorem 1.3 is based on an
application of Theorem 4.1. In this section, we introduce some auxiliary objects
entering the formulation of that result and check the growth condition; see (4.2).

For any integer m � 1, we define a function wm : H` ! [1,+1) by the
relation

wm(u) = �m(u1) + · · ·+ �m(u`), u = [u1, . . . , u`]. (5.16)

In what follows, to simplify notation, we shall often write w instead of wm.
Furthermore, for any integer R � 1, we denote by XR the direct product of `
copies of BU (R). Recall that, given V 2 Cb(H`), the generalised Markov semi-
group PV

k is defined by (1.23).

Proposition 5.3. For any V 2 Cb(H`), the measures PV
`+1

(u , ·), u 2 H`
, are

concentrated on U `
, and there exist two integers m

0

� 1 and R
0

� 1 such that

inequality (4.2) holds with Pk = PV
k , w = wm, and m � m

0

.

Let us note that if (4.2) holds for some integer m � 1, p : H ! R
+

is a
continuous function bounded on any ball, and X is a Banach space satisfying the
inclusions U ⇢ X and X b H, then the conclusion of the proposition remains
true if we define XR as the direct product of ` copies of {u 2 BX(R) : p(u)  R}.
Proof of Proposition 5.3. The fact that PV

`+1

(u , ·) is concentrated on U ` follows
immediately from (1.19) and (5.14). Replacing V by V � infH V , we can assume
without loss of generality that V � 0 and Osc(V ) = kV k1. The proof of (4.2)
is divided into three steps.

Step 1. We first show that it su�ces to prove the inequality

sup
k�0

kPV
k`wkL1w

kPV
k`1kR0

< 1. (5.17)

Indeed, suppose that (5.17) is established. Since V � 0, we have

e��(p�j)PV
p 1(u)  PV

j 1(u)  PV
p 1(u) for j  p, u 2 H`,

where � = kV k1. It follows that

e��(p�j)kPV
p 1kR0  kPV

j 1kR0  kPV
p 1kR0 for j  p. (5.18)

On the other hand, using inequality (7.1) with � = �u` and � replaced by �m,
it is easy to check that

PV
1

w(u)  e�w(u) + C
1

, u = [u1, . . . , u`] 2 H`,

whence it follows that

kPV
1

fkL1w  (e� + C
1

)kfkL1w for any f 2 L1w .

38



The semigroup property now implies that

kPV
p wkL1w  (e� + C

1

)p�jkPV
j wkL1w for j  p. (5.19)

Combining inequalities (5.18) and (5.19) with j = k` and p = k` + n, where
n 2 [1, `� 1] is an integer, we obtain the required inequality (4.2).

Step 2. We now show that

sup
k�0

kPV
k 1kL1w

kPV
k 1kR0

< 1, (5.20)

where w = wn, and n and R
0

are some positive integers. Indeed, let us find R
0

and n such that inequality (5.1) holds with R = R
0

, m = n, and a constant C >
0. We now write

PV
k 1(u) = Eu⌅V (k) = Eu

�
IGk

⌅V (k)
�

+ Eu

�
IGc

k
⌅V (k)

�
=: I

1

+ I
2

, (5.21)

where Gk = {⌧U (R
0

) > k} and ⌅V (k) = exp(V (u
1

)+· · ·+V (uk)). Since V � 0,
it follows from (5.1) that PV

k 1(u) � 1 for any u 2 H` and

I
1

 Eu⌅V

�
⌧U (R

0

)
�  Eu exp

�
�⌧U (R

0

)
�  C �n(u)  C �n(u) kPV

k 1kR0 .

Furthermore, in view of the strong Markov property, we have

I
2

 Eu

�
IGk

⌅V (⌧U (R
0

)) Eu(⌧U (R0))⌅V (k)
  Eu

�
e�⌧U (R0)

� kPV
k 1kR0 ,

where we write u(⌧U (R
0

)) instead of u⌧U (R0) to avoid triple subscript. Using
again (5.1) and substituting these inequalities into (5.21), we obtain (5.20).

Step 3. We claim that (5.17) holds with w = wm and su�ciently large
m � n. Indeed, let uk = Sk(u ; ⌘

1

, . . . , ⌘k) be the random variable defined
by (1.18). Using (5.4) and arguing by induction, it is straightforward to check
that

w
�
S`(u ; ⌘

1

, . . . , ⌘`)
�  {m,` �m(u`) + Cm,`

�
�m(⌘

1

) + · · ·+ �m(⌘`)
�

 {m,` w(u) + Cm,` w
�
[⌘

1

, . . . , ⌘`]
�
, (5.22)

where u = [u1, . . . , u`], and we set

{m,` =
X̀

j=1

(2qm)j , Cm,` = Cm

`�1X

j=0

(2qm)j .

It follows from (5.22) that

PV
k`w(u) = Eu

�
⌅V (k`)w

�
S`(u

(k�1)`; ⌘(k�1)`+1

, . . . , ⌘k`)
� 

 {m,` e`� Eu

�
⌅V ((k � 1)`)w(u

(k�1)`)
 

+ Cm,` e`� Eu

�
⌅V ((k � 1)`)w([⌘

(k�1)`+1

, . . . , ⌘k`])
 

 {m,` e`� PV
(k�1)`w(u) + C 0

m,` PV
(k�1)`1(u), (5.23)
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where we used the independence of ⌅V ((k� 1)`) and {⌘j , j > (k� 1)`} and set

C 0
m,` = `Cm,` e`� E�m(⌘

1

).

Let us choose m � n so large that { := {m,` e`� < 1. Taking the L1w -norm of
both sides of (5.23) and using inequality (5.20) (with is true for any m � n),
we derive

kPV
k`wkL1w  {kPV

(k�1)`wkL1w + C kPV
(k�1)`1kR0 ,

where C > 0 does not depend on k. Iterating this inequality and using the
relation kPV

0

wkL1w = 1 and the right-hand inequality in (5.18), we obtain

kPV
k`wkL1w  {k + C(1� {)�1kPV

k`1kR0 .

Since PV
k`1 � 1, this implies the required inequality (5.17).

5.4 Existence of an eigenvector

In this section, as further preparation of application of Theorem 4.1, we prove
the existence of an eigenvector for the operator PV ⇤

1

: M
+

(H`) ! M
+

(H`)
defined as the dual of PV

1

:

hf, PV ⇤
k µi = hPV

k f, µi, f 2 Cb(H`). (5.24)

To this end, we first introduce some notation. We define the kernel

PV
1

(u ,dv) = P `
1

(u ,dv)eV (v) (5.25)

and denote by PV
k (u ,dv) its iterations. Given a number s 2 [0, 1], let Hs be

the (complex) interpolation space [H,U ]s, so that H
0

= H, H
1

= U , and the
embedding Hs ⇢ H is compact for s 2 (0, 1]; see [Lun09]. The norm in Hs is
denoted by k · ks, and we write Bs(R) for the ball in Hs of radius R centred
at zero and B`

s(R) for the direct product of ` copies of Bs(R). Recall that the
function w = wm was defined by (5.16).

