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Abstract

We study the asymptotic properties of the trajectories of a discrete-
time random dynamical system in an infinite-dimensional Hilbert space.
Under some natural assumptions on the model, we establish a multiplica-
tive ergodic theorem with an exponential rate of convergence. The as-
sumptions are satisfied for a large class of parabolic PDEs, including the
2D Navier–Stokes and complex Ginzburg–Landau equations perturbed by
a non-degenerate bounded random kick force. As a consequence of this er-
godic theorem, we derive some new results on the statistical properties of
the trajectories of the underlying random dynamical system. In particu-
lar, we obtain large deviations principle for the occupation measures and
the analyticity of the pressure function in a setting where the system is
not irreducible. The proof relies on a refined version of the uniform Feller
property combined with some contraction and bootstrap arguments.
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0 Introduction

This paper continues the study, initiated in [14], of the multiplicative ergodicity
for the following discrete-time random dynamical system

uk = S(uk−1) + ηk, k ≥ 1. (0.1)

Here {ηk} is a sequence of bounded independent identically distributed (i.i.d)
random variables in a separable Hilbert space H and S : H → H is a continuous
mapping subject to some natural assumptions. Without going into formalities
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here, let us only mention that these assumptions ensure that S is locally Lips-
chitz possessing some dissipative and regularising properties, and that the ran-
dom perturbation {ηk} is non-degenerate (see Conditions (A)-(D) in the next
section). A large class of dissipative PDEs with some discrete random perturba-
tion can be written in the form (0.1). This class includes the 2D Navier–Stokes
and the complex Ginzburg–Landau equations (see Section 5.5).

System (0.1) defines a homogeneous family of Markov chains (uk,Pu) para-
metrised by the initial condition. It is well known that this family admits a unique
stationary measure µ which is exponentially mixing in the sense that for any 1-
Lipschitz function f : H → R and any initial condition u0 = u ∈ H, we have

Euf(uk)−


H

f(v)µ(dv)

 ≤ C(1 + u)e−αk k ≥ 0, (0.2)

where C and α are some positive numbers. We refer the reader to the papers [7,
20, 6, 1] for the first results of this type and Chapter 3 of the book [21] for
details on the problem of ergodicity for (0.1).

In this paper, motivated by applications to large deviations, we consider the
asymptotic behavior of the product

ΞV
k f = f(uk) exp


k

n=1

V (un)


, (0.3)

where V : H → R is a given bounded Lipschitz-continuous function (potential).
We say that (uk,Pu) satisfies a multiplicative ergodic theorem (MET) if we have
a limit of the form

λ−k
V PV

k f(u) → hV (u)



H

f(v)µV (dv) as k → ∞ (0.4)

for some number λV > 0, positive continuous function hV : H → R, and a Borel
probability measure µV not depending on f and u, where PV

k is the Feynman–
Kac semigroup associated with potential V , that is PV

k f(u) = Eu


ΞV
k f


. This

is a form of Oseledec’s theorem obtained in [26] (see also [27, 24, 22]).

Let us recall that, under Conditions (A)-(D), a MET is established in [14],
in the case when the initial point u belongs to the support A of the stationary
measure µ. The set A is compact in H and it is the smallest invariant set for sys-
tem (0.1). We extend this result in three directions. Our first main result shows
that under the same hypotheses, convergence (0.4) is exponential for u ∈ A. We
next show that if the oscillation of the potential V is sufficiently small, then
the convergence holds true for any u ∈ H. Moreover, the rate of convergence
is again exponential. Finally, our third result proves that this restriction on
the oscillation of V can be dropped if the operator S is a subcontraction 1 with
respect to a certain metric whose topology is weaker than the natural one on H.

1 See Condition (E) in the next section for the definition and Section 5.5 for examples.
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We provide a section with different applications. Probably the most im-
portant one is the large deviations principle (LDP). Our multiplicative er-
godic theorems allow to prove the existence and analyticity of the pressure
function. Combining this with the Gärtner–Ellis theorem, the Kifer’s criterion
(see [18]), and some techniques developed in [14], we obtain new local and global
large deviations results for the occupation measures in a non-irreducible 2 set-
ting. Previously, the LDP for randomly forced PDEs has been studied in the
papers [9, 8, 25], in the continuous-time, and in [14, 13, 15], for the discrete-time
case. Let us also mention the papers [29, 19], where the LDP is derived from the
MET for Markov processes possessing the strong Feller property. In all these
references the underlying Markov processes are irreducible.

We also give two other applications related to the random time in the strong
law of large numbers and the speed of attraction of the support of the station-
ary measure.

Let us outline some ideas behind the proof of the multiplicative ergodic-
ity. From the boundedness of the random variables ηk it follows that system (0.1)
has a compact invariant absorbing set X. This allows to reduce our study to a
compact phase space X. The function hV and the measure µV are the eigenvec-
tors of the Feynman–Kac semigroup corresponding to an eigenvalue λV , i.e.,

PV
1 hV = λV hV , P∗

1µV = λV µV ,

where PV ∗
1 is the dual of PV

1 . By normalising PV
k , we reduce the problem to the

study of the exponential mixing for the following auxiliary Markov semigroup:

S V
k g = λ−k

V h−1
V PV

k (ghV ), g ∈ C(X).

The latter is achieved by showing that, for sufficiently large time k, the dual op-
erator S V ∗

k is a contraction in the space of Borel probability measures endowed
with the dual-Lipschitz norm. The proof of the contraction relies on the follow-
ing four ingredients (see Theorem 2.1): (i) refined uniform Feller property, (ii)
uniform irreducibility on A, (iii) concentration near A, (iv) exponential bound.
The first one is an enhanced version of the uniform Feller property from [20, 14]
with specified constants. Its proof relies on the coupling method. In the par-
ticular case V = 0, it coincides with the asymptotic strong Feller property in
[10, 11]. Property (ii) follows from the dissipativity of the system and is well
known. The lack of irreducibility on the set X \ A is compensated by (iii) and
(iv). Their verification is highly non-trivial, especially when there is no restric-
tion on the oscillation of the potential V . We use the subcontraction condition
on S and a bootstrap argument to derive them for (0.1).

Let us note that the proof of the existence of an eigenvector µV is standard,
it follows by a simple application of the Leray–Schauder fixed point theorem.
On the other hand, the existence of hV is more delicate. It is derived from the
above-mentioned properties (i), (ii), and (iv).

2Recall that (uk,Pu) is irreducible, if for any u ∈ H and any ball B ⊂ H, we have
Pu{ul ∈ B} > 0 for some l ≥ 1.
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Finally, let us mention that the long-time behavior of the Feynman–Kac
semigroup has been studied in the literature in the case when the Markov process
is strong Feller and the space of probability measures is endowed with the total
variation metric (e.g., see [29, 3]). Obviously, these results cannot be applied in
our setting.

The paper is organised as follows. In Section 1, we formulate our main results
on the multiplicative ergodicity. In Section 2, we establish an abstract exponen-
tial convergence criterion for generalised Markov semigroups, which is applied
in Section 3 to prove the main results. Section 4 is devoted to the proof of the
refined uniform Feller property. In Section 5, we present the above-mentioned
applications of the MET and discuss some examples of PDEs verifying Condi-
tions (A)-(E).
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Notation

For a Polish space (H, d), we shall use the following standard notation.

C(H) is the space of continuous functions f : H → R. For any X ⊂ H and
f ∈ C(H), we denote fX = supu∈X |f(u)| and write f∞ instead of fH .

Cb(H) is the space of bounded functions f ∈ C(H) with the norm f∞.

Lb(H) is the space of functions f ∈ Cb(H) for which the following norm is finite

fL = f∞ + sup
u ∕=v

|f(u)− f(v)|
d(u, v)

.

M+(H) is the set of non-negative finite Borel measures on H endowed with the
dual-Lipschitz metric

µ1 − µ2∗L = sup
fL≤1

|〈f, µ1〉 − 〈f, µ2〉|, µ1, µ2 ∈ M+(H),

where 〈f, µ〉 =

H
f(u)µ(du). P(H) is the subset of Borel probability measures.

Osc(f) is the oscillation of a function f : H → R, that is the number defined
by supu∈H f(u)− infu∈H f(u).

BR(a) is the closed ball in H of radius R centered at a. When H is Banach and
a = 0, we write BR instead of BR(0).
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1 Main results

We consider problem (0.1) in a separable Hilbert space H endowed with the
scalar product (·, ·) and the associated norm  · . We assume that the following
hypotheses are satisfied for the mapping S : H → H and the sequence {ηk};
they are exactly the same as in [14]:

(A) S is locally Lipschitz in H, and for any R > r > 0, there is a positive
number a < 1 and an integer n0 ≥ 1 such that

Sn(u) ≤ au ∨ r for u ∈ BR, n ≥ n0, (1.1)

where Sn stands for the nth iteration of S.

For any set B ⊂ H, let us define the sequence of sets

A(0, B) = B, A(k,B) = S(A(k − 1, B)) +K, k ≥ 1,

where K is the support of the law of η1. We denote by A(B) the closure in H
of the union of the sets A(k,B), k ≥ 1 and call it the domain of attainabil-
ity from B.

