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Abstract

In this paper, we consider the 2D Navier–Stokes system driven by a
white-in-time noise. We show that the occupation measures of the tra-
jectories satisfy a large deviations principle, provided that the noise acts
directly on all Fourier modes. The proofs are obtained by developing an
approach introduced previously for discrete-time random dynamical sys-
tems, based on a Kifer-type criterion and a multiplicative ergodic theorem.
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0 Introduction

We study the large deviations principle (LDP) for the 2D Navier–Stokes system
for incompressible fluids:

∂tu+ 〈u,∇〉u− ν∆u+∇p = f(t, x), div u = 0, (0.1)

where ν > 0 is the viscosity of the fluid, u = (u1(t, x), u2(t, x)) and p = p(t, x)
are unknown velocity field and pressure, f is an external (random) force, and
〈u,∇〉 = u1∂1 + u2∂2. Throughout this paper, we assume that the space vari-
able x = (x1, x2) belongs

1 to the standard torus T2 = R2/2πZ2. The problem
is considered in the space of divergence-free vector fields with zero mean value

H =


u ∈ L2(T2,R2) : div u = 0 in T2,



T2

u(x)dx = 0


(0.2)

endowed with the L2-norm  · . We assume that the force is of the form

f(t, x) = h(x) + η(t, x),

where h ∈ H1 := H1(T2,R2) ∩ H is a given function and η is a white-in-
time noise

η(t, x) = ∂tW (t, x), W (t, x) =

∞

j=1

bjβj(t)ej(x). (0.3)

Here {bj} is sequence of real numbers such that

B1 =

∞

j=1

αjb
2
j < ∞, (0.4)

{βj} is a sequence of independent standard Brownian motions defined on a
filtered probability space 2 (Ω,F , {Ft},P), and {ej} is an orthonormal basis
in H consisting of the eigenfunctions of the Stokes operator L = −∆ with
eigenvalues {αj}. As usual, projecting (0.1) to H, we eliminate the pressure

1The periodic boundary conditions are chosen to simplify the presentation. Similar results
can be established in the case of a bounded domain with smooth boundary and Dirichlet
boundary conditions.

2We assume that this space satisfies the usual conditions (see Definition 2.25 in [15]).
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and obtain an evolution equation for the velocity field 3 (e.g., see Section 6 in
Chapter 1 of [21]):

u̇+B(u) + Lu = h(x) + η(t, x), (0.5)

where B(u) = Π(〈u,∇〉u) and Π is the orthogonal projection onto H in L2.
This system is supplemented with the initial condition

u(0) = u0. (0.6)

Under these assumptions, problem (0.5), (0.6) admits a unique solution and de-
fines a Markov family (ut,Pu) parametrised by the initial condition u = u0 ∈ H.
The ergodic properties of this family are now well understood. In particular, it
is known that (ut,Pu) admits a unique stationary measure, which is exponen-
tially mixing, provided that sufficiently many coefficients bj are non-zero (see
the papers [7, 18, 6, 19, 1, 12, 24] and the book [20]). A central limit theorem
(CLT) for problem (0.5), (0.6) is established in [16, 25]. The LDP proved in
the present paper is a natural extension of the CLT. Indeed, while the CLT
describes the probability of small deviations of a time average of a functional
from its mean value, the LDP quantifies the probability of large deviations.

Before formulating the main result of this paper, let us introduce some
notation and definitions. We denote by P(H) the space of Borel probability
measures on H endowed with the topology of weak convergence. Given a mea-
sure ν ∈ P(H), we set Pν(Γ) =


H
Pu(Γ)ν(du) for any Γ ∈ F and consider the

following family of occupation measures

ζt =
1

t

 t

0

δusds, t > 0 (0.7)

defined on the probability space (Ω,F ,Pν). Here δu is the Dirac measure concen-
trated at u ∈ H. We shall say that a mapping I : P(H) → [0,+∞] is a good rate
function if the level set {σ ∈ P(H) : I(σ) ≤ α} is compact for any α ≥ 0. A good
rate function I is nontrivial if its effective domain DI = {σ ∈ P(H) : I(σ) < ∞}
is not a singleton. For any numbers κ > 0 and M > 0, we denote

Λ(κ,M) =


ν ∈ P(H) :



H

eκv2

ν(dv) ≤ M


.