Proposition 5.4. For any V 2 Cb(H`) the operator PV ⇤
1

has at least one

eigenvector µ 2 P(H`) with a positive eigenvalue � :

PV ⇤
1

µ = �µ. (5.26)

Moreover, any such eigenvector is concentrated on U `
and satisfies the following

inequality for any integer n � 1 and some positive numbers { and s = sn  1:

Z

H`

✓
kukn

s +
X̀

j=1

e{ �(uj
)

◆
µ(du) < 1. (5.27)

Finally, for any k � 0, we have

kPV
k wkL1(B`

s(R))

Z

B`
s(R)

c

w(u)µ(du) ! 0 as R !1. (5.28)
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Proof. Step 1: A priori estimate. We first prove that any eigenvector of PV ⇤
1

is
concentrated on U ` and satisfies (5.27) (so that it belongs to Pwm(H`) for any
m � 1). Indeed, let µ 2 P(H`) be a solution of (5.26) with some � > 0. Then,
for any integer k � 1 and any non-negative function f : H` ! R, we have

Z

H`

f(v) µ(dv) = ��k

Z

H`

µ(dv)
Z

H`

PV
k (v ,du)f(u)

 ��kekkV k1
Z

H`

E f
�
Sk(v ; ⌘

1

, . . . ⌘k)
�
µ(dv)

= ��kekkV k1
Z

H`

µ(dv)
Z

H`

P `
k(v ,du)f(u). (5.29)

Taking k = 1 and f(v) = g(vj) with j = 1, . . . , ` � 1, where g : R ! R is any
non-negative function, and using (1.17), we see that

Z

H`

g(vj)µ(dv)  ��1ekV k1
Z

H`

g(vj+1) µ(dv).

Iterating this inequality, for j = 1, . . . , `� 1 we obtain
Z

H

g(v)µj(dv) =
Z

H`

g(vj)µ(dv)  �j�`e(`�j)kV k1
Z

H

g(v)µ`(dv),

where µj stands for the jth marginal of µ. In particular, to prove (5.27), it
su�ces to show that

Z

H

�kzkn
s + e{�(z)

�
µ`(dz) < 1. (5.30)

Taking again k = 1 and f(v) = g(v`) in (5.29), we see that

hg, µ`i  ��1ekV k1
Z

H

E g
�
S(z) + ⌘

1

�
µ`(dz). (5.31)

For g(z) = e{�(z), using (1.4) and (1.8), we obtain

he{�, µ`i  C
1

he{�, µ`iq,
where C

1

= ��1ekV k1E eC{�(⌘1). Hence, taking { > 0 so small that C{  �,
we obtain5

he{�, µ`i =
Z

H

e{�(z)µ`(dz)  C
2

. (5.32)

We have thus proved that the integral of the second term in (5.30) is finite. To
derive a bound for the integral of the first term, we use (1.11) and (1.12) to
write

Eµ exp
�
�
�
p(u1

`) + · · ·+ p(u`
`)
�  ec`

Z

H

e⇢ �(z)µ`(dz), (5.33)

5The derivation of (5.32) is formal. To obtain an accurate justification, it su�ces to apply
the above argument to bounded approximations of e{� and then pass to the limit with the
help of the Fatou lemma.
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where uk = [u1

k, . . . , u`
k] is the trajectory of (1.18). Decreasing, if necessary, the

number � > 0, we can assume that ⇢ is no larger than the constant { in (5.32).
We see that the left-hand side of (5.33) is finite. On the other hand, in view
of the equality in (5.29) with k = ` and f(v) = exp{�(p(v1) + · · ·+ p(v`))}, we
have

C
3

:=
Z

H`

exp
�
�
�
p(v1) + · · ·+ p(v`)

� 
µ(dv) < 1. (5.34)

It follows from (1.3) and (1.4) that

kS(v)k  C
4

(�(v)1/↵ + 1), v 2 H. (5.35)

Furthermore, using (1.5) and the inclusion S(0) 2 U , we see that

kS(v)kU  ep(v)kvk+ C
5

. (5.36)

Combining (5.36) and (5.35), using the right-hand inequality in (1.3), and in-
terpolating between H and U , we derive

kS(v)kn
s  C

6

�
�m(v) + e2snp(v) + 1

�
, (5.37)

where m � 2n/↵ is an integer. Using again the interpolation inequality, we see
that

kS(v) + ⌘
1

kn
s  C

7

�
�m(v) + e2snp(v) + k⌘

1

k2sn
U + k⌘

1

k2n + 1
�
. (5.38)

Taking the mean value, integrating over µ`(dv), and recalling (5.31), we obtain
Z

H

kukn
s µ`(du)  ��1ekV k1

Z

H

E kS(v) + ⌘
1

kn
s µ`(dv)

 C
8

�h�m + e2snp, µ`i+ E k⌘
1

k2sn
U + E k⌘

1

k2n + 1
�

< 1,

where we chose s 2 (0, 1] so small that 2sn  min{1, �} and used inequali-
ties (1.8), (1.10), (5.32), and (5.34). This completes the proof of (5.30) and
that of (5.27). The latter estimate also implies that µ 2 Pwm

(H`) for any
m � 1.

It remains to prove that µ(U `) = 1. In view of (1.17) and (1.10), it su�ces
to check that S(v) 2 U almost surely for any random variable v whose law
coincides with µ`. It follows from (5.36) and (5.34) that, for any R > 0,

E
�
IBH(R)

kS(v)k�
U

�  R� E e�p(v) + C�
5

 R�C
3

+ C�
5

.

Since R > 0 is arbitrary, this inequality proves that S(v) 2 U almost surely.
Step 2: Decay. Let us show that (5.27) implies (5.28). Indeed, it follows

from (1.19) and (7.1) (with � replaced by �m) that

kPV
k wkL1(B`

s(R))

 ekkV k1 sup
u2B`

s(R)

Euw(uk)  C
9

(k) sup
u2BH(R)

�m(u). (5.39)
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On the other hand, we have (B`
s(R))c ⇢ [`

j=1

�j(R), where

�j(R) = {[u1, . . . , u`] 2 H` : uj /2 Bs(R)}.
Using the Cauchy–Schwarz inequality, we derive

Z

B`
s(R)

c

w(u)µ(du) 
X̀

j=1

Z

�j(R)

w(u)µ(du)

 hw2, µi1/2

X̀

j=1

µ
�
�j(R)

�
1/2

. (5.40)

It follows from (5.27) and the Chebyshev inequality that hw2, µi < 1 and

µ
�
�j(R)

�
= µj

�
Bs(R)c

�  C
10

(n)R�n.

Combining this with (5.40), (5.39), and the right-hand inequality in (1.3) and
choosing n > m�, we obtain (5.28).

Step 3: Construction of eigenvector. To construct a measure µ 2 P(H`)
satisfying (5.26), we first remark that it su�ces to construct an eigenvector
for PV ⇤

` . Indeed, suppose that µ0 2 Pw(H`) is an eigenvector for PV ⇤
` with an

eigenvalue �0 > 0. Then

(PV ⇤
1

� �)µ = 0, µ = c
�
PV ⇤

`�1

+ �PV ⇤
`�2

+ · · ·+ �`�1I
�
µ0,

where � = (�0)1/`, and c > 0 is a normalising constant chosen so that µ(H`) = 1.
To construct an eigenvector for PV ⇤

` , we use the Leray–Schauder fixed point
theorem; e.g., see Chapter 14 in [Tay97]. Let us fix s 2 (0, 1], { > 0, and n � 1,
and given A > 0, define the convex set

DA,m =
�
⌫ 2 P(H`) : hwm, ⌫i  A

 
.

A simple application of the Fatou lemma shows that DA,m is closed in P(H`).
Let us define a continuous mapping G : DA,m ! P(H`) by the relation

G(⌫) =
PV ⇤

` ⌫

PV ⇤
` ⌫(H`)

.