(B) There is a number ρ > 0 and a continuous function k0 = k0(R) such that

A(k,BR) ⊂ Bρ for R ≥ 0, k ≥ k0(R). (1.2)

(C) There is an orthonormal basis {ej} in H such that, for any R > 0,

(I − PN )(S(u1)− S(u2)) ≤ γN (R)u1 − u2, u1, u2 ∈ BR, (1.3)

where PN is the orthogonal projection onto span{e1, . . . , eN}, and γN (R) ↓ 0
as N → ∞.

(D) The random variable ηk is of the form ηk =
∞

j=1 bjξjkej , where {ej} is

the orthonormal basis from (C), bj > 0 are numbers such that
∞

j=1 b
2
j < ∞,

and ξjk are independent scalar random variables with law having a density pj
with respect to the Lebesgue measure. We assume that pj is a continuously
differentiable function such that pj(0) > 0 and with support in [−1, 1].

The reader is referred to the beginning of Section 3 for some comments about
these conditions and to Section 5.5 for examples.

Let A = A({0}) be the domain of attainability from zero. This set is compact
in H and invariant for (0.1), i.e., for any u0 ∈ A, we have uk ∈ A for all k ≥ 1
almost surely. Recall thatPV

k : Cb(H) → Cb(H) is the Feynman–Kac semigroup
associated with V ∈ Lb(H), that is,

PV
k f(u) = Eu


ΞV
k f


= Eu


f(uk) exp


k

n=1

V (un)



and PV ∗
k : M+(H) → M+(H) stands for its dual. The following theorem is

our first result.

5



Theorem 1.1. Under Conditions (A)-(D), system (0.1) is multiplicatively er-
godic on A with any potential V ∈ Lb(A), i.e., the following two assertions hold.

Existence. There is a number λV>0, a measure µV ∈P(A) whose support coin-
cides with A, and a positive function hV ∈ Lb(A) such that for any u ∈ A,

PV
1 hV (u) = λV hV (u), PV ∗

1 µV = λV µV . (1.4)

Exponential convergence. There are positive numbers γV and CV such that

λ−k
V PV

k f(u)− 〈f, µV 〉hV (u)
 ≤ CV e

−γV k, k ≥ 1 (1.5)

for any u ∈ A and f ∈ Lb(A) with fL ≤ 1.

The second result establishes multiplicative ergodicity on the whole space H,
under the restriction that the oscillation of the potential is small.

Theorem 1.2. Under Conditions (A)-(D), there is a number δ > 0 such that
system (0.1) is multiplicatively ergodic on H with any potential V ∈ Lb(H)
satisfying Osc(V ) ≤ δ. Namely, we have the following.

Existence. There is a number λV > 0, a measure µV ∈ P(H) whose support
coincides with A, and a positive function hV ∈ C(H) such that (1.4) holds
for any u ∈ H.

Exponential convergence. There is γV > 0 such that for any R > 0, we
have inequality (1.5) for any u ∈ BR, f ∈ Lb(H) with fL ≤ 1, and
some number CV (R) > 0.

Our third result shows that the restriction on the smallness of Osc(V ) in this
theorem can be removed if we assume additionally that S is a subcontraction
with respect to some metric.

(E) There is a translation invariant 3 metric d′ on H whose topology is
weaker than the natural one on H such that

d′(S(u), S(v)) ≤ d′(u, v) for u, v ∈ A(Bρ+1), (1.6)

where ρ is the number in (B).

Theorem 1.3. Under Conditions (A)-(E), system (0.1) is multiplicatively er-
godic on H with any potential V ∈ Lb(H).

These three theorems are the main results of this paper. Their proof is based
on an abstract exponential convergence result presented in the next section.

3i.e., d′(u+ w, v + w) = d′(u, v) for any u, v, w ∈ H.
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2 Exponential convergence for generalised Markov
semigroups

In Theorem 2.1 in [14], a convergence result is established for generalised Markov
semigroups in a compact metric space (X, d). In this section, we extend that
result by proving exponential convergence, under some natural additional hy-
potheses. Moreover, we relax the irreducibility condition which now holds only
on some subset.

Recall that a family {P (u, ·), u ∈ X} ⊂ M+(X) is a generalised Markov
kernel if the function u → P (u, ·) from X to M+(X) is continuous and non-
vanishing. To any such kernel we associate semigroups Pk : C(X) → C(X)
and P∗

k : M+(X) → M+(X) by

Pkf(u) =



X

Pk(u, dv)f(v), P∗
kµ(Γ) =



X

Pk(u,Γ)µ(du),

where Pk(u, ·) are the iterations of P (u, ·).

Theorem 2.1. Let {P (u, ·), u ∈ X} be a generalised Markov kernel and A a
closed set in X such that P (u,X \A) = 0 for u ∈ A. Assume that the following
conditions are satisfied.

(i) Refined uniform Feller property. For any c ∈ (0, 1), there is C > 0
such that for any f ∈ Lb(X) and v, v′ ∈ X, we have

|Pkf(v)−Pkf(v
′)| ≤ (C fX + c fL) Pk1X d(v, v′). (2.1)

(ii) Uniform irreducibility on A. For any r > 0, there is an integer m ≥ 1
and a number p > 0 such that

Pm(u,Br(û)) ≥ p for all u ∈ X and û ∈ A.

Then there are positive numbers λ, γ, C, a measure µ ∈ P(X) whose support
coincides with A, and a positive function h ∈ Lb(A) such that for any u ∈ A
and ν ∈ P(A), we have

P1h(u) = λh(u), P∗
1µ = λµ, (2.2)

λ−kP∗
kν − 〈h, ν〉µ∗L ≤ Ce−γk. (2.3)

Furthermore, let us assume additionally the following conditions.

(iii) Concentration near A. The following limit holds

lim
k→∞

Pk(·, X \ Ar)X = 0 for any r > 0, (2.4)

where Ar is the r-neighborhood of A:

Ar =


u ∈ X : inf

v∈A
d(u, v) < r


. (2.5)

7



(iv) Exponential bound. We have

Λ = sup
k≥1

λ−kPk1X < ∞. (2.6)

Then h has a positive Lipschitz-continuous extension to the space X (again
denoted by h) such that (2.2) and (2.3) hold for any u ∈ X and ν ∈ P(X).

Remark 2.2. Let us underline that in condition (ii), the initial point u belongs
toX and the final one û to A, so the semigroup is not irreducible in X. Also note
that (iii) and (iv) are necessary conditions for convergence (2.3). Indeed, (2.3)
is equivalent to

sup
fL≤1

λ−kPkf − 〈f, µ〉hX ≤ Ce−γk.

By taking any non-negative function f ∈ Lb(X) that vanishes on A and equals 1
outside Ar, we get (iii), and taking f = 1, we get (iv).

Furthermore, in the case X = A, (iii) is trivially satisfied and (iv) follows
from (i) and (ii). Indeed, if conditions (i) and (ii) hold, we can apply Theorem 2.1
in [14] on the set A:

λ−kPkf − 〈f, µ〉hA → 0 as k → ∞ for f ∈ Lb(A). (2.7)

Choosing f = 1, we get (iv).

We conclude from this remark that it suffices to prove only the second as-
sertion of Theorem 2.1. Its proof is divided into three parts.

2.1 Existence of eigenvectors µ and h

The existence of an eigenvector µ ∈ P(A) is shown in [14], by applying the
Leray–Schauder theorem to the continuous mapping

F : P(A) → P(A), F (µ) = (P∗
1µ(A))−1P∗

1µ.

Any fixed point µ of F is an eigenvector for P∗
1 corresponding to an eigen-

value λ = P∗µ(A) > 0. The irreducibility on A implies that suppµ = A. Note
that replacing P (u,Γ) by λ−1P (u,Γ), we may assume that λ = 1. From now
on, we shall always assume that λ = 1, without further stipulation.

Let us show the existence of a Lipschitz-continuous function h : X → R+

satisfying (2.2) for any u ∈ X. We use some arguments from [14].

Step 1: Existence. Using (2.1) and (2.6), we see that the sequence {Pk1} is
uniformly equicontinuous on X. It follows that so is the sequence

hk =
1

k

k

n=1

Pn1. (2.8)
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Applying the Arzelà–Ascoli theorem, we construct a function h : X → R+ and
a sequence kj → ∞ such that

hkj − hX → 0 as j → ∞. (2.9)

Passing to the limit as j → ∞ in the equality

P1hkj (u) = hkj (u) +
1

kj


Pkj+11(u)−P11(u)


, u ∈ X,

and using (2.6), we get (2.2). The Lipschitz-continuity of h follows from (2.1),
(2.6), (2.8), and (2.9).

Step 2: Positivity. Now we show that h(u) > 0 for any u ∈ X. Using
equalities P∗

kµ = µ and (2.8) together with limit (2.9), we obtain

1 = 〈hkj
, µ〉 → 〈h, µ〉 as j → ∞.

So 〈h, µ〉 = 1 and h(û) > 0 for some û ∈ A. By the continuity of h, there is r > 0
such that h(v) ≥ r for any v ∈ Br(û). Thanks to (ii), for sufficiently largem ≥ 1,

h(u) = Pmh(u) ≥ r Pm


u,Br(û)


> 0 for any u ∈ X.