Main Theorem. Assume that (0.4) holds and bj > 0 for all j ≥ 1. Then
for any numbers κ > 0 and M > 0, the family {ζt, t > 0} satisfies an LDP,
uniformly with respect to ν ∈ Λ(κ,M), with a non-trivial good rate function
I : P(H) → [0,+∞] not depending on κ and M . More precisely, the following
two bounds hold.

Upper bound. For any closed subset F ⊂ P(H), we have

lim sup
t→∞

1

t
log sup

ν∈Λ
Pν{ζt ∈ F} ≤ − inf

σ∈F
I(σ).

3To simplify the notation, we shall assume that ν = 1.
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Lower bound. For any open subset G ⊂ P(H), we have

lim inf
t→∞

1

t
log inf

ν∈Λ
Pν{ζt ∈ G} ≥ − inf

σ∈G
I(σ).

Furthermore, I is given by

I(σ) = sup
V ∈Cb(H)



H

V (u)σ(du)−Q(V )


, σ ∈ P(H), (0.8)

where Q : Cb(H) → R is a 1-Lipschitz convex function such that Q(C) = C for
any C ∈ R.

This type of large deviations results have been first established by Donsker
and Varadhan [4] and later generalised by many others (see the books [9, 3, 2]
and the references therein). There are only a few works studying the large
deviations behaviour of solutions of randomly forced PDEs as time goes to
infinity. The case of the stochastic Burgers and Navier–Stokes equations is first
studied in [10, 11]. In these papers, the random perturbation is of the form (0.3)
with the following restriction on the coefficients

cj−α ≤ bj ≤ Cj−
1
2−ε,

1

2
< α < 1, ε ∈


0,α− 1

2


. (0.9)

Notice that the lower bound does not allow the sequence {bj} to converge to
zero sufficiently fast, so the external force f is irregular with respect to the space
variable. This is not very natural from the physical point of view. The proof is
based on a general sufficient condition established in [26], and essentially uses
the strong Feller property. The main novelty of our Main Theorem is that it
proves an LDP without any lower bound on {bj} (so, in particular, we do not
have a strong Feller property).

We use an approach introduced in the papers [13, 14], where an LDP is
established for a family of dissipative PDEs perturbed by a random kick force.
The proofs of these papers are based on a Kifer type criterion for LDP and
a study of the large-time behaviour of generalised Markov semigroups. These
results have been later extended in [22] to the case of the stochastic damped
nonlinear wave equation driven by a spatially regular white noise. The main
result of that paper is an LDP of local type. In the case of the Navier–Stokes
system (0.5), although we follow a similar scheme, there are important differ-
ences in all the steps of the argument, coming from both the continuous-time
nature of the system and the globalness of the LDP. Here we study the large-
time asymptotics of the Feynman–Kac semigroup without any restriction on the
smallness of the potential. One of the most important difficulties arises in the
proof of the uniform Feller property. To establish this, we construct coupling
processes using a new two parameter auxiliary equation (see (3.1)) which allows
to have an appropriate Foiaş–Prodi estimate for the trajectories and a rapid
exponential stabilisation for finite-dimensional projections.
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Let us also mention that the multiplicative ergodic theorem we obtain for
system (0.5) is of more general form and works for a larger class of functionals
and initial measures (see Theorem 1.1).

It is a challenging open problem whether an LDP still holds for (0.5), (0.6)
when the driving noise is highly degenerate (i.e., only a finite number of bj are
non-zero in (0.3)). For the Navier–Stokes system in this degenerate situation,
exponential mixing is established in [12] for white-in-time noise and in [17] for
a bounded noise satisfying some decomposability and observability hypothe-
ses. Using these results and literally repeating the arguments of the proof of
Theorem 5.4 in [23], one can prove a level-1 LDP of local type.

The paper is organised as follows. In Section 1, we state a multiplicative er-
godic theorem for the Navier–Stokes system and combine it with Kifer’s criterion
for non-compact spaces to prove the Main Theorem. In Sections 2 and 3, we
check the conditions of an abstract result on large-time behaviour of generalised
Markov semigroups. Section 4 is devoted to the proof of the multiplicative er-
godicity. In the Appendix, we prove various a priori estimates for the solu-
tions and recall the statement of the above-mentioned result for generalised
Markov semigroups.