We claim that G(DA,m) ⇢ DA,m for an appropriate choice of A and m, and
that G(DA,m) is relatively compact in P(H`). Once this is proved, the existence
of a measure µ 2 DA,m satisfying (5.26) will follow from the Leray–Schauder
theorem.

It follows from (5.22) and (1.8) that

⌦
wm, G(⌫)

↵  exp{`OscH(V )}
Z

H`

E wm

�
S`(u ; ⌘

1

, . . . , ⌘`)
�
⌫(du)

 {m,` exp{`OscH(V )}hwm, ⌫i+ C
11

. (5.41)
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Since {m,` ! 0 as m ! 1, we conclude that G(DA,m) ⇢ DA,m if A � 2C
11

and m � 1 is su�ciently large. In view of the Prokhorov compactness criterion
(see Theorem 11.5.4 in [Dud02]), to prove that G(DA,m) is relatively compact
it su�ces to check that

Z

H`

kuks⌫
0(du)  C

12

for any ⌫0 2 G(DA,m), (5.42)

where s > 0. It follows from (1.19) and the boundedness of V that inequal-
ity (5.42) will be established if we prove that, for su�ciently large m � 1 and
A > 0, Z

H

kuks(P⇤
k⌫)(du)  C

13

for ⌫ 2 P(H), h�m, ⌫i  A, (5.43)

where 1  k  `. Inequality (7.1) with � replaced by �m implies that if
⌫ 2 P(H) is such that h�m, ⌫i  A with A � 1, then h�m,P⇤

k⌫i  A for
k � 1. Thus, it su�ces to prove (5.43) for k = 1. To this end, it su�ces to take
the mean value of both sides of (5.38) and to integrate in ⌫(dv). The proof of
Proposition 5.4 is complete.

5.5 Multiplicative ergodic theorem

In this section, we apply Theorem 4.1 to obtain a detailed description of the
large-time behaviour of the semigroups {PV

k } and {PV ⇤
k }. This results will be

used in the next two subsections to establish Properties 1 and 2 of Section 1.4
needed to prove Theorem 1.3.

We first introduce some notation. Recall that the orthonormal basis {ej}
was defined in Condition (C) (see Section 1.1). We denote by V the set of
functions V 2 Cb(H`) that can be represented in the form

V (u) = F (PNu), PNu = [PNu1, . . . ,PNu`], (5.44)

where N � 1 is an integer and F 2 C1

b (H`
N ). It is straightforward to check

that V is a vector space containing constant functions such that the intersection
C = V \ C

+

(H`) is a determining family for P(H`).

Theorem 5.5. Let us assume that the hypotheses of Theorem 1.3 are satisfied.

Then, for any V 2 V, there is an integer m
0

= m
0

(V ) � 1 such that the

following assertions hold for m � m
0

:

Existence and uniqueness. The measure µ = µV constructed in Proposi-

tion 5.4 is the only eigenvector of PV ⇤
1

belonging to Pwm
(H`). Moreover,

the operator PV
1

has a unique eigenvector hV in Cwm
(H`)\C

+

(H`) nor-

malised by the condition hhV , µV i = 1.

Convergence. For any f 2 Cwm
(H`), ⌫ 2 Pwm

(H`), and R > 0, we have

��k
V PV

k f ! hf, µV ihV in Cb(B`(R)) \ L1(H`, µV ) as k !1, (5.45)

��k
V PV ⇤

k ⌫ ! hhV , ⌫iµV in M
+

(H`) as k !1. (5.46)
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Proof. We shall show that the hypotheses of Theorem 4.1 are satisfied for an
appropriate choice of compact sets XR ⇢ H` and the function w = wm de-
fined in (5.16). The conclusions of that theorem, combined with some simple
arguments, will imply all required results.

Step 1: Framework and sketch. Let us fix a function V 2 V. We apply
Theorem 4.1 in which

X = H`, XR =
�
Bs(R) \ {p  R}�`

, P (u ,dv) = P `
1

(u ,dv)eV (v), (5.47)

where s 2 (0, 1] will be chosen later and {p  R} = {u 2 H : p(u)  R}. In par-
ticular, the semigroups PV

k and PV ⇤
k are given by (1.23) and (5.24), respectively.

The subset X1 = [R�1

XR coincides with (Hs)` � U `, which is dense in X.
The weight function w : X ! R

+

is defined by (5.16) and is continuous on X.
As is proved in Proposition 5.3, if the integers m � 1 and R

0

� 1 are su�ciently
large, then the growth condition (4.2) is satisfied, and Proposition 5.4 ensures
the existence of an eigenvector µ 2 Pw(H`) for PV ⇤

1

, which satisfies (5.27)
and (5.28). Thus, to apply Theorem 4.1, we need to check the uniform Feller
and irreducibility properties (see Step 2 below). Once it is done, we can conclude
that PV

1

has an eigenvector hV 2 L1w (X) whose restriction to XR is continuous
and strictly positive for any R � 1. We show in Step 3 that hV is continuous
and positive on X and, therefore, belongs to Cw(X). The uniqueness of eigen-
vectors for PV

1

and PV ⇤
1

in the spaces Cw(X)\C
+

(X) and Pw(X), respectively,
follow immediately from convergences (5.45) and (5.46), of which the second is
a straightforward consequence of the first. The proof of (5.45) is carried out in
Steps 4 and 5.

Step 2: Uniform Feller and irreducibility properties. The uniform Feller
property is the crucial step of the proof and will be established in Section 6
with the help of a coupling construction. Let us prove the uniform irreducibility.
Since V is bounded, we have

PV
k (u ,dv) � e�kkV k1P `

k(u ,dv) for any u 2 X.

Thus, in view of continuity of p, it su�ces to prove that, for any integers ⇢, R � 1
and any r > 0, there exists an integer l � 1 and a positive number p = p(⇢, r)
satisfying the inequalities

Pu

�ku l � ûks  r,u l 2 X⇢

 � p for any u 2 XR, û 2 X⇢. (5.48)

This type of result is well known in the theory of randomly forced PDE’s (e.g.,
see Proposition 4.6 in [KS01]), and we only outline its proof.

In view of (1.19), inequality (5.48) will be established if we show that

Pu

�kul+j � ûjks  r, ul+j 2 Bs(⇢) for j = 1, . . . , `
 � p, (5.49)

where {uk} is the trajectory of (1.1), u 2 BH(R) and û
1

, . . . û` 2 Bs(⇢)
are arbitrary vectors. It follows from (7.1) that, for su�ciently large bR > 0
and bm(R) � 1, the probability of transition, at time bm(R), from any point
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u 2 BH(R) to the ball BH( bR) is no less than 1/2. Therefore, in view of the
Kolmogorov–Chapman relation, it su�ces to prove (5.49) for u 2 BH( bR) and
l = 1. The argument used in the derivation of (5.14) (see (5.15) with k = `+1)
shows that, for a su�ciently large K > 0, we have

Pu

�kS(uj)kU  K for j = 1, . . . , `
 � 1

2
. (5.50)

Furthermore, since the law of ⌘k is concentrated on U , it follows from (1.10)
that

P{kw + ⌘
1

� v̂ks  r} � "r for w 2 BU (K), v̂ 2 Bs(⇢),

where s 2 (0, 1) is any number, and "r > 0 depends only on s, K, and ⇢.
Combining this with (5.50) and the Markov property, we obtain (5.49) with
l = 1 and p

1

= "`
r.