This completes the proof of existence of eigenvectors µ and h. The uniqueness
will follow from inequality (2.3).

2.2 A weak version of (2.3)

In this section, we show that the left-hand side of (2.3) converges to zero. We
shall use this in the next section to establish exponential convergence.

Proposition 2.3. Under Conditions (i)-(iv), we have

sup
ν∈P(X)

P∗
kν − 〈h, ν〉µ∗L → 0 as k → ∞. (2.10)

Proof. It suffices to prove the limit

sup
fL≤1, 〈f,µ〉=0

PkfX → 0 as k → ∞. (2.11)

Let us represent k = l+m, use the semigroup property, and write for any r > 0,

Pkf(u) = Pl ( Ar
Pmf) (u) +Pl


X\Ar

Pmf

(u) = I1 + I2, (2.12)

where Ar is defined by (2.5).

Step 1: Estimate for I1. Inequalities (2.1), (2.6), and fL ≤ 1 imply that

|Pmf(v)−Pmf(v′)| ≤ C1Λ d(v, v′), m ≥ 1, v, v′ ∈ X

for some number C1 > 0. Combining this with the definition of Ar, we see that

|I1| ≤ C1Λ rPl1(u) + PmfA Pl1(u).
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Taking the supremum over u ∈ X and using (2.6), we get

I1X ≤ C1Λ
2 r + PmfA Λ.

Moreover, by virtue of (2.7),

sup
fL≤1, 〈f,µ〉=0

PmfA → 0 as m → ∞,

whence
sup

fL≤1, 〈f,µ〉=0

I1X ≤ C2 r (2.13)

for arbitrary r > 0 and l ≥ 1, and sufficiently large m = m(r) ≥ 1.

Step 2: Estimate for I2. Let us fixm such that (2.13) holds. Using the inequa-
lities fX ≤ 1 and (2.6) together with (2.4), we obtain

I2 ≤ Λ Pl(·, X \ Ar)X → 0 as l → ∞.

Combining this with (2.12) and (2.13), we get

PkfX ≤ I1X + I2X ≤ 2C2 r

for k = k(r) ≥ 1 sufficiently large. Since r > 0 can be chosen arbitrarily small,
we arrive at (2.11).

2.3 The rate of convergence

In this section, we show that the rate of convergence in (2.10) is exponential. To
this end, we introduce an auxiliary Markov semigroup Sk acting on C(X) by

Skg = h−1Pk(gh) for g ∈ C(X).

The following result shows that Sk is exponentially mixing.

Proposition 2.4. Under the conditions of Theorem 2.1, the semigroup Sk has
a unique stationary measure given by σ̂ = hµ. Moreover, we have

S ∗
k σ − σ̂∗L ≤ Ce−γk for σ ∈ P(X), k ≥ 1, (2.14)

where C > 0 and γ > 0 are some numbers not depending on σ and k.

Taking this proposition for granted, let us prove (2.3). Choosing σ = δu
in (2.14), where δu is the Dirac measure concentrated at u ∈ X, we see that

|Pk(gh)(u)− 〈gh, µ〉h(u)| ≤ Ce−γkh(u) ≤ C1e
−γk, k ≥ 1

for any g ∈ Lb(X) with gL ≤ 1. Since h is positive and Lipschitz, any f ∈
Lb(X) can be represented as f = gh for some g ∈ Lb(X), which leads to (2.3).
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The rest of the section is devoted to the proof of Proposition 2.4. Note that
the equality

S ∗
1 σ = hP∗

1(h
−1σ)

and the fact that µ is an eigenvector for P∗
1 imply that σ̂ = hµ is a stationary

measure for S ∗
1 . To prove the uniqueness and exponential mixing, we will show

that the operator S ∗
m is a contraction if the space X is endowed with an ap-

propriate metric and m ≥ 1 is sufficiently large. The proof relies on the refined
uniform Feller property.

Let us endow X with the metric dθ given by

dθ(u, v) = 1 ∧ (θ d(u, v)),

where θ > 0 is a large number that will be fixed later. We consider the Kan-
torovich metric on P(X) defined by

σ1 − σ2Kθ
= sup

Lθ(f)≤1

|〈f,σ1〉 − 〈f,σ2〉|, σ1,σ2 ∈ P(X),

where

Lθ(f) = sup
u,v∈X,u ∕=v

|f(u)− f(v)|
dθ(u, v)

.

Proposition 2.4 follows immediately from the following two lemmas.

Lemma 2.5. For any θ ≥ (diam(X))−1 and σ1,σ2 ∈ M+(X), we have

1

1 + θ
σ1 − σ2Kθ

≤ σ1 − σ2∗L ≤ diam(X)σ1 − σ2Kθ
, (2.15)

where diam(X) = supu,v∈X d(u, v).

Lemma 2.6. For sufficiently large number θ > 0 and integer m ≥ 1, we have

S ∗
mσ1 − S ∗

mσ2Kθ
≤ 1

2
σ1 − σ2Kθ

for σ1,σ2 ∈ P(X). (2.16)

Proof of Lemma 2.5. Step 1. Let us prove the first inequality in (2.15). We
take any f ∈ Lb(X) with Lθ(f) ≤ 1. Replacing f by f − f(0), we may assume
that f(0) = 0. Then, the definition of the metric dθ implies that

fX ≤ 1 and L(f) ≤ θ, (2.17)

where

L(f) = sup
u,v∈X,u ∕=v

|f(u)− f(v)|
d(u, v)

.

Thus fL ≤ 1 + θ and we obtain the required inequality.

Step 2. Let us take any f ∈ Lb(X) with fL ≤ 1. The second inequality
in (2.15) will be proved, if we show that Lθ(f) ≤ diam(X). We claim that this
is the case for θ ≥ (diam(X))−1. Indeed, since L(f) ≤ fL, we have

|f(u)− f(v)| ≤ d(u, v) ≤ diam(X) ∧ (diam(X)θd(u, v)) ≤ diam(X)dθ(u, v)

for any u, v ∈ X. This completes the proof of Lemma 2.5.
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Proof of Lemma 2.6. Step 1. Inequality (2.16) will be established if we show
that for any f ∈ Lb(X) with Lθ(f) ≤ 1, there is a function g ∈ Lb(X)
with Lθ(g) ≤ 1 such that

|〈Smf,σ1〉 − 〈Smf,σ2〉| ≤
1

2
|〈g,σ1〉 − 〈g,σ2〉|, σ1,σ2 ∈ P(X)

for some constant θ > 0 and integer m ≥ 1 not depending on f . As above, we
may assume that f vanishes at the origin. Note that the above inequality is
trivially satisfied with g = 2Smf . Therefore, we only need to show that for an
appropriate choice of θ and m we have Lθ(g) ≤ 1 or equivalently

Lθ(Smf) ≤ 1

2
. (2.18)

Step 2. By virtue of (2.1), there is a positive constant C such that

L(Smf) ≤ C f∞ +
1

4
L(f), m ≥ 1.

Using this inequality together with (2.17), we get

L(Smf) ≤ C +
θ

4
≤ θ

2
, m ≥ 1, (2.19)

if θ ≥ 4C. Further, thanks to (2.10), we have

sup
u,v∈X

S ∗
k δu − S ∗

k δv∗L → 0 as k → ∞.

Note that fL ≤ 1 + θ. Therefore, we can find an integer m = m(θ) such that

sup
u,v∈X

|Smf(u)− Smf(v)| ≤ 1

2
.

Combining this with (2.19), we arrive at (2.18)

3 Proof of Theorems 1.1-1.3

Before starting the proofs, let us make a few comments about the assumptions
entering these theorems. Hypothesis (D) ensures that the support K of the law
of η1 is contained in a Hilbert cube, so it is a compact set in H. Since S is
locally Lipschitz in H, we have

S(u1)− S(u2) ≤ CRu1 − u2, u1, u2 ∈ BR.

Combining this with (1.3), we infer that the mapping S : H → H is compact,
i.e., the image under S of any bounded set is relatively compact. Thus the
domain of attainability A(B) from any bounded set B ⊂ H is compact. By

12



definition, A(B) is invariant for (0.1). Therefore A(Bρ) is a compact invariant
absorbing set, where ρ is the number in (1.2).

Let us give here the details of the proof of Theorem 1.1. We apply Theo-
rem 2.1 for the generalised Markov kernel

PV
1 (u,Γ) = Eu


{u1∈Γ}e

V (u1)

=



Γ

P1(u, dz) e
V (z),

where P1(u,Γ) is the transition function of (uk,Pu), u ∈ A, Γ ∈ B(A), and V ∈
Lb(A). Then Condition (i) follows from Proposition 4.1 applied for B = {0},
and (ii) is proved in the following lemma. Applying the first assertion of Theo-
rem 2.1, we complete the proof of Theorem 1.1.

Lemma 3.1. Under Conditions (A)-(D), for any V ∈ Lb(H), R > 0, and
r > 0, there is an integer m ≥ 1 and a number p > 0 such that

PV
m (u,Br(û)) ≥ p for all u ∈ A(BR) and û ∈ A.