Acknowledgments

The author thanks Davit Martirosyan and Armen Shirikyan for many discus-
sions. This research was supported by the ANR grant NONSTOPS ANR-17-
CE40-0006-02 and CNRS PICS grant Fluctuation theorems in stochastic sys-
tems.

Notation

We shall use the following standard notation.

H is the space defined by (0.2), BH(a,R) is the closed ball in H of radius R
centred at a. When a = 0, we write BH(R).

H1 = H1(T2,R2) ∩ H, where H1(T2,R2) is the space of vector functions u =
(u1, u2) with components in the usual Sobolev space of order 1 on T2.

L∞(H) is the space of bounded Borel-measurable functions f : H → R en-
dowed with the norm f∞ = supu∈H |f(u)|.
Cb(H) is the space of continuous functions f ∈ L∞(H).

Lb(H) is the space of functions f ∈ Cb(H) for which the following norm is finite

ψL = ψ∞ + sup
u ∕=v

|ψ(u)− ψ(v)|
u− v .

V is the space of functions V : H → R for which there is an integer N ≥ 1 and
a function F ∈ Lb(HN ) such that

V (u) = F (PNu), u ∈ H. (0.10)
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Here PN is the orthogonal projection in H onto the space

HN = span{e1, . . . , eN} (0.11)

and {ej} is the orthonormal basis entering (0.3).

For a given Borel-measurable function w : H → [1,+∞], we denote by Cw(H)
(respectively, L∞

w (H)) the space of continuous (Borel-measurable) functions f :
H → R such that

fL∞
w

= sup
u∈H

|f(u)|
w(u)

< ∞.

M+(H) is the set of non-negative finite Borel measures on H endowed with
the topology of the weak convergence. For µ ∈ M+(H) and f ∈ Cb(H), we
denote 〈f, µ〉 =


H
f(u)µ(du).

P(H) is the set of Borel probability measures on H, and Pw(H) is the set of
measures µ ∈ P(H) such that 〈w, µ〉 < ∞.

1 Proof of the Main Theorem

In this section, we state a multiplicative ergodic theorem for the Navier–Stokes
system (0.5) and apply it to prove the Main Theorem. Let us start by intro-
ducing the following two weight functions

mκ(u) = exp(κu2), (1.1)

wm(u) = 1 + u2m, u ∈ H (1.2)

for positive numbers κ and m. To avoid triple subscripts, we shall write Cm(H)
and Pm(H) instead of Cmκ (H) and Pmκ (H). Recall that the Feynman–Kac
semigroup associated with the family (ut,Pu) is defined by

PV
t f(u) = Eu


ΞV
t f(ut)


,

where

ΞV
t = exp

 t

0

V (us)ds


. (1.3)

From estimate (5.21) it follows that, for sufficiently small κ and any V ∈ Cb(H),
the application PV

t maps Cm(H) into itself. Let PV ∗
t : M+(H) → M+(H) be

its dual. Then a measure µ ∈ P(H) and a function h ∈ Cm(H) are eigenvectors
corresponding to an eigenvalue λ > 0 if

PV ∗
t µ = λtµ, PV

t h = λth for any t > 0.

We have the following result.

Theorem 1.1. Under the conditions of the Main Theorem, for any V ∈ V,
there are numbers m = m(V ) ≥ 1 and γ0 = γ0(B0) > 0, where B0 =


j≥1 b

2
j ,

such that the following assertions hold for any κ ∈ (0, γ0).
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Existence and uniqueness. There is a unique pair (µV , hV )∈Pm(H)×Cw(H)
of eigenvectors corresponding to an eigenvalue λV > 0 normalised by the
condition 〈hV , µV 〉 = 1.

Convergence. For any f ∈ Cm(H), ν ∈ P(H), and R > 0, we have

λ−t
V PV

t f → 〈f, µV 〉hV in Cb(BH(R)) ∩ L1(H,µV ) as t → ∞, (1.4)

λ−t
V PV ∗

t ν → 〈hV , ν〉µV in M+(H) as t → ∞. (1.5)

Moreover, for any M > 0 and κ′ ∈ (κ, γ0), the convergence

λ−t
V Eν


f(ut) exp

 t

0

V (us)ds


→ 〈f, µV 〉 〈hV , ν〉 as t → ∞ (1.6)

holds uniformly in ν ∈ Λ(κ′,M).