Step 3: Positivity and continuity of hV . Since hV is an eigenvector of PV
1

with the eignevalue �V , we have

hV (u) = ��`�1

V Eu

�
exp

�
V (u

1

) + · · ·+ V (u`+1

)
�
hV (u`+1

)
 

� ��`�1

V e�(`+1)kV k1 EuhV (u`+1

). (5.51)

In view of (5.14), for any u 2 X, the vector function u`+1

belongs to U `

with Pu -probability 1. Since hV is positive on X1 = (Hs)`, we see that the
expectation on the right-hand side of (5.51) is positive, whence it follows that
hV (u) > 0 for any u 2 X.

To prove the continuity of hV , let us set ~⌘k = (⌘
1

, . . . , ⌘k) and denote by
f(u , ~⌘`+1

) the expression under the expectation Eu in the first line of (5.51).
Given two initial points u , v 2 X and a number R > 0, we introduce the event

GR(u , v) = {p(u1

`) + · · ·+ p(u`
`) + p(v1

` ) + · · ·+ p(v`
`)  R},

where uk and vk are the trajectories of (1.18) corresponding to the initial
points u and v . It follows from (1.11) that when u and v vary in a bounded
set in X, the probability of (GR)c goes to zero as R ! 1. Now note that, in
view of the first line in (5.51),

|hV (u)� hV (v)|  ��`�1

V E
�
IGR(u,v)

��f(u , ~⌘`+1

)� f(v , ~⌘`+1

)
�� 

+ C
1

P(GR(u , v)c)1/2

�
P`+1

h2

V (u) + P`+1

h2

V (v)
�
1/2

, (5.52)

where C
1

depends only on kV k1. Since h2

V 2 L1w2m
, it follows from inequal-

ity (5.22) (with ` and m replaced by `+1 and 2m, respectively) that the second
term on the right-hand side of (5.52) goes to zero as R ! 1, uniformly with
respect to u and v varying in a bounded set in X. Since V is bounded and
hV 2 L1w (X), it follows from inequality (5.22) with ` replaced by `+ 1 that

|f(u ; ~⌘`+1

)� f(v ; ~⌘`+1

)|  C
2

�
w(u) + w(v) + �m(⌘

1

) + · · ·+ �m(⌘`+1

)
�
.
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The right-hand side of this inequality an integrable function, and by the Lebesgue
theorem on dominated convergence, the continuity of hV will be established if
we prove that, with probability 1,

IGR(u,v)

|f(u ; ~⌘`+1

)� f(v ; ~⌘`+1

)|! 0 as u ! v in X.

To this end, recall that V is continuous on X and that the restriction of hV

to X1 is also continuous. Thus, it su�ces to prove

IGR(u,v)

kS`+1

(u , ~⌘`+1

)� S`+1

(v , ~⌘`+1

)ks ! 0 as u ! v .

In view of (1.19), this is equivalent to the almost sure convergence

IGR(u,v)

`+1X

k=2

kSk(u`, ~⌘k)� Sk(v`, ~⌘k)ks ! 0 as u ! v , (5.53)

where Sk stands for the trajectory of (1.1) at time k. To prove (5.53), let us
note that, in view of (1.5), on the set GR(u , v) we have

kSk(u`, ~⌘`+1

)� Sk(v`, ~⌘`+1

)kU  eRkSk�1

(u`, ~⌘k�1

)� Sk�1

(v`, ~⌘k�1

)k.

The continuity of S : H ! H implies that the mapping u 7! Sk(u, ~⌘k) is also
continuous on H, and the last inequality proves the required convergence (5.53).

Step 4: Proof of (5.45) for bounded continuous functions. In view of (4.7),
for any f 2 V we have

��k
V PV

k f ! hf, µV ihV as k !1, (5.54)

where the convergence holds in C(XR)\L1(X,µV ). We claim that it holds also
in C(B`(R)). Indeed, in view of (4.9), it su�ces to check condition (4.8) with
B = B`(R) and m = `+1. The latter is a consequence of the boundedness of V ,
inequality (5.19) with j = 0, and the following lemma, which is established at
the end of this subsection. 6

Lemma 5.6. Under the hypotheses of Theorem 1.3, for any integer n � 1 there

is s = sn 2 (0, 1] such that

sup
k�`+1

E� kukkn
s  C(n, �, M) for � 2 ⇤(�,M), (5.55)

where � and M are arbitrary positive numbers.

We have thus established (5.45) for f 2 V. To prove (5.45) for any function
f 2 Cb(X), we apply a simple approximation argument. Namely, the conver-
gence in L1(X,µV ) is a straightforward consequence of convergence in C(B`(R))
and inequalities (5.27) and (4.2). To prove the convergence in the L1 norm,

6Recall that the set ⇤(�, M) is defined in Section 1.4.
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we fix a number R > 0 and a function f 2 Cb(X) and choose a sequence of
C1-functions f̃n : H`

n ! R such that

sup
v2H`

n,kvkn

|f̃n(v)� f(v)|  1
n

for any n � 1.

Then the functions fn = f̃n � Pn belong to the space V, satisfy the inequality
kfnk1  kfk1 for any n � 1, and fn ! f as n ! 1, uniformly on compact
subsets of X. Setting

�k(g) = sup
u2B`

(R)

����k
V PV

k g(u)� hg, µV ihV (u)
��, kgkL1R

= sup
u2B`

(R)

|g(u)|,

for any integers k, n � 1, we write

�k(f)  �k(fn) + khV kL1R
|hf � fn, µV i|+ ��k

V kPV
k (f � fn)kL1R

. (5.56)

Since fn 2 V, for any fixed n � 1 the first term on the right-hand side of
this inequality goes to zero as k ! 1. The Lebesgue theorem on dominated
convergence implies that |hf � fn, µV i| ! 0 as n ! 1. Thus, the required
convergence will be established if we prove that

sup
k�1

��k
V kPV

k (f � fn)kL1R
! 0 as n !1. (5.57)

To prove (5.57), for any ⇢ > 0 we write

kPV
k (f � fn)kL1R

 J
1

(k, n, ⇢) + J
2

(k, n, ⇢), (5.58)

where

J
1

(k, n, ⇢) = kPV
k

�
(f � fn)IX⇢

���
L1R

, J
2

(k, n, ⇢) = kPV
k

�
(f � fn)IXc

⇢

�kL1R
.

Since fn ! f uniformly on X⇢, we have

J
1

(k, n, ⇢)  "(n, ⇢) kPV
k 1kL1R

,

where "(n, ⇢) ! 0 as n ! 1. Convergence (5.45) with f = 1 implies that
the L1R -norm of the sequence ��k

V PV
k 1 is bounded by a constant CR, whence it

follows that

sup
k�1

��k
V J

1

(k, n, ⇢)  CR "(n, ⇢) ! 0 as n !1. (5.59)

To estimate J
2

, we use the following result, proved at the end of this subsection.

Lemma 5.7. Assume that the hypotheses of Theorem 1.3 are satisfied. Then,

for any s 2 (0, 1], we have

sup
k�0

kPV
k FskL1w

kPV
k 1kR0

< 1,

where Fs(u) = log(1 + kuks).
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Using this lemma, for any k, ⇢, n � 1 we get

��k
V J

2

(k, n, ⇢)  2kfk1
�
log(1 + ⇢)

��1

��k
V kPV

k FskL1R

 CRkfk1
�
log(1 + ⇢)

��1

��k
V kPV

k 1kR0 .