Proof. As V is bounded, we have

PV
m (u,Γ) ≥ e−mV ∞Pm(u,Γ), for u ∈ A(BR), Γ ∈ B(X).

Using (1.1), the inclusion 0 ∈ K (see Condition (D)), and a simple compactness
argument, we can choose the numbers r, p > 0 and the integer m ≥ 1 such that

Pm(u,Br(û)) ≥ p for u ∈ X, û ∈ A.

This implies the required result.

We establish Theorems 1.2 and 1.3 in the following two sections.

3.1 The case of a potential with a small oscillation

Theorem 1.2 is proved by applying the second assertion of Theorem 2.1 for the
kernel PV

1 in the compact spaceX = A(Bρ). Since A is an invariant set for (0.1),
we have PV

1 (u,X \ A) = 0 for u ∈ A. Conditions (i) and (ii) are established in
Proposition 4.1 and Lemma 3.1. Thus Theorem 1.2 will be proved if we check
(iii) and (iv). Indeed, by Theorem 2.1, we will then have inequality (1.5) for
any u ∈ A(Bρ), hence also for any u ∈ BR by the absorbing property (B).

We shall prove (iii) and (iv) for a potential V with a sufficiently small oscil-
lation. Without loss of generality, we can always assume that λV = 1. Indeed,
it suffices to replace V by V − log λV (this has no impact on the oscillation
of V ).

13



3.1.1 Condition (iii)

Lemma 3.2. Under Conditions (A)-(D), there is a number δ > 0 such that for
any V ∈ Lb(H) with Osc(V ) ≤ δ and any r > 0, we have

PV
k (·, X \ Ar)X → 0 as k → ∞. (3.1)

Proof. Let us show that if Osc(V ) is sufficiently small, then

sup
u∈X

Eu


{uk /∈Ar}Ξ

V
k 1


≤ C(r, ρ)e−αk/2, k ≥ 1, (3.2)

where α > 0 is the number in (0.2) and ΞV
k is defined by (0.3). Indeed, let f ∈

Lb(H) be a non-negative function that vanishes on A and equals 1 outside Ar.
Observe that, since A is invariant and compact, it contains 4 the support of the
unique stationary measure µ ∈ P(H) of (uk,Pu). Thus 〈f, µ〉 = 0. Note that

as λV = 1, we have inf
u∈A

V (u) ≤ 0 and V ∞ ≤ Osc(V ) ≤ δ. (3.3)

Combining this with (0.2), we obtain

Eu


{uk /∈Ar}Ξ

V
k 1


≤ ekV ∞Euf(uk) ≤ C(r, ρ)ekOsc(V )e−αk.

Now assuming δ ≤ α/2, we arrive at (3.2).

3.1.2 Condition (iv)

Lemma 3.3. Under Conditions (A)-(D), there is a number δ > 0 such that for
any V ∈ Lb(H) with Osc(V ) ≤ δ,

ΛR = sup
k≥1

PV
k 1A(BR) < ∞ for any R > 0. (3.4)

Proof. Step 1. It suffices to prove the lemma for R = ρ. For any ε > 0, let τε be
the first hitting time of the ball Bε:

τε = min{k ≥ 0 : uk ∈ Bε}.

Let us show that for some δ > 0, we have

sup
u∈X

Eue
δτε ≤ 2. (3.5)

Indeed, by Conditions (A) and (D), there are q ∈ (0, 1) and l ≥ 1 such that

Pu{ul ∈ Bε} ≥ q, u ∈ X.

Then for any k ≥ 1, the Markov property gives

Pu{kl < τε} ≤ Pu{ujl /∈ Bε, j = 0, . . . , k}
≤ (1− q)Pu{ujl /∈ Bε, j = 0, . . . , k − 1} ≤ (1− q)k, u ∈ X,

4The irreducibility property on A implies that A = suppµ.
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which allows to conclude that supu∈X Eue
δτε is finite for some δ > 0. Choosing

a smaller δ and using the Hölder inequality, we obtain (3.5).

Step 2. Using (3.3) and the strong Markov property, we get for u ∈ X,

PV
k 1(u) = Eu


{τ≥k}Ξ

V
k 1


+Eu


{τ<k}Ξ

V
k 1


≤ Eue

δτε+Eu


eδτεPV

k 1(uτε)

.

From (3.5) we derive

PV
k 1X ≤ 2 + 2PV

k 1Bε∩X . (3.6)

On the other hand, using inequality

|PV
k f(v)−PV

k f(v
′)| ≤ CfL PV

k 1A(B)v − v′

that follows from Proposition 4.1, with B = Bρ and f = 1, we get

PV
k 1(u)−PV

k 1(0)
 ≤ 1

4
PV

k 1X , u ∈ Bε ∩X, k ≥ 1

for sufficiently small ε > 0. Combining this with (3.6), we infer

PV
k 1X ≤ 4 + 4PV

k 1(0) ≤ 4 + 4PV
k 1A.

To conclude, it remains to recall that the sequence {PV
k 1A} is bounded, by

virtue of (2.7).

3.2 The case of an arbitrary potential

As in the previous section, to prove Theorem 1.3, we need to check (iii) and (iv)
in the space X = A(Bρ). The arguments are more involved, since the oscillation
of V now can be arbitrarily large.

3.2.1 Condition (iii)

Lemma 3.4. Under Conditions (A)-(E), for any V ∈ Lb(H) and r > 0, we
have limit (3.1).

Proof. By Remark 3.7, there is ε ∈ (0, r) such that the inclusion A(Aε) ⊂ Ar

holds. Note that this implies the following: if for some k ≥ 1 and ω ∈ Ω,
uk(ω) /∈ Ar, then u0(ω) /∈ Aε, . . . , uk−1(ω) /∈ Aε, and since ε < r, we also have
uk(ω) /∈ Aε. Let Vε be a Lipschitz-continuous function that vanishes on A and
coincides with V outside Aε. It follows that

{uk /∈Ar}Ξ
V
k 1 = {uk /∈Ar}Ξ

Vε

k 1.

Taking the expectation and using the Cauchy–Schwartz inequality, we get

Eu


{uk /∈Ar}Ξ

V
k 1


= Eu


{uk /∈Ar}Ξ

Vε

k 1

≤


Eu {uk /∈Ar}

1/2 
PV

k1(u)
1/2

,
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where we set V = 2Vε. Further, since the function Vε vanishes on A, so does V
and hence λV = 1. In view of Lemma 3.5,

PV
k1X ≤ Λρ, k ≥ 1.

Let f be a non-negative Lipschitz-continuous function vanishing on A and 1
outside Ar. Then, due to exponential mixing (0.2), we have

sup
u∈X

Eu {uk /∈Ar} ≤ sup
u∈X

Euf(uk) ≤ C(r, ρ)e−αk, k ≥ 1.

Combining last three inequalities, we arrive at (3.1).

3.2.2 Condition (iv)

Lemma 3.5. Under Conditions (A)-(E), for any V ∈ Lb(H) and R > 0, we
have inequality (3.4).

Proof. We shall use a bootstrap argument to establish this result. Let

R∗ = sup{R ≥ 0 : ΛR < ∞}.

The lemma will be proved if we show that R∗ = ∞.

Step 1. We first show that if ΛR is finite for some R ≥ 0, then so is ΛR+ε

for some ε ∈ (0, 1). To this end, first note that in view of inequality (4.1), we
have

|PV
k f(v)−PV

k f(v
′)| ≤ CR fLPV

k 1A(B)v − v′ (3.7)

for any B ⊂ BR+1 and v, v′ ∈ A(B). Applying inequality (3.7) with f = 1 and
B = BR+ε, we get

|PV
k 1(u)| ≤ |PV

k 1(v)|+ CRPV
k 1A(BR+ε)u− v, u, v ∈ A(BR+ε).

In particular, this inequality is true for any v ∈ A(BR) and u ∈ A(BR+ε).
Therefore, taking first the infimum over v ∈ A(BR) and then supremum over
u ∈ A(BR+ε), we derive

PV
k 1A(BR+ε) ≤ ΛR + CRPV

k 1A(BR+ε) sup
u∈A(BR+ε)

inf
v∈A(BR)

u− v

= ΛR + CRPV
k 1A(BR+ε) dH(A(BR+ε),A(BR)), (3.8)

where dH(E,F ) is the Hausdorff distance between the sets E,F ⊂ H. We use
the following result proved in the next section.

Lemma 3.6. For any R ≥ 0, we have dH(A(BR+ε),A(BR)) → 0 as ε ↓ 0.
Moreover, if R > 0, we have also dH(A(BR−ε),A(BR)) → 0 as ε ↓ 0.
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In view of the first assertion of this lemma,

dH(A(BR+ε),A(BR)) ≤
1

2CR

for ε > 0 sufficiently small. Combining this with (3.8), we get

PV
k 1A(BR+ε) ≤ 2ΛR, k ≥ 1,

which implies ΛR+ε ≤ 2ΛR < ∞.