This theorem is established in Section 4. Here we combine it with some ar-
guments from [14, 22], to prove the Main Theorem.

Proof of the Main Theorem. Step 1: Reduction. It suffices to prove the Main
Theorem for small κ, so we shall assume that κ ∈ (0, γ0). Let us take anyM > 0
and endow the set

Θ = R∗
+ × Λ(κ,M)

with an order relation ≺ defined by (t1, ν1) ≺ (t2, ν2) if and only if t1 ≤ t2. Then
a family {xθ ∈ R, θ ∈ Θ} converges if and only if it converges uniformly with re-
spect to ν ∈ Λ(κ,M) as t → ∞. Assume that the following three properties hold.

Property 1. For any V ∈ Cb(H) and ν ∈ Λ(κ,M), the following limit exists

Q(V ) = lim
t→∞

1

t
logEν exp

 t

0

V (us)ds


.

Moreover, it does not depend and is uniform in ν ∈ Λ(κ,M).

Property 2. There is a vector space V ⊂ Cb(H) such that its restriction to
any compact set K ⊂ H is dense in C(K), and for any V ∈ V, there is a
unique σV ∈ P(H) satisfying the relation

Q(V ) = 〈V,σV 〉 − I(σV ), (1.7)

where I(σ) is the Legendre transform of Q given by (0.8).

Property 3. There is a function Φ : H → [0,+∞] with compact level sets
{u ∈ H : Φ(u) ≤ α} for any α ≥ 0 such that

Eν exp

 t

0

Φ(us)ds


≤ Cect, ν ∈ Λ(κ,M), t > 0 (1.8)

for some positive constants C and c.
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For any θ = (t, ν) ∈ Θ, let us set rθ := t and ζθ := ζt, where ζt is the random
probability measure given by (0.7) defined on the probability space (Ωθ,Fθ,Pθ) :=
(Ω,F ,Pν). The definition of the relation ≺ and Properties 1-3 imply that the
family {ζθ} satisfies the conditions of the Kifer type criterion established in
Theorem 3.3 in [14]. Hence (0.8) defines a good rate function I and for any
closed set F ⊂ P(H) and open set G ⊂ P(H), we have

lim sup
θ∈Θ

1

rθ
logPθ{ζθ ∈ F} ≤ − inf

σ∈F
I(σ),

lim inf
θ∈Θ

1

rθ
logPθ{ζθ ∈ G} ≥ − inf

σ∈G
I(σ).

These two inequalities imply the upper and lower bounds in the Main Theorem,
since we have the following equalities

lim sup
θ∈Θ

1

rθ
logPθ{ζθ ∈ F} = lim sup

t→∞

1

t
log sup

ν∈Λ
Pν{ζt ∈ F},

lim inf
θ∈Θ

1

rθ
logPθ{ζθ ∈ G} = lim inf

t→∞

1

t
log inf

ν∈Λ
Pν{ζt ∈ G}.

Now we turn to the proofs of Properties 1-3.

Step 2: Proof of Properties 1-3. Property 3 is the easiest one. It is verified
for Φ(u) = κu21 if we choose κ ∈ (0, γ0). Indeed, (1.8) follows from inequal-
ity 4 (5.20), and Φ has compact level sets, since it is continuous from H1 to R
and the embedding H1 ⊂ H is compact.

Properties 1 and 2 are proved using the same methods as in the case of the
discrete-time model considered in [14]. The restriction of V to any compact
set K ⊂ H is dense in C(K). Taking f = 1 in (1.6), we get Property 1 for
any V ∈ V with Q(V ) = log λV . In the case of an arbitrary V ∈ Cb(H), this
property is established by using a buc-approximating sequence Vn ∈ V of V
(i.e., supn≥1 Vn∞ <∞ and Vn − V L∞(K) → 0 as n → ∞ for any compact
K in H) and the exponential tightness of the family {ζθ} (which holds by
Property 3). The reader is referred to Section 5.6 of [14] for the details.

To prove Property 2, for any V ∈ V and F ∈ Cb(H), we consider the
following auxiliary Markov semigroup

S V,F
t g(u) = λ−t

V h−1
V PV+F

t (hV g)(u), g ∈ Cb(H), t ≥ 0.