Since ��k
V kPV

k 1kR0 is bounded, the right-hand side of this inequality goes to
zero as ⇢! +1, uniformly with respect to k � 1. Combining this with (5.59),
we see that supremum over k � 1 of the right-hand side of (5.58) can be made
arbitrarily small by choosing first ⇢ > 0 and then n � 1 su�ciently large. This
proves the required convergence (5.57).

Step 5: Proof of (5.45) for f 2 Cw(X). We apply an approximation ar-
gument similar to the one used in the previous step. Let us fix a function
f 2 Cw(X) and define a sequence {fn} by the relation fn = f+ ^ n � f� ^ n.
Then fn 2 Cb(X) and |fn|  |f | for any n � 1 and fn ! f in L1wp

(X) for any
p > m. Now note that inequality (5.56) remains valid. Furthermore, in view
of (5.45) and the Lebesgue theorem on dominated convergence, we have

�k(fn) ! 0 as k !1 for any fixed n � 1,

|hf � fn, µV i|! 0 as n !1.

To prove that (5.57) holds, we set w0 = wm+1

and write

kPV
k (f � fn)kL1R

 �n kPV
k w0kL1R

(5.60)

where �n = kf � fnkL1
w0
! 0 as n ! 1. It follows from (4.2) with w replaced

by w0 that
kPV

k w0kL1R
 C

4

(R)kPV
k 1kR0 .

Substituting this inequality into (5.60) and recalling that (5.45) holds with f = 1

(and, hence, the sequence ��k
V kPV

k 1kR0 is bounded), we obtain (5.57). This
completes the proof of Theorem 5.5.

The following corollary of Theorem 5.5 will be important for proving that
the LDP holds uniformly with respect to a class of initial measures.

Corollary 5.8. Under the hypotheses of Theorem 5.5, for any positive num-

bers � and M and any functions V 2 V and f 2 C1
w , the convergence

��k
V E⌫

�
exp

�
V (u

1

) + · · ·+ V (uk)
�
f(uk)

 ! hf, µV i hhV , ⌫i, k !1, (5.61)

holds uniformly in ⌫ 2 ⇤(�,M).

Proof. By Theorem 5.5, convergence (5.61) holds for ⌫ = �u , uniformly with
respect to u 2 B`(R) for any R > 0. It is easily seen that the required result
with be established if we prove that, uniformly in � 2 ⇤(�,M),

sup
k�1

⇢Z

X

IB`
(R)

c

����k
V PV

k f � hf, µV ihV

�� d⌫
�
! 0 as R !1. (5.62)
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To see this, let us note that, by (4.2) and (5.45), we have

kPV
k fkL1w  C

1

kPV
k 1kR0  C

2

�k
V for all k � 1.

It follows that
����k

V PV
k f(u)

��  C
2

w(u), u 2 X, k � 0.

Since hV 2 Cw(X) and

sup
⌫2⇤(�,M)

Z

X

IB`
(R)

c(u) w(u) ⌫(du) ! 0 as R !1,

we obtain the required convergence (5.62).

Proof of Lemma 5.6. In view of (1.19), it su�ces to prove that

sup
k�2

E�kukkn
s  C(�,M) for any � 2 ⇤(�,M). (5.63)

It follows from inequality (5.38) with (v, ⌘
1

) replaced by (uk�1

, ⌘k) that

kukkn
s  C

1

�
�m(uk�1

) + e2snp(uk�1) + k⌘kk2sn
U + k⌘kk2n + 1

�
. (5.64)

Taking the mean value with respect to E� and using the Markov property and
inequalities (1.8), (1.10), (1.11), and (1.12), for su�ciently small s > 0 we derive

E�kukkn
s  C

2

�
E��m(uk�1

) + ec E�e{�(uk�2) + 1
�
. (5.65)

Recalling (7.3), we arrive at the required inequality (5.63).

Proof of Lemma 5.7. It follows from inequality (5.64) with n = 1 that

Fs(uk)  �(uk�1

) + 2sp(uk�1

) + k⌘kkU + C
1

.

Multiplying both sides of this inequality by exp(V (u
1

) + · · · + V (uk)), apply-
ing the mean value Eu , and using the Markov property and inequalities (1.10)
and (7.1), we derive

(PV
k Fs)(u)  e2kV k1

�
PV

k�2

�+ 2 PV
k�2

(P
1

p) + C
2

PV
k�2

1

�
(u). (5.66)

In view of (1.11), (1.12), and the Jensen inequality, we have

P
1

p(u) = Eup(u
1

)  1
�

log Ee�p(u1)  1
�
(⇢�(u) + c).

Substituting this into (5.66) and using (4.2), we see that the L1w -norm of the
right-hand side can be estimated by kPk1kR0 .
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5.6 Pressure function

We now prove that, for any V 2 Cb(H`), � > 0 and M > 0, the limit (1.21) exists
uniformly with respect to � 2 ⇤(�,M). Indeed, when V 2 V, this property
follows from Corollary 5.8 applied to the function f = 1. To deal with the
general case, we need the concept of buc-convergence. Following [FK06], we say
that a sequence {Vn} ⇢ Cb(X) buc-converges to V 2 Cb(X) if supn kVnk1 < 1
and kV � VnkL1(K)

! 0 as n !1 for any compact set K ⇢ X.7
We claim that the existence of a limit (1.21), uniformly with respect to

� 2 ⇤(�,M), follows immediately from the following two properties:

(a) In the setting of Section 3, let {⇣✓} be an exponentially tight family of
random probability measures. Then the set of functions V 2 Cb(X) for
which limit (3.1) exists is buc-closed.

(b) Let X = H` and let V ⇢ Cb(X) be the subspace defined above. Then any
function V 2 Cb(X) can be buc-approximated by a sequence {Vn} ⇢ V.

Indeed, taking these properties for granted, let us define the set ⇥ = N⇥⇤(�,M)
of elements ✓ = (k,�) with an order relation � such that (k

1

,�
1

) � (k
2

,�
2

)
if and only if k

1

 k
2

. Denote by ⇣✓ the random measure ⇣k (see (1.20))
considered on the probability space (⌦,F , P�). It is straightforward to check
that the existence of limit (1.21) uniformly with respect to � 2 ⇤(�,M) is
equivalent to the existence of the limit

lim
(k,�)2⇥

1
k

log
Z

⌦

exp
�
khV, ⇣ki

�
dP�. (5.67)

As was mentioned above, this limit exists for V 2 V. By property (a), the set
of functions for which (5.67) exists is buc-closed in Cb(H`), and by (b), any
function V 2 Cb(H`) can be buc-approximated by a sequence from V. Hence,
limit (1.21) exists uniformly in � 2 ⇤(�,M) (with arbitrary positive � and M)
for any V 2 Cb(H`). Thus, it remains to establish properties (a) and (b).

Proof of (a). To any function V 2 Cb(X) there corresponds a bounded con-
tinuous function eV : P(X) ! R defined by eV (⌫) = hV, ⌫i. By Proposition 3.17
in [FK06], the set of bounded continuous functions F : P(X) ! R for which
the limit

lim
✓2⇥

1
r(✓)

log
Z

⌦✓

exp
�
r(✓)F (⇣✓)

�
dP✓

exists is buc-closed8 in Cb(P(X)). Thus, it su�ces to prove that if a sequence
{Vn} ⇢ Cb(X) buc-converges to V , then {eVn} buc-converges to eV in Cb(P(X)).