Step 2. In this step, we show that R∗ = ∞. Note that for R = 0, we
have A(BR) = A, so that Λ0 is finite in view of (2.7). The result of the
previous step implies that R∗ > 0 and if R∗ < ∞, then it cannot be attained,
i.e., ΛR∗ = ∞. In search of a contradiction, assume that R∗ < ∞ and take
any ε ∈ (0, R∗). As above, we apply inequality (3.7) with f = 1 and B = BR∗ :

|PV
k 1(u)| ≤ |PV

k 1(v)|+ CR∗PV
k 1A(BR∗ )

u− v, u, v ∈ A(BR∗).

Taking first the infimum over v ∈ A(BR∗−ε) and then the supremum over
u ∈ A(BR∗), we obtain

PV
k 1A(BR∗ )

≤ ΛR∗−ε + CR∗PV
k 1A(BR∗ )

dH(A(BR∗),A(BR∗−ε)).

Using the second assertion of Lemma 3.6, for sufficiently small ε > 0, we get

dH(A(BR∗),A(BR∗−ε)) ≤
1

2CR∗

.

We thus infer
PV

k 1A(BR∗ )
≤ 2ΛR∗−ε, k ≥ 1.

This contradiction proves that R∗ = ∞.

3.2.3 Proof of Lemma 3.6

The second part of the lemma readily follows from the definition of A(BR)
and its compactness. The first one is more delicate, and this is where we use
Condition (E). Clearly, it is sufficient to show that

A(BR) =


ε>0

A(BR+ε). (3.9)

The proof of this equality is divided into two steps.

Step 1: Reduction. Without loss of generality, we can assume that R is
smaller than the number ρ in (B). For any r > 0, we introduce the set

Cr = {u ∈ Y : d′(u,A(BR)) ≤ r},

where d′ is the metric in (E) and Y = A(Bρ+1). We claim that (3.9) will be
established if we show that for any r > 0 there is ε > 0 such that

A(m,BR+ε) ⊂ Cr for any m ≥ 1. (3.10)
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Indeed, once this is proved, we will have

∞

m=1

A(m,BR+ε) ⊂ Cr. (3.11)

Now note that the set Cr is closed in H with respect to the natural topology.
Indeed, if the sequence {uk} ⊂ Cr converges to u inH, then applying the triangle
inequality, we obtain

d′(u,A(BR)) ≤ d′(u, uk) + d′(uk,A(BR)) ≤ d′(u, uk) + r.

Letting k go to infinity and using the fact that the convergence in H implies
the one in d′, we get u ∈ Cr. Therefore, taking the closure in H in the inclu-
sion (3.11), we see that A(BR+ε) ⊂ Cr. Letting r go to zero, we arrive at (3.9).

Step 2: Derivation of (3.10). Let us fix any r > 0. First note that, since the
topology of d′ is weaker than the natural one of H, for any u ∈ Y , there is a > 0
such that d′(u, v) ≤ r, provided u − v ≤ a. Using the compactness of Y , we
see that a can be taken uniformly for u ∈ Y . Let us show that (3.10) holds
for sufficiently small ε > 0. Indeed, take any m ≥ 1 and u∗ ∈ A(m,BR+ε).
Clearly, u∗ ∈ Y if R + ε ≤ ρ + 1. To show that d′(u∗,A(BR)) ≤ r, note that
there are u0 ∈ BR+ε and η1, . . . , ηm ∈ K verifying

u1 = S(u0) + η1, . . . , um = S(um−1) + ηm

with u∗ = um. Let us take any v0 ∈ BR such that u0 − v0 ≤ ε and define

v1 = S(v0) + η1, . . . , vm = S(vm−1) + ηm.

Using the translation invariance of d′ and inequality (1.6), we obtain

d′(um, vm) = d′(S(um−1), S(vm−1)) ≤ d′(um−1, vm−1).

Iterating this and using u∗ = um, we arrive at

d′(u∗, vm) ≤ d′(u1, v1).

But for sufficiently small ε we have

u1 − v1 = S(u0)− S(v0) ≤ a.

Thus d′(u1, v1) ≤ r, by definition of a. This implies that d′(u∗, vm) ≤ r, and to
conclude, it remains to note that vi all belong to A(BR) by definition.

Remark 3.7. Literally repeating the argument of the proof of (3.9), we get



ε>0

A(Aε) = A.

This implies that for any r > 0, there is ε > 0 such that A(Aε) ⊂ Ar.
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4 Refined uniform Feller property

This section is devoted to the proof of the following result.

Proposition 4.1. Under Conditions (A)-(D), for any V ∈ Lb(H), R > 0,
and c ∈ (0, 1), there is a number C = C(V L, R, c) > 0 such that

|PV
k f(v)−PV

k f(v
′)| ≤


C f∞ + ck fL


PV

k 1A(B)v − v′ (4.1)

for any set B ⊂ BR, initial points v, v′ ∈ A(B), and function f ∈ Lb(H).

We prove this proposition by developing the ideas of the proof of the uniform
Feller property on A established in Theorem 3.1 in [14]. We start by recalling
the properties of the coupling process. Let P(v) be the law of the trajectory {uk}
for (0.1) issued from v ∈ A(B), i.e., P(v) is a probability measure on the direct
product of countably many copies of A(B). The following result is a version of
Proposition 3.2 in [14]; see Section 3.2.2 in [21] for the proof.

Proposition 4.2. For sufficiently large integer N ≥ 1 there is a probability
space (ΩN ,FN ,PN ) and an A(B)×A(B)-valued Markov process (uk, u

′
k) on ΩN

parametrised by the initial point (v, v′) ∈ A(B)×A(B) for which the following
properties hold.

(a) The PN -laws of the sequences {uk} and {u′
k} coincide with P(v) and P(v′),

respectively.

(b) The projections QN (uk − S(uk−1)) and QN (u′
k − S(u′

k−1)) coincide for
all ω ∈ ΩN .

(c) There is a number CN > 0 such that for any integer r ≥ 1, we have 5

PN


PNuk = PNu′

k for 1 ≤ k ≤ r − 1,PNur ∕= PNu′
r


≤ CNγr−1

N v − v′,
(4.2)

where γN is the number in Condition (C), PN is the orthogonal projection
onto span{e1, . . . , eN} in H and QN = 1− PN .

Proof of Proposition 4.1. Without loss of generality, we can assume that f and V
are non-negative functions on A(B).

Let us fix an initial point (v, v′) ∈ A(B)×A(B) such that κ := v−v′ ≤ 1,
a sufficiently large integer N ≥ 1, and apply Proposition 4.2. Let (uk, u

′
k) be

the corresponding sequence. We denote by A(r) the event on the left-hand side
of (4.2), and

Ã(r) =

PNuk = PNu′

k for 1 ≤ k ≤ r

.

Then we have

PV
k f(v)−PV

k f(v
′) =

k

r=1

Irk + Ĩk, (4.3)

5The relation PNuk = PNu′
k in (4.2) should be omitted for r = 1.
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where

Irk = EN


A(r)


ΞV
k f(uk)− ΞV

k f(u
′
k)


,

Ĩk = EN


Ã(k)


ΞV
k f(uk)− ΞV

k f(u
′
k)


,

and EN is the expectation corresponding to PN .

Step 1. Estimate for Irk . Let us show that

|Irk | ≤ CNf∞γr−1
N erV ∞PV

k 1A(B) κ, 1 ≤ r ≤ k. (4.4)

Indeed, let FN
k be the filtration generated by (uk, u

′
k). Taking the conditional

expectation given FN
r , using the fact that f and V are non-negative, and car-

rying out some simple estimates, we derive

Irk ≤ EN


A(r)Ξ

V
k f(uk)


≤ f∞erV ∞EN


A(r)P

V
k−r1(ur)



≤ f∞erV ∞PV
k 1A(B)PN


A(r)


.

Using (4.2), we obtain (4.4).

Step 2. Squeezing. Before estimating Ĩk, let us show the following squeezing
property on the event Ã(k):

ur − u′
r ≤ γr

N κ, 1 ≤ r ≤ k. (4.5)

Indeed, using property (b) in Proposition 4.2, we get

ur − u′
r = QN (ur − u′

r) = QN (S(ur−1)− S(u′
r−1)) ≤ γN ur−1 − u′

r−1.

Iterating this, we arrive at the required result.

Step 3. Estimate for Ĩk. Let us show that

|Ĩk| ≤ C1 (γN f∞ + γk
N fL) PV

k 1A(B) κ (4.6)

for some number C1 = C1(V L) > 0 not depending on N . Indeed,

Ĩk = E


Ã(k)Ξ
V
k 1(uk)[f(uk)− f(u′

k)]


+ E


Ã(k)[Ξ
V
k 1(uk)− ΞV

k 1(u
′
k)]f(u

′
k)

=: J1,k + J2,k. (4.7)

We derive from (4.5),

|J1,k| ≤ E


Ã(k)Ξ
V
k 1(uk)|f(uk)− f(u′

k)|

≤ γk

N fLPV
k 1A(B) κ.

Similarly, as V ∈ Lb(H),

|J2,k| ≤ f∞E


Ã(k)|ΞV
k 1(uk)− ΞV

k 1(u
′
k)|



≤ f∞E



Ã(k)Ξ
V
k 1(uk)


exp


k

n=1

|V (un)− V (u′
n)|


− 1



≤ f∞

exp


κγN (1− γN )−1V L


− 1


PV

k 1A(B).
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Combining the estimates for J1,k and J2,k with (4.7), we obtain (4.6).