By Property 1, the following limit exists

QV (F ) := lim
t→∞

1

t
log(S V,F

t 1)(u).

Let IV : M(H) → [0,+∞] be the Legendre transform of QV . The arguments of
Section 5.7 in [14] show that σ ∈ P(H) satisfies (1.7) if and only if IV (σ) = 0.

4We shall see in the proof of Theorem 1.1, that γ0 is the number in Lemma 5.3.
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On the other hand, by Proposition 1.3 in [22] (whose proof is the same in our
case), the measure σV = hV µV is the unique zero of IV .

It remains to show that the good rate function I is non-trivial. Assume,
by contradiction, that DI is a singleton. Then I(µ) = 0 and I(σ) = +∞ for
σ ∈ P(H) \ {µ}, where µ is the stationary measure of (ut,Pu). On the other
hand, as the Legendre transform is its own inverse, we derive from (0.8) that

Q(V ) = sup
σ∈P(H)


〈V,σ〉 − I(σ)


for V ∈ Cb(H).

This implies that Q(V ) = 〈V, µ〉 for any V ∈ Cb(H). Let us take any non-
constant V ∈ V such that 〈V, µ〉 = 0. Then Q(V ) = 0, and from limit (1.4) with
f = 1 and ν = µ we get λV = eQ(V ) = 1 and

sup
t≥0

Eµ exp

 t

0

V (us)ds


< ∞. (1.9)

Combining the latter with the central limit theorem (see Proposition 4.1.4
in [20]), we get V = 0. This contradicts the assumption that V is non-constant
and completes the proof of the Main Theorem.

2 Checking conditions of Theorem 5.6

Theorem 1.1 is proved by applying a convergence result for generalised Markov
semigroups obtained in [14, 22] and restated here as Theorem 5.6. In this and
next sections, we show that the conditions of that theorem are satisfied for the
generalised Markov family of transition kernels defined by

PV
t (u,Γ) = (PV ∗

t δu)(Γ), Γ ∈ B(H), u ∈ H,

if we take X = H, XR = BH1(R), and w = wm with sufficiently large m ≥ 1.

2.1 Growth estimates

Estimate (5.24) implies that the measure PV
t (u, ·) is concentrated on the space

H1 = ∪∞
R=1XR = X∞ for any V ∈ Cb(H), t > 0, and u ∈ H. The boundedness

of V implies that supt∈[0,1] PV
t 1∞ < ∞. So the following proposition gives

the growth condition in Theorem 5.6.

Proposition 2.1. For any V ∈ Cb(H), there are positive numbers m and R0

such that

sup
t≥0

PV
t wL∞

w

PV
t 1R0

< ∞, (2.1)

where w = wm and  · R0 is the L∞ norm on XR0 .
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Proof. Replacing V by V − infH V , we can assume that V is non-negative.

Step 1. Let us show that there are integers m,R0 ≥ 1 such that

sup
t≥0

PV
t 1L∞

w

PV
t 1R0

< ∞. (2.2)

Indeed, let τ(R) be the first hitting time of the set XR defined by (5.26), and let
m and R0 be the integers in Proposition 5.4 for γ = V ∞. Then for any u ∈ H,
we have

PV
t 1(u) = EuΞ

V
t = Eu


IGtΞ

V
t


+ Eu


IGc

t
ΞV
t


=: I1 + I2, (2.3)

where ΞV
t is given by (1.3) and Gt = {τ(R0) > t}. As V is non-negative, we

have PV
t 1(u) ≥ 1. This and (5.27) imply that

I1 ≤ EuΞ
V
τ(R0)

≤ Eu exp

γτ(R0)


≤ C w(u) ≤ C w(u) PV

t 1R0 . (2.4)

By the strong Markov property and (5.27),

I2 ≤ Eu


IGt

ΞV
τ(R0)

Eu(τ(R0))Ξ
V
t



≤ Eu{eγτ(R0)} PV
t 1R0 ≤ C w(u) PV

t 1R0 . (2.5)

Inequalities (2.3)-(2.5) imply (2.2).