To see this, we first note that {eVn} is bounded in Cb(P(X)). Now fix a
compact set K ⇢ P(X) and a number " > 0, and use the Prokhorov compactness

7Note that the concept of buc-convergence can be defined on any Polish space.
8Proposition 3.17 in [FK06] deals with the case when ⇥ = N. However, the proof presented

there remains valid for exponentially tight families of random measures indexed by a directed
set.
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criterion to find a compact subset K" ⇢ X such that ⌫(Kc
") < " for any ⌫ 2 K.

We have

|hV � Vn, ⌫i| 
Z

K"

|V (u)� Vn(u)|⌫(du) +
Z

Kc
"

|V (u)� Vn(u)|⌫(du)

 kV � VnkL1(K")

+ "
⇣
kV k1 + sup

n�1

kVnk1
⌘
,

where ⌫ 2 K. The right-hand side of this inequality can be made arbitrarily
small by choosing n � 1 and "⌧ 1.

Proof of (b). Given V 2 Cb(H`), we define Vn(u) = V (Pnu). Then Vn 2 V
and kVnk1  kV k1 for any n � 1. Let K ⇢ H` be a compact set. Since {Pn}
converges to identity in the strong operator topology, and the strong convergence
is uniform on compact subsets, we see that kVn(u)�V (u)kL1(K)

! 0 as n !1.
This completes the proof of Property 1.

5.7 Uniqueness of equilibrium state

In this section, we show that, for any V 2 V, there is a unique equilibrium
state �V 2 P(H`) for Q`(V ). Recall that the pressure function Q` : Cb(H`) ! R
is 1-Lipschitz continuous and convex and that I` : M(H`) ! R stands for its
Legendre transform. It follows from (5.45) and the positivity of hV that

Q`(V ) = log �V = lim
k!1

1
k

log(PV
k f)(u), (5.68)

where f 2 Cw(H`) \ C
+

(H`) and u 2 H` are arbitrary.
We define a semigroup S V

k by (1.26) and denote by S V ⇤
k : P(H`) ! P(H`)

its dual semigroup. As in the case of Pk, we can consider the corresponding
generalised Markov semigroup (cf. (1.23)):

(SF
1

f)(u) = S V
1

(eF f), SF
k = (SF

1

)k,

where F 2 Cb(H`) is a fixed function. It is straightforward to check that
SF

1

f = ��1

V h�1

V PV +F
1

(hV f), whence it follows that

SF
k f = ��k

V h�1

V PV +F
k (hV f), k � 0. (5.69)

Combining this relation with Theorem 5.5, we see that the pressure function QV
`

is well defined for S V
k :

QV
` (F ) = lim

k!1

1
k

log(SF
k 1)(u), F 2 Cb(H`), u 2 H`.

Denote by IV
` : M(H`) ! R its Legendre transform. We shall use the following

well-known characterisation of a stationary measure; see Lemma 2.5 in [DV75].

Lemma 5.9. We have IV
` (�) = 0 for some � 2 P(H`) if and only if � is a

stationary measure for S V ⇤
1

.
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Convergence (5.45) implies the uniqueness of a stationary measure for S V ⇤
1

.
More precisely, we have the following result.

Lemma 5.10. The semigroup S V ⇤
k has a unique stationary measure, which is

given by ⌫V = hV µV .

Proof. The relation ⌫V (H`) = hhV , µV i = 1 implies that ⌫V 2 P(H`). For any
g 2 Cb(H`), we have

hS V
1

g, ⌫V i = ��1

V hPV
1

(ghV ), µV i = hghV , µV i = hg, ⌫V i,

whence it follows that ⌫V is a stationary measure for S V ⇤
1

. Furthermore, ap-
plying (5.45) to ghV 2 Cwm(H`), for any R > 0 we get

S V
k g ! hg, ⌫V i in Cb(BH`(R)) as k !1.

Since g is arbitrary, we see that S V ⇤
k � ! ⌫V in M

+

(H`) as k ! 1 for any
� 2 P(H`), whence we conclude that ⌫V is the unique stationary measure
for S V ⇤

k .

We are now ready to prove the existence and the uniqueness of equilibrium
state. Relations (5.68) and (5.69) imply that

QV
` (F ) = Q`(V + F )�Q`(V ).

It follows that

IV
` (�) = sup

F2Cb(H`
)

�hF,�i �QV
` (F )

�
= I`(�) + Q`(V )� hV,�i

for any � 2 P(H`). Using Lemmas 5.9 and 5.10, we conclude that the relation

I`(�) = hV,�i �Q`(V )

holds if and only if � = ⌫V . Thus, ⌫V is the unique equilibrium state.

5.8 Completion of the proof

Let us fix positive numbers � and M . As was explained in Section 1.4, the LDP
for the occupation measures (1.15) (which is uniform with respect to the initial
measure � 2 ⇤(�,M)) will be established if we prove the uniform LDP for the
measures ⇣k given by (1.20). Recall that the directed set ⇥ of pairs ✓ = (k,�),
k 2 N, � 2 ⇤(�,M) was defined in Section 5.6 and that convergence in ✓ 2 ⇥ is
equivalent to the convergence as k !1, which is uniform in � 2 ⇤(�,M). By
Theorem 3.3, it su�ces to prove the following three properties:

(a) The family {⇣k} satisfies the hypotheses of Lemma 3.2.

(b) Limit (1.21) exists uniformly in � 2 ⇤(�,M).
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(c) The equilibrium state is unique for any function V that belongs to a vector
space V ⇢ Cb(H`) whose restriction to any compact set K ⇢ H` is dense
in C(K).

The validity of (a) was proved in Section 5.2, and the existence of a uniform
limit (1.21) was established in Section 5.6. As was shown in Section 5.7, the
equilibrium state is unique for the functions V of the form (5.44). Since these
functions form a vector space which is determining for P(H`), their restrictions
to any compact subset K ⇢ H` must be dense in C(K). Thus, properties
(a)–(c) are established, and to complete the proof of Theorem 1.3 we need to
establish the uniform Feller property used in Section 5.5. This is done in the
next section.

6 Uniform Feller property

6.1 Coupling

In this section, we recall a coupling construction for trajectories of system (1.1)
(see Section 3.2.2 in [KS12]). We shall always assume that the hypotheses of
Theorem 1.3 are satisfied.

As was mentioned after the formulation of Condition (B), the sequence of
finite-dimensional subspaces {HN} can be chosen arbitrarily. From now on, we
assume that HN is the vector span of e

1

, . . . , eN , where {ej} is the orthonormal
basis entering the decomposition of the random variables ⌘k; see (1.6). In this
case, the law of PN⌘1

has a density D against the Lebesgue measure:

D(v) =
NY

i=1

b�1

i pi(b�1

i xi), v = (x
1

, . . . , xN ) 2 HN .

For any u 2 H, let us denote by ⌫u the law of PN (S(u) + ⌘
1

). The following
result is Lemma 3.2.6 in [KS12].

Lemma 6.1. For any integer N � 1, there is a probability space (⌦,F , P) and

two families of H-valued random variables ⇣ = ⇣(v, v0,!) and ⇣ 0 = ⇣ 0(v, v0,!)
with v, v0 2 H such that the following properties hold.

(i) The laws of ⇣ and ⇣ 0 coincide with that of ⌘
1

.

(ii) The random variables (PN⇣,PN⇣
0) and (QN⇣,QN⇣

0) are independent. Fur-

thermore, the random variables QN⇣ and QN⇣
0
are equal for all ! 2 ⌦ and

do not depend on (v, v0).