Step 4. Substituting (4.4) and (4.6) into (4.3), we derive

|PV
k f(v)−PV

k f(v
′)|

≤

C̃N f∞

k

r=1

γr−1
N erV ∞ + C1γ

k
N fL


PV

k 1A(B) κ

≤

C f∞ + ck fL


PV

k 1A(B) κ

for sufficiently large N .

5 Applications

In this section, we present various corollaries of Theorems 1.1-1.3.

5.1 Existence and analyticity of the pressure function

We start with the existence of the pressure function.

Proposition 5.1. Assume that Conditions (A)-(D) are fulfilled. Then the fol-
lowing limit (called pressure function) exists

Q(V, u) = lim
k→∞

1

k
logPV

k 1(u) (5.1)

for any V ∈ C(H) and u ∈ H. Moreover, this limit does not depend on u if we
have one of the following properties:

(1) The initial condition u belongs to A.

(2) Osc(V ) ≤ δ, where δ is the number in Theorem 1.2.

(3) Condition (E) is satisfied.

The limit in (5.1) is denoted by Q(V ) if one of the properties (1)-(3) is satisfied.

Proof. First assume that V ∈ Lb(H). If we have one of (1)-(3), then by (1.5),

λ−k
V PV

k 1(u) → hV (u) as k → ∞.

Taking the logarithm, we infer that Q(V, u) = log λV . In the general case, we
cannot use the multiplicative ergodicity, so we proceed differently. We use the
following lemma which is established below.

Lemma 5.2. Under Conditions (A)-(D), for any V ∈ Lb(H) and bounded
set B ⊂ H, there is a number C > 0 such that

C−1PV
k 1B ≤ PV

k 1A(B) ≤ CPV
k 1B , k ≥ 1. (5.2)
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We take any u ∈ H and apply (5.2) for B = {u},

C−1 PV
k 1(u) ≤ PV

k 1A({u}) ≤ CPV
k 1(u), k ≥ 1. (5.3)

Since the set A({u}) is invariant for (0.1), we have

PV
n+m1A({u}) ≤ PV

n 1A({u})PV
m1A({u}), m, n ≥ 1.

This implies that the function f : Z+ → R, f(k) = log PV
k 1A({u}) is sub-

additive, hence, by the Fekete lemma, the following limit exists

lim
k→∞

1

k
log PV

k 1A({u}).

Applying (5.3), we get the existence of limit (5.1).

Now let us assume that V ∈ C(H). As A({u}) is compact in H, we can find
a sequence Vn ∈ Lb(H) such that V − VnA({u}) → 0 as n → ∞. Then using
the inequality


1

k
logPV

k 1(u)−
1

k
logPVn

k 1(u)

 ≤ V − VnA({u}), k, n ≥ 1,

we get the existence of limit (5.1) for any V ∈ C(H) and u ∈ H.

Proof of Lemma 5.2. Using the Markov property and the fact that V is bounded
on A(B), we get

PV
k 1(u) ≤ C1 Eu


PV

k−11(u1)

≤ C1 PV

k−11A(1,B) ≤ C2 PV
k 1A(B)

for any k ≥ 1 and u ∈ B. This proves the first inequality in (5.2). The proof
of the second inequality relies on the uniform Feller property. We argue by
contradiction. If this inequality is not true, then there is a sequence kn → ∞
such that

PV
kn
1B

PV
kn
1A(B)

→ 0 as n → ∞. (5.4)

By Proposition 4.1, the sequence {PV
k 1−1

A(B)P
V
k 1, k ≥ 0} is uniformly equicon-

tinuous on A(B). The Arzelà–Ascoli theorem implies the existence of a subse-
quence of kn, which is again denoted by kn, and a non-negative function g ∈
C(A(B)) such that

PV
kn
1

PV
kn
1A(B)

→ g in C(A(B)) as n → ∞. (5.5)

Clearly, gA(B) = 1. Hence there is an integer m ≥ 1 and a point v∗ ∈ A(m,B)
such that g(v∗) > 0. From (5.5) and the Lebesgue theorem on dominated
convergence it follows that

PV
kn+m1

PV
kn
1A(B)

→ PV
mg in C(A(B)) as n → ∞,
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where PV
mg(u∗) > 0 for some u∗ ∈ B. Therefore, for any sufficiently large n ≥ 1,

PV
kn
1(u∗)

PV
kn
1A(B)

≥ e−mV A(B)
PV

kn+m1(u∗)

PV
kn
1A(B)

≥ 1

2
e−mV A(B)PV

mg(u∗),

which contradicts (5.4) and proves (5.2).

Combining convergence (1.5) with a well-known perturbation argument [29,
19], we prove the analyticity of the pressure function.

Proposition 5.3. Assume that Conditions (A)-(D) are fulfilled and V ∈ Lb(H).
Then there is a number p > 0 such that the following limit exists

Q(zV ) = lim
k→∞

1

k
logPzV

k 1(u) (5.6)

for any u ∈ H and z ∈ Dp = {x ∈ C : |x| ≤ p}. Moreover, the map z → Q(zV )
is real-analytic in some neighborhood of the origin. If one of the properties (1)
and (3) in Proposition 5.1 is satisfied, then this map exists and is real-analytic
on R.

Proof. Let us denote by Lb,C(H) the complexification of the space Lb(H) and
by L the space of bounded linear operators from Lb,C(H) to Lb,C(H) endowed
with the natural norm  · L. We consider the family {PzV

1 : z ∈ Dp} in L. It is
straightforward to check that this is a holomorphic family in the sense of Sec-
tion VII.1.1 in [17], p. 365. By exponential mixing (0.2), the operatorP1 = PzV

1

with z = 0 has a simple isolated eigenvalue λ0 = 1 corresponding to eigenvec-
tors h0 = 1 and µ0 = µ. Let P0f = 〈f, µ〉 be the spectral projection associated
with this eigenvalue. Clearly, the spectral radius of the operator P1(1 − P0) is
less than e−α < 1.

By Kato’s holomorphic perturbation theorem (see Theorems 1.7 and 1.8 in
Section VII.1.3 in [17], p. 368–370), there is a number p > 0 such that the
following property holds:

• The operator PzV
1 has a simple eigenvalue λzV for any z ∈ Dp. Moreover,

the maping z → (λzV ,PzV ) is analytic on Dp, where PzV is the spectral
projection associated with λzV .

In particular, for sufficiently small p > 0, we have

inf
z∈Dp

|λzV | > γ := (e−α + 1)/2, (5.7)

sup
z∈Dp

PzV
1 (1− PzV )L ≤ γ, (5.8)

M := sup
x∈Sγ , z∈Dp

(I − xPzV
1 (I − PzV ))

−1L < ∞, (5.9)
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where Sγ = {x ∈ C : |x| = γ−1}. By the Cauchy integral formula, we have

(PzV
1 (I − PzV ))

k =
1

k!

∂k

∂xk
(I − xPzV

1 (I − PzV ))
−1|x=0

=
1

2πi



Sγ

x−k−1(I − xPzV
1 (I − PzV ))

−1 dx, k ≥ 1.

Combining this with (5.8) and (5.9), we see that

PzV
k − λk

zV PzV L = (PzV
1 (I − PzV ))

kL ≤ Mγk.

This and (5.7) readily imply limit (5.6).

The remaining assertions are proved using limit (1.5) for the potential z0V
and applying a similar perturbation argument for the family {PzV

1 : z ∈ Dp(z0)},
where z0 ∈ R is arbitrary and Dp(z0) = {x ∈ C : |x− z0| ≤ p}.

In view of limit (5.6), we can apply Bryc’s criterion (see Proposition 1 in [2]).
We obtain immediately that for any V ∈ Lb(H) with 〈V, µ〉 = 0 and any u ∈ H,
the following central limit theorem holds

Du


1√
k

k

n=1

V (un)


→ N(0,σV ), k → ∞,

where µ is the stationary measure of (uk,Pu), Du is the distribution of a random

variable under the law Pu, and σV = ∂2

∂α2Q(αV )|α=0. See Section 4.1.3 in [21] for
another proof of this result and [28] for an estimate for the rate of convergence.

5.2 Large deviations

In this section, we give some applications to large deviations principle (LDP).
We use some standard terminology from the LDP theory (e.g., see [4, 5]). Recall
that the occupation measures for the trajectories of (0.1) are defined by

ζk =
1

k

k−1

n=0

δun .

In Theorem 1.3 in [14], a level-2 LDP is obtained for the family {ζk} in the
case when the initial condition belongs to A. In this section, we complete that
theorem, by stating two results that establish LDP in the case of an arbitrary
initial condition in H. The following theorem gives, in particular, a level-1 LDP
of local type under the same conditions as in [14].