Step 2. It suffices to prove (2.1) for integer times k ≥ 1:

sup
k≥0

PV
k wL∞

w

PV
k 1R0

< ∞. (2.6)

Indeed, the semigroup property and the fact that V is non-negative and bounded
imply that

PV
t wL∞

w
= PV

t−[t](P
V
[t]w)L∞

w
≤ C0PV

[t]wL∞
w
,

PV
t 1R0

≥ PV
[t]1R0

,

where [t] is the integer part of t and C0 := sups∈[0,1] PV
s wL∞

w
. By (5.23),

we have
C0 ≤ eγ sup

s∈[0,1]

PswL∞
w

< ∞,

where Pt = P0
t is the Markov operator associated with (0.5).

Step 3. To prove (2.6), we use the Markov property and (5.23):

PV
k w(u) ≤ eγEu


ΞV
k−1w(uk)



= eγEu


ΞV
k−1Euk−1

w(u1)


≤ eγEu


ΞV
k−1[e

−mα1w(uk−1) + C1]


≤ qPV
k−1w(u) + eγC1P

V
k−11(u),
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where we choose m > γ/α1, so that q := eγ−mα1 < 1. Iterating this inequal-
ity and using the fact that the sequence {PV

k 1R0
} is a non-decreasing in k,

we obtain

PV
k w(u) ≤ qkw(u) + (1− q)−1eγC1P

V
k 1(u).

This and (2.2) imply (2.6).

We shall also need the following growth estimates with two other weights.

Proposition 2.2. Let V ∈ Cb(H) and let R0 and γ0 be the numbers in Propo-
sition 2.1 and Lemma 5.3, respectively. Then for any κ ∈ (0, γ0), we have

sup
t≥0

PV
t mL∞

m

PV
t 1R0

< ∞, (2.7)

sup
t≥1

PV
t FL∞

m

PV
t 1R0

< ∞, (2.8)

where m = mκ and F (u) = u21.

Proof. Step 1: Proof of (2.7). As in the previous proof, we can assume that V
is non-negative and t = k is integer. We take any A > 0 and write

PV
k m(u) = Eu


I{uk2≤A}Ξ

V
k m(uk)


+ Eu


I{uk2>A}Ξ

V
k m(uk)



=: Ik + Jk. (2.9)

By (2.2), we have
PV

k 1L∞
m

≤ C2PV
k 1R0

,

hence
IkL∞

m
≤ eκAPV

k 1L∞
m

≤ C2e
κAPV

k 1R0
. (2.10)

To estimate Jk, we use the Markov property and (5.22)

Jk(u) ≤ A−1Eu


uk2ΞV

k m(uk)

≤ A−1eγ Eu


uk2ΞV

k−1m(uk)


= A−1eγ Eu


ΞV
k−1Euk−1


u12m(u1)


≤ A−1C3P

V
k−1m(u).

Combining this with (2.9) and (2.10), and choosing A > 0 so large that q :=
A−1C3 < 1, we get

PV
k mL∞

m
≤ C2e

κAPV
k 1R0

+ qPV
k−1mL∞

m
.

Iterating, we obtain

PV
k mL∞

m
≤ C2e

κA(1− q)−1PV
k 1R0

+ qk.

As PV
k 1(u) ≥ 1, we arrive at the required inequality (2.7).
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Step 2: Proof of (2.8). For any t ≥ 1, we have

PV
t F = PV

t−1(P
V
1 F ) ≤ eγ PV

t−1(P1F ).

So (5.24) and (2.7) imply that

PV
t F (u) ≤ C4P

V
t−1w8(u) ≤ C5P

V
t−1m(u) ≤ C6PV

t 1R0m(u).

This proves (2.8).

2.2 Time-continuity

The following lemma proves the time-continuity property.

Lemma 2.3. The function t → PV
t g(u) is continuous from R+ to R for any

V ∈ Cb(H), g ∈ Cw(H), u ∈ H, and w = wm with any m ≥ 1.

Proof. Let us show the continuity at the point T ≥ 0. For any t ≥ 0, we write

PV
T g(u)−PV

t g(u) = Eu


ΞV
T − ΞV

t


g(ut)


+ Eu


[g(uT )− g(ut)]Ξ

V
T



=: S1 + S2.

As V is bounded and g ∈ Cw(H), we have

|S1| ≤ Eu

exp
 T

t

V (us)ds


− 1

Ξ
V
t |g(ut)|



≤ gL∞
w


e|T−t|V ∞ − 1


eTV ∞Euw(ut).