(iii) The pair

V = PN (S(v) + ⇣), V 0 = PN (S(v0) + ⇣ 0)

is a maximal coupling for (⌫v, ⌫v0) and

P{V 6= V 0}  CNkS(v)� S(v0)k for any v, v0 2 H. (6.1)

54



(iv) The random variables ⇣ and ⇣ 0 are measurable functions of (v, v0,!) 2
H ⇥H ⇥ ⌦.

Using this result, we now define coupling operators by the formulas

R(v, v0,!) = S(v) + ⇣(v, v0,!), R0(v, v0,!) = S(v0) + ⇣ 0(v, v0,!),

where v, v0 2 H and ! 2 ⌦. Let (⌦k,Fk, Pk), k � 1 be independent copies of
the probability space constructed in Lemma 6.1 and (⌦,F , P) be their direct
product. For any u, u0 2 H, we set u

0

= u, u0
0

= u0, and

uk(!) = R(uk�1

(!), u0k�1

(!),!k), u0k(!) = R0(uk�1

(!), u0k�1

(!),!k),

⇣k(!) = ⇣(uk�1

(!), u0k�1

(!),!k), ⇣ 0k(!) = ⇣ 0(uk�1

(!), u0k�1

(!),!k),

where ! = (!1,!2, . . .) 2 ⌦ and k � 1. Then, by construction, {⇣k} and {⇣ 0k} are
sequences of i.i.d. random variables, while {uk} and {u0k} are the corresponding
trajectories of (1.1). We shall say that (uk, u0k) is a coupled trajectory at level N
for (1.1) issued from (u, u0).

6.2 The result and its proof

Let us recall that, given a function V 2 Cb(H`), the generalised Markov semi-
group PV

k is given by (1.23), the subspace V ⇢ Cb(H`) was introduced in
Section 5.5, and given s 2 (0, 1], the compact subsets XR ⇢ H` are defined
in (5.47). The aim of this section is to prove the following theorem on the
validity of the uniform Feller property (see Theorem 4.1) for any V 2 V.

Theorem 6.2. Under the hypotheses of Theorem 1.3, for any s 2 (0, 1] and

V 2 V there is an integer R
0

� 1 such that the sequence {kPV
k 1k�1

R PV
k f, k � 0}

is uniformly equicontinuous on XR for any f 2 V and any integer R � R
0

.

Proof. We invoke some ideas from [KS12, Chapter 3] which were used to estab-
lish exponential mixing for system (1.1). The proof is divided into five steps.

Step 1: Reduction. Let us fix two functions V, f 2 V. With a slight abuse
of notation, we shall use the same letters to denote the function F entering
representation (5.44) for V and f . Without loss of generality, we can assume
that (5.44) holds for V and f with the same integer N

0

. Furthermore, in view
of (1.19), for k � 1 and f 2 Cb(H`), we have

PV
k f(u) = Eu`

�
(⌅V f)(uk, k)

 
,

where u = [u1, . . . , u`] 2 H`, uk = [u , u
1

, . . . , uk],

(⌅V f)(uk, k) := exp
✓ kX

j=1

V (uj�`+1

, . . . , uj)
◆

f(uk�`+1

, . . . , uk), (6.2)

and ui = u`�i for i 2 [2� `, 0]. We need to prove the uniform equicontinuity of
the sequence {gk, k � `} on XR, where

gk(u) = kPV
k 1k�1

R PV
k f(u).
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There is no loss of generality in assuming that 0  f  1 and infH V = 0, so
that OscH(f)  1 and OscH(V ) = kV k1.

Step 2: Stratification. Let us take two points z i = [z1

i , . . . , z`
i ] 2 XR, i = 1, 2

and an integer N � N
0

. In what follows, we denote by (⌦,F , P) the probability
space constructed in Section 6.1 and by (uk, u0k) := (uk(z`

1

), u0k(z`
2

)) a coupled
trajectory at level N issued from (z`

1

, z`
2

) 2 H ⇥H. Let us set

Ḡ(r) =
r\

j=1

G(j), G(j) = {PNuj = PNu0j},

F (r, ⇢) =
⇢ rX

j=0

�
p(uj) + p(u0j)

�  ⇢

�
, F (r, 0) = ?,

where r, ⇢ � 1 are integers. We also define the pairwise disjoint events 9

Ar,⇢ :=
�
Ḡ(r � 1) \G(r)c \ F (r � 1, ⇢)

� \ F (r � 1, ⇢� 1), r, ⇢ � 1,

where Ḡ(0) = ⌦. Using the fact that f(u) and V (u) depend only on PNu and
setting

uk = [z
1

, u
1

, . . . , uk], u 0k = [z
2

, u0
1

, . . . , u0k], vk = [z
2

, u
1

, . . . , uk],

for k � ` we write

PV
k f(z

1

)�PV
k f(z

2

) = Ik(z
1

, z
2

) +
kX

r=1

1X

⇢=1

Ik
r,⇢(z 1

, z
2

) (6.3)

where we set

Ik(z
1

, z
2

) = E
�
(⌅V f)(uk, k)� (⌅V f)(vk, k)

 
,

Ik
r,⇢(z 1

, z
2

) = E
�
IAr,⇢

⇥
(⌅V f)(vk, k)� (⌅V f)(u 0k, k)

⇤ 
.

To prove the uniform equicontinuity of {gk, k � `}, we first estimate these two
quantities.

Step 3: Estimates for Ik
and Ik

r,⇢. Since V is bounded and globally Lipschitz
continuous and f satisfies the inequality 0  f  1, for z

1

, z
2

2 XR we have

|Ik(z
1

, z
2

)|  C
1

d kPV
k 1kR, (6.4)

where d = kz
1

�z
2

k. Furthermore, using the positivity of ⌅V f , the inequalities
0 < f  1 and V � 0, and the Markov property, we derive

Ik
r,⇢(z 1

, z
2

)  E
�
IAr,⇢

(⌅V f)(vk, k)
  E

�
IAr,⇢

(⌅V 1)(vk, k)
 

= E
�
IAr,⇢

E
⇥
(⌅V 1)(vk, k)

��Fr

⇤  e(r+`)kV k1E
�
IAr,⇢

(PV
k�r1)(ur)

 
,

9 Of course, the events Ar,⇢ depend also on z 1, z 2 2 XR and N . However, to simplify the
notation, we do not indicate that dependence.

56



where {Fk} stands for the filtration generated by (uk, u0k). Applying the in-
equality

PV
k�r1(z )  MkPV

k�r1kR0wm(z ),

which follows from (4.2), we obtain

Ik
r,⇢(z 1

, z
2

)  Me(r+`)kV k1kPV
k�r1kR0E

�
IAr,⇢wm(ur)

 

 Me(r+`)kV k1kPV
k�r1kR0

�
P(Ar,⇢) E w2

m(ur)
 

1/2

.

Combining this with (7.3) and using the symmetry, for z
1

, z
2

2 XR and R � R
0

,
we derive

|Ik
r,⇢(z 1

, z
2

)|  C
2

(R, V )erkV k1kPV
k 1kR P(Ar,⇢)1/2. (6.5)

Step 4: An estimate for P(Ar,⇢). We now prove that

P(Ar,⇢)  C
3

(R,N)
�{��r

N e2⇢d} ^ ecr��⇢
�
, (6.6)

where � > 0 does not depend on the other parameters. To this end, note that,
in view of (7.6), on the event Ḡ(r � 1) \ F (r � 1, ⇢), we have

kur�1

� u0r�1

k  �1�r
N exp

✓ r�2X

k=0

�
p(uk) + p(u0k)

�◆kz`
1

� z`
2

k

 �1�r
N exp

�
2⇢� p(ur�1

)� p(u0r�1

)
 

d.