Theorem 5.4. Let Conditions (A)-(D) be fulfilled. Then for any non-constant
function f ∈ Lb(H), there is ε = ε(f) > 0 and a convex function If : R → R+

such that, for any open subset O of the interval (〈f, µ〉−ε, 〈f, µ〉+ε) and u ∈ H,
we have

lim
k→∞

1

k
logPu {〈f, ζk〉 ∈ O} = − inf

x∈O
If (x),
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where µ is the stationary measure. This limit is uniform with respect to u in a
bounded set of H. Moreover, if Condition (E) is also fulfilled, then ε = +∞.

This theorem follows immediately from the analyticity of the pressure func-
tion established in Proposition 5.3 and a local version of the Gärtner–Ellis the-
orem (e.g., see Theorem A.5 in [16]).

A level-2 LDP holds in the whole space H, provided that Conditions (A)-(E)
are fulfilled. Namely, we have the following result.

Theorem 5.5. Let the assumptions (A)-(E) be fulfilled. Then, there is a con-
vex function I : P(H) → [0,+∞] with compact level sets {I ≤ M} in H for
any M > 0 and that is infinite outside P(A) such that for any random initial
point u0 whose law λ = Du0 has a bounded support in H, we have

− inf
σ∈Γ̇

I(σ) ≤ lim inf
k→∞

1

k
logPλ{ζk ∈ Γ} ≤ lim sup

k→∞

1

k
logPλ{ζk ∈ Γ} ≤ − inf

σ∈Γ̄
I(σ)

for any subset Γ ⊂ P(H), where Γ̇ and Γ̄ stand for its interior and closure,
respectively. Moreover, the function I can be written as

I(σ) = sup
V ∈C(A)

(〈V,σ〉 −Q(V )) , σ ∈ P(A), (5.10)

where Q(V ) is the pressure function defined in Proposition 5.1.

This result can be proved using Theorem 1.3 and literally repeating the
arguments of the proof of Theorem 1.3 in [14] based on the application of the
Kifer’s criterion obtained in [18].

5.3 The SLLN time

In paper [28], a strong law of large numbers is obtained for system (0.1). More
precisely, it is proved that for any f ∈ Lb(H), u ∈ H, and ε > 0, the following
inequality holds


1

k

k

n=1

f(un)− 〈f, µ〉
 ≤ C k−1/2+ε for k ≥ T,

where µ is the stationary measure of (uk,Pu) and T ≥ 1 is a random integer
whose any moment is finite, i.e., EuT

m<∞ for any m ≥ 1. Here we show that
this polynomial bound on T is optimal.

Proposition 5.6. Under Conditions (A)-(D), assume that for some non-cons-
tant function f ∈ Lb(H) with f(0) ∕= 0 and initial condition u ∈ H, there is a
sequence rk going to zero as k → ∞ and a random integer T ≥ 1 such that


1

k

k

n=1

f(un)− 〈f, µ〉
 ≤ rk for k ≥ T. (5.11)

Then T has an infinite exponential moment, i.e.,

Eue
αT = +∞ for any α > 0.
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Proof. Step 1: Contradiction argument. Suppose that for some α>0 and M>0,

Eue
αT ≤ M. (5.12)

Let δ > 0 be the number in Theorem 1.2. Up to multiplying f by a small
positive constant and deducing another one, we may assume that Osc(f) ≤ δ,
f∞ ≤ α, and 〈f, µ〉 = 0. Then, by (1.5),

e−Q(f)kEu exp


k

n=1

f(un)


→ hf (u) as k → ∞, (5.13)

where Q(f) = log λf . In Step 2, we will show that, up to replacing f by −f ,
we have

Q(f) > 0. (5.14)

We infer from (5.11) that

k

n=1

f(un) ≤ αT + {k≥T}

k

n=1

f(un) ≤ αT + k rk,

which, together with (5.12), implies

Eu exp


k

n=1

f(un)


≤ ekrkEue

αT ≤ Mekrk .

Combining this with (5.13), (5.14), and convergence rk → 0, we get hf (u) = 0,
which is a contradiction.

Step 2: Proof of (5.14). As Q : Lb(H) → R is convex and Q(0) = 0, up
to replacing f by −f , we can assume 6 that Q(f) ≥ 0. Let us suppose that
Q(f) = 0. Then from (1.5) we conclude that

sup
k≥1

Eµ exp


k

n=1

f(un)


< ∞,

where Eµ is the expectation corresponding to the stationary measure. This im-
plies that

k−1 Eµ


k

n=0

f(un)

2

→ 0 as k → ∞.

Combining this with Proposition 5.7, we get f ≡ 0. This contradicts the assump-
tion that f is non-constant and completes the proof of the proposition.

6In fact Q(f) ≥ 〈f, µ〉 = 0 for any f ∈ Lb(H). This follows from (5.10) and I(µ) = 0;
see (4.6) of [14].
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Proposition 5.7. Under the conditions of Proposition 5.6, the following limit
exists for any f ∈ Lb(H) with 〈f, µ〉 = 0:

k−1 Eµ


k

n=0

f(un)

2

→ σ2
f as k → ∞. (5.15)

Moreover, if f(0) ∕= 0, then σf ∕= 0.

Proof. This result is a discrete-time version of Proposition 4.1.4 in [21], and the
proof is essentially the same except that here we do not have irreducibility of
the process. By the Markov property and the stationarity of µ, we have

Eµ


k

n=0

f(un)

2

= Eµ

k

n=0

k

r=0

f(ur)f(un)

= 2

k

r=0

k

n=r

Eµ (f(ur)Eµ(f(un)|Fr))− Eµ


k

n=0

f2(un)



= 2

k

r=0

k

n=r

Eµ (f(ur)(Pn−rf)(ur))− (k + 1)〈f2, µ〉

= 2

k

r=0

k

n=r

〈fPn−rf, µ〉 − (k + 1)〈f2, µ〉

= 2

k

n=0

(k + 1− n)〈fPnf, µ〉 − (k + 1)〈f2, µ〉.

Dividing this relation by k and passing to the limit as k → ∞, we get (5.15)
with σ2

f = 2〈gf, µ〉−〈f2, µ〉 and g(u) =
∞

n=0 Pnf(u) for u ∈ H. Note that, by
exponential mixing (0.2), the function g : H → R is well defined and bounded
on bounded sets of H.

To prove the second part of the proposition, let us assume that σf = 0 and
consider Gordin’s martingale approximation

Mk :=

∞

n=0

(Eu(f(un)|Fk)− Eu(f(un)|F0)) , u ∈ H, k ≥ 0,

where Fk is the filtration corresponding to the Markov process (uk,Pu). We
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shall use the following equality for these approximations 7

k−1

n=0

f(un) = Mk − g(uk) + g(u). (5.16)

Repeating the arguments of (4.19) in [21], we see that

Pµ{Mk = 0 for all k ≥ 0} = 1. (5.17)

Let us show that this equality implies that f ≡ 0. Indeed, assume that f(0) > 0
(the case f(0) < 0 is similar), and let B be a ball in H centred at zero such
that f(u) > ε for any u ∈ B. Using the facts that S(0) = 0 (which follows from
Condition (A)), 0 ∈ K (see Condition (D)), and 0 ∈ suppµ (which follows
from (1.1) and Condition (D)), we see that

Pµ{un ∈ B : n = 0, . . . , k} > 0 for any k ≥ 0.

This implies that

Pµ


k−1

n=0

f(un) > kε


> 0 for any k ≥ 1. (5.18)

Let C > 0 be such that |g(u)| ≤ C for u ∈ B. Then |g(uk) − g(u)| ≤ 2C
if uk, u ∈ B. If k ≥ 1 is so large that kε > 2C, combining (5.16) and (5.18), we
see that (5.17) cannot hold. This contradiction shows that σf ∕= 0.

5.4 The speed of attraction

For any ε > 0, let us introduce the random variable

N ε(ω) = # {m ≥ 1 : um(ω) /∈ Aε} ,

where, as before, Aε is the ε-neighborhood of A in H.

Proposition 5.8. Let Conditions (A)-(D) be fulfilled. Then, for any ε > 0
and u ∈ H, the random variable N ε(ω) is Pu-almost surely finite. Moreover,
there is a positive constant α not depending on ε such that

sup
u∈BR

Eue
αN ε

< ∞ for any R > 0. (5.19)

If in addition Condition (E) is satisfied, then (5.19) holds with any α > 0.
7Equality (5.16) follows immediately from the Markov property:

Mk =

k−1

n=0

f(un) +
∞

n=k

Eu(f(un)|Fk)−
∞

n=0

Eu(f(un)|F0)

=

k−1

n=0

f(un) +
∞

n=k

(Pn−kf)(uk)−
∞

n=0

(Pnf)(u)

=

k−1

n=0

f(un) + g(uk)− g(u).
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Proof. Let δ > 0 be the number entering Lemma 3.3. The proposition will be
established if we show that there is a positive constant Λ depending on δ, ε,
and R such that

Pu{N ε ≥ m} ≤ Λe−δm for any u ∈ BR and m ≥ 1. (5.20)

Indeed, then inequality (5.19) will hold with α = δ/2. To this end, we consider
a function V ∈ Lb(H) that vanishes on A, equals δ outside Aε, and satisfies
0 ≤ V ≤ δ on H. It follows that Osc(V ) ≤ δ. Moreover, since V vanishes on A,
we have λV = 1 so that inequality (3.4) holds true for this V . Let us introduce
the random variable

N ε
k (ω) = k ∧N ε(ω)

and note that

PV
k 1(u) ≥ Eu



{N ε
k≥m} exp


k

n=1

V (un)


≥ eδmPu{N ε

k ≥ m}.