Combining this with (6.1) and (1.5) (for N = 0) and using the Markov property,
we derive

P
�
Ḡ(r � 1) \G(r)c \ F (r � 1, ⇢)

 
= E

�
I

¯G(r�1)\F (r�1,⇢)

E
�
IG(r)c

��Fr�1

� 

 CN ��1

0

�1�r
N e2⇢d. (6.7)

On the other hand, we have Ar,⇢ ⇢ F (r� 1, ⇢� 1)c. Recalling (1.11) and (1.12)
and using the Chebyshev inequality and the boundedness op p on any ball of H,
we obtain

P(Ar,⇢)  e�
�
2 (⇢�1)E exp

✓
�

2

r�1X

j=0

�
p(uj) + p(u0j)

�◆

 e�
�
2 (⇢�1)

⇢
E exp

✓
�

r�1X

j=0

p(uj)
◆

E exp
✓
�

r�1X

j=0

p(u0j)
◆� 1

2

 C
4

(R) ecr��⇢,

where � = �/2. Combining this with (6.7), we get the required inequality (6.6).
Step 5: Completion of the proof. Inequalities (6.3)–(6.6) imply that

��gk(z
1

)� gk(z
2

)
��  C

1

d + C
5

(R, V, N)
1X

r,⇢=1

erkV k1
�{��r

N e2⇢d} ^ ecr��⇢
� 1

2
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for z
1

, z
2

2 XR, k � `, and R � R
0

. Since the sum on the right-hand side
vanishes for d = 0, the uniform equicontinuity of {gk} will be established if we
prove that the series converges uniformly in d 2 [0, 1]. In view of the positivity
and monotonicity of its terms, it su�ces to show that

1X

r,⇢=1

erkV k1
�{��r

N e2⇢} ^ ecr��⇢
� 1

2 < 1. (6.8)

To this end, let us fix a number D > 1 and choose N � 1 so large that
log �N � 2(kV k1 + D). Then

�
�r/2

N erkV k1  e�Dr. (6.9)

Define the sets

S
1

= {(r, ⇢) 2 N2 : ⇢�Dr  �⇢� r}, S
2

= N2 \ S
1

.

Using (6.9), it is straightforward to check that
X

(r,⇢)2S1

erkV k1
�
��r

N e2⇢
�
1/2  1

(e� 1)2
.

Furthermore, if D > 1 + ��1(8kV k1 + 4c), then

X

(r,⇢)2S2

erkV k1e(cr��⇢)/2  C
6

1X

⇢=1

e��⇢/4 < 1.

Combining the last two inequalities, we see that (6.8) holds. The proof of
Theorem 6.2 is complete.

7 Appendix

7.1 A priori estimates

In this section, we establish some simple estimates for trajectories of the Markov
process (1.1). Recall that Conditions (A)–(C) are formulated in Section 1.1.

Lemma 7.1. Suppose that Condition (A) holds, and {⌘k} is a sequence of i.i.d.

random variables in H such that Ee��(⌘1) < 1 for some � > 0. Then, for any

k � 0 and any initial measure � 2 P(H), we have

E��(uk)  qk

Z

H

�(v)�(dv) + C(1� q)�1E�(⌘
1

). (7.1)

If, in addition, { > 0 is so small that C{(1� q)�1  �, then

E� exp
✓

{
kX

n=0

�(un)
◆
 �

Ee� �(⌘1)
�k
Z

H

exp
�
{(1� q)�1�(v)

 
�(dv). (7.2)
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Proof. It follows from (1.4) that

E��(uk)  q E��(uk�1

) + C E�(⌘k).

Iterating this inequality, we obtain (7.1). Furthermore, using again (1.4), we
write

Ev exp({ �(u
1

))  eq{�(v)EeC{�(⌘1),

where { > 0 satisfies the inequality given in the statement. Combining this
with the Markov property and arguing by induction, we obtain (7.2).

Remark 7.2. A similar argument shows that if { > 0 is so small that C{  �,
then

E�e{�(uk)  �
E e��(⌘1)

�
1/(1�q)

Z

H

eqk��(v)�(dv). (7.3)

A simple application of the Fatou lemma implies now that, for any stationary
measure µ 2 P(H) of (1.1), we have

Z

H

e{�(v)µ(dv)  �
E e��(⌘1)

�
1/(1�q)

. (7.4)

7.2 Foiaş–Prodi type estimate

Let HN be a sequence of finite-dimensional spaces satisfying Condition (B)
with some �N , let PN : H ! H be the orthogonal projection onto HN , and let
QN := I � PN . We consider some sequences uk, u0k, ⇣k, ⇣ 0k 2 H such that

uk = S(uk�1

) + ⇣k, u0k = S(u0k�1

) + ⇣ 0k.

Lemma 7.3. Suppose that

PNuj = PNu0j , QN⇣j = QN⇣
0
j for 1  j  n, (7.5)

where N � 1 is an integer. Then

kun � u0nk  ��n
N exp

✓ n�1X

j=0

(p(uj) + p(u0j))
◆
ku

0

� u0
0

k. (7.6)

Proof. From (7.5) and (1.5) it follows that

kun � u0nk = kQN (un � u0n)k = kQN (S(un�1

)� S(u0n�1

))k
 ��1

N exp
�
p(un�1

) + p(u0n�1

)
 kun�1

� u0n�1

k.

Iteration of this inequality results in (7.6).

59



7.3 A property of convex functions

Given a convex function f : Rn ! R[{+1}, let D(f) = {x 2 Rn : f(x) < 1}.
It is clear that either D(f) = ? or D(f) is a convex subset of Rn. We define
the relative interior of D(f), denoted by riD(f), as the interior of the set D(f)
considered as a subset of its a�ne hull. The conjugate function of f is defined
by

f⇤(y) = sup
x2Rn

�hx, yin � f(x)
�
.

The subdi↵erential of f at a point x 2 D(f), denoted by @f(x), is the (convex)
set of vectors y 2 Rn such that

f(z)� f(x) � hz � x, yin for any z 2 Rn.

The following proposition used in Section 3 is a particular case of more general
results established in Section 23 of [Roc97].

Proposition 7.4. Let f : Rn ! R [ {+1} be a lower semicontinuous convex

function and let x 2 D(f). Then for any � > 0 there are x� 2 D(f) and y� 2 Rn

such that

f(x�) < f(x) + �, f⇤(y�) = hx�, y�in � f(x�). (7.7)

Proof. We first assume that D(f) = {x}. In this case, we have

f⇤(y) = sup
z2D(f)

�hz, yin � f(z)
�

= hx, yin � f(x),

so that one can take x� = x for any � > 0 and an arbitrary y� 2 Rn.
We now assume that D(f) contains more than one point. Using the continu-

ity of a convex function of one variable on an open set, we can find x� 2 riD(f)
such that the inequality in (7.7) holds. Let us denote by E the vector span of
D(f)� x� and define the directional derivative

f 0(x�; ⇠) = lim
s!0

+

f(x� + s⇠)� f(x�)
s

, ⇠ 2 E.

Then ⇠ 7! f 0(x�; ⇠) is a homogeneous lower semicontinuous convex function
on E which is finite everywhere. It follows that

f 0(x�; ⇠) = sup
z2@f(x�)

hz, ⇠in.

In particular, @f(x�) is not empty. Any vector y 2 @f(x�) satisfies the equality
in (7.7).
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