Letting k go to infinity and using (3.4), we arrive at (5.20). Now if Condition (E)
is also fulfilled, by Lemma 3.5, the above δ > 0 can be chosen arbitrarily large
and thus so can be α.

5.5 Kick-forced PDEs

Theorems 1.1-1.3 can be applied to a large class of dissipative PDEs per-
turbed by a random kick force. In this section, we discuss the validity of Con-
ditions (A)-(E) for the Navier–Stokes, the complex Ginzburg–Landau, and the
Burgers equations.

5.5.1 2D Navier–Stokes system

Let us consider the 2D Navier–Stokes (NS) system for incompressible fluids:

∂tu+ 〈u,∇〉u− ν∆u+∇p = η(t, x), div u = 0, x ∈ D, (5.21)

where D ⊂ R2 is a bounded domain with smooth boundary ∂D, ν > 0 is the
viscosity, u = (u1, u2) and p are unknown velocity field and pressure, η is an
external random force, and 〈u,∇〉 = u1∂1+u2∂2. We denote by H the L2-space
of divergence free vector fields

H =

u ∈ L2(D,R2) : div u = 0 in D, 〈u,n〉 = 0 on ∂D



endowed with the norm  · , where n is the outward unit normal to ∂D. By
projecting (5.21) toH, we eliminate the pressure and obtain an evolution system
for the velocity field (e.g., see Section 6 in Chapter 1 of [23]):

∂tu+B(u) + νLu = Πη(t, x), (5.22)

29



where Π is the orthogonal projection onto H in L2 (i.e., the Leray projection),
L = −Π∆ is the Stokes operator, and B(u) = Π(〈u,∇〉u). We assume that η is
a random kick force of the form

η(t, x) =

∞

k=1

δ(t− k)ηk(x), (5.23)

where δ is the Dirac measure concentrated at zero and ηk are i.i.d. random vari-
ables in H satisfying Condition (D) with respect to an orthonormal basis {ej}
formed by the eigenvectors of L. Under these assumptions, the trajectory ut

of (5.22) is normalised to be right-continuous and it is completely determined
by its restriction uk to integer times. If we denote by S : H → H the time-1
shift along the trajectories of (5.22) with η = 0, then the sequence {uk} sat-
isfies (0.1). The validity of Conditions (A)-(C) for this system is checked in
Section 3.2.4 in [21].

Proposition 5.9. There is a number ν∗ > 0 such that for ν ≥ ν∗, Condition (E)
is satisfied for the NS system with the metric inherited from H.

Remark 5.10. Let us note that in the case of large viscosity ν, the ergodicity of
the Markov process (uk,Pu) associated with (5.21) has a quite simple proof; see
Exercice 2.5.9 in [21]. It seems however, that this assumption does not lead to
an easy proof of the multiplicative ergodic theorem due to the presence of the
potential V , which under condition (E) can have an arbitrarily large oscillation.

Proof of Proposition 5.9. We split the proof into two steps.

Step 1. Let us first show that the number ρ in Condition (B) can be chosen
the same for any ν ≥ 1. Indeed, using the inequality

S(u0) ≤ e−α1νu0 for u0 ∈ H

and the fact that P{η1 ≤ C} = 1, we get

u1 ≤ e−α1νu0+ C

with probability 1, where α1 is the first eigenvalue of L and C > 0 does not
depend on ν. This shows that the ball Bρ of radius ρ ≥ C(1 − e−α1ν)−1 is
invariant for (0.1). Moreover, if we choose ρ ≥ 2C(1 − e−α1ν)−1, then (1.2) is
satisfied. We take ρ = 2C(1− e−α1)−1.

Step 2. Let us show that

S(u0)− S(v0) ≤ u0 − v0 for u0, v0 ∈ A(Bρ+1)

if ν is sufficiently large. We denote by u and v the solutions of (5.22) issued
from u0 and v0, respectively. Then w = u− v satisfies

ẇ +B(w, u) +B(v, w) + νLw = 0, (5.24)
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where B(w, u) = Π(〈w,∇〉u). Taking the scalar product of (5.24) with 2w in H,
using the equality 〈B(v, w), w〉 = 0 and the estimate

|〈B(w, u), w〉| ≤ C1u1w21,

where  · 1 is the norm in the Sobolev space H1(D,R2), we get

∂tw2 + 2(ν − C1u1)w21 ≤ 0,

where C1 does not depend on ν. By taking the scalar product of (5.22) for η = 0
with 2u in H, it is easy to see that

C2 := sup
ν≥1, u0∈A(Bρ+1)

 1

0

u(s)1 ds < ∞.

Using the previous two inequalities together with the Poincaré inequality and
the Gronwall lemma, we infer

w(1)2 ≤ w(0)2 exp

−2α1ν + C1α1

 1

0

u(s)1 ds


≤ w(0)2 exp (−2α1ν + C1α1C2) ≤ w(0)2

for ν ≥ ν∗ := C1C3/2. Note that we even have a contraction for sufficiently
large ν.

5.5.2 Complex Ginzburg–Landau equation

The situation is similar for the complex Ginzburg–Landau (CGL) equation:

∂tu− (ν + i)∆u+ ia|u|2u = η(t, x), x ∈ D, u

∂D

= 0, (5.25)

where ν, a > 0 are some numbers, D ⊂ R3 is a bounded domain with smooth
boundary ∂D, u = u(t, x) is a complex-valued function, and η is a kick force of
the form (5.23). We consider this equation in the complex space H = H1

0 (D)
endowed with the norm  · 1. The random variables ηk are assumed to be i.i.d.
in H and of the form

ηk(x) =

∞

j=1

bj(ξ
1
jk + iξ2jk)ej(x),

where {ej} is an orthonormal basis in H formed by the eigenvectors of the
Dirichlet Laplacian, bj > 0 for all j ≥ 1, and ξijk are independent real-valued
random variables whose laws possess the properties stated in Condition (D).
By Proposition 1.7 in [14], Conditions (A)-(C) hold for the CGL equation. The
following result is an analogue of Propositions 5.9.

Proposition 5.11. There is a number ν∗ > 0 such that for ν ≥ ν∗, Condi-
tion (E) is satisfied for the CGL equation with the metric inherited from H.
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Sketch of the proof. Inequalities (1.36) and (1.37) in [14], combined with the
arguments of Step 1 of the previous proof, show that the number ρ in Condi-
tion (B) can be chosen the same for any ν ≥ 1. We check that for sufficiently
large ν,

S(u0)− S(v0)1 ≤ u0 − v01 for u0, v0 ∈ A(Bρ+1),

where S : H → H is the time-1 shift for (5.25) with η = 0. Let u and v be the
solutions of (5.25) issued from u0 and v0. Then w = u− v satisfies

∂tw − (ν + i)∆w + ia(|u|2u− |v|2v) = 0.

Multiplying this equation by 2∆w and integrating, we get

∂tw21 = 2Re



D

∇ẇ ·∇w̄ dx = −2Re



D

ẇ∆w̄ dx

= −2Re



D

((ν + i)∆w − ia(|u|2u− |v|2v))∆w̄ dx

≤ −2ν ∆w2 + 2a
|u|2u− |v|2v

 ∆w, (5.26)

where  ·  is the L2-norm. The Hölder inequality and the embedding H1
0 ⊂ L6

imply that |u|2u− |v|2v
 ≤ C1


u1 + v1

2 w1.
Substituting this into (5.26) and using the Poincaré inequality, we obtain

∂tw21 ≤ −

να1 − C1(u1 + v1)4


w21.

The Gronwall lemma and the standard inequality

C2 := sup
ν≥1, t∈[0,1], u0∈A(Bρ+1)

u(t)1 ds < ∞

imply that

w(1)21 ≤ exp


−να1 + C1

 1

0

(u11 + u21)4 ds

w(0)21

≤ exp

−να1 + 16C1C

4
2


w(0)21 ≤ w(0)21

for ν ≥ ν∗ := 16C1C
4
2/α1.

5.5.3 Burgers equation

Let us consider the Burgers equation on the circle S = R/2πZ :

∂tu− ν∂2
xu+ u∂xu = η(t, x),

where ν > 0 and η is of the form (5.23) with i.i.d. random variables {ηk} in

H =


u ∈ L2(S,R) :



S
u(x) dx = 0



satisfying Condition (D) with an orthonormal basis {ej} formed by the eigenvec-
tors of the periodic Laplacian. The verification of Conditions (A)-(C) is similar
to the case of the NS system.
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Proposition 5.12. Condition (E) is satisfied for the Burgers equation with
any ν > 0 with the metric inherited from L1(S,R).

This proposition follows immediately from inequality

S(u0)− S(v0)L1(S,R) ≤ u0 − v0L1(S,R) for any u0, v0 ∈ H and ν > 0

established in Section 3.3 of [12].
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