Combining this with (5.23), we get S1 → 0 as t → T . To estimate S2, we take
any R > 0 and write

e−TV ∞ |S2| ≤ Eu |g(uT )− g(ut)|
= Eu


IGc

R
|g(uT )− g(ut)|


+ Eu {IGR

|g(uT )− g(ut)|}
=: S3 + S4,

where GR := {ut, uT ∈ BH(R)}. From g ∈ Cw(H) and (5.23) we derive

S3 ≤ C1Eu


IGc

R
(w(uT ) +w(ut))



≤ C1R
−1Eu


w2(uT ) +w2(ut)


≤ C2R

−1w2(u).

On the other hand, by the Lebesgue theorem on dominated convergence, for
any R > 0, we have S4 → 0 as t → T . Choosing R > 0 sufficiently large and t
sufficiently close to T , we see that S3 + S4 can be made arbitrarily small. This
shows that S2 → 0 as t → T and completes the proof of the lemma.
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2.3 Uniform irreducibility

As V is a bounded function, we have

PV
t (u, dv) ≥ e−tV ∞Pt(u, dv), u ∈ H,

where Pt(u, ·) is the transition function of the Markov family (ut,Pu). Thus to
show the uniform irreducibility of {PV

t }, it suffices to prove the following result.

Proposition 2.4. The family {Pt} is uniformly irreducible with respect to the
sequence {XR}, i.e., for any integers ρ, R ≥ 1 and any r > 0, there are positive
numbers l = l(ρ, r, R) and p = p(ρ, r) such that

Pl(u,BH(û, r)) ≥ p, u ∈ BH(R), û ∈ Xρ. (2.11)

Proof. Step 1. There is a number d > 0 such that for any R ≥ 1, we have

Pt(u,Xd) ≥
1

2
, u ∈ BH(R) (2.12)

for sufficiently large t = t(R). Indeed, combining (5.23), (5.24), and the Markov
property, we get

Euut21 ≤ C(e−8α1tR8 + 1), u ∈ BH(R), t ≥ 1.

Taking t so large that e−8α1tR8 < 1 and d > 2
√
C and using the Chebyshev

inequality, we arrive at

Pt(u,Xd) ≥ 1− d−2C(e−8α1tR8 + 1) ≥ 1

2
.

Step 2. By Lemma 3.3.11 in [20], for any non-degenerate ball B ⊂ H, there
is p1 = p1(d,B) > 0 such that

P1(u,B) ≥ p1, u ∈ Xd.

Combining this with a simple compactness and continuity argument, we get

P1(u,BH(û, r)) ≥ p2, u ∈ Xd, û ∈ Xρ

for some p2 = p2(d, ρ, r) > 0. This estimate, (2.12), and the Kolmogorov–
Chapman relation imply (2.11) with l = t+ 1 and p = p2/2.

2.4 Existence of an eigenvector

Here we show that the dual operator PV ∗
t has an eigenvector and give some

decay estimates for it.
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Proposition 2.5. For any V ∈ Cb(H) and t > 0, the operator PV ∗
t has at least

one eigenvector µt,V ∈ P(H) with a positive eigenvalue λt,V :

PV ∗
t µt,V = λt,V µt,V . (2.13)

Moreover, any such eigenvector satisfies



H

(un1 +mκ(u))µt,V (du) < ∞, (2.14)

PV
t wmXR



Xc
R

wm(u)µt,V (du) → 0 as R → ∞ (2.15)

for any κ ∈ (0, γ0) and n,m ≥ 1.

Proof. Step 1: Estimate (2.14). Let us fix t > 0, and let µ ∈ P(H) be an
eigenvector of the operator PV ∗

t corresponding to an eigenvalue λ > 0. Let
us show that µ ∈ Pm(H) with m = mκ for any κ ∈ (0, γ0). Indeed, for any
measurable function f : H → R+ ∪ {+∞}, we have

〈f, µ〉 = λ−1〈PV
t f, µ〉 ≤ λ−1etV ∞〈Ptf, µ〉. (2.16)

Taking f = mκ , any number A > 0, and setting 5 C1 = λ−1etV ∞ , we obtain



H

mκ(u)µ(du) ≤ C1



H

Eu{mκ(ut)}µ(du)

= C1



H


Eu


I{ut2≤A}mκ(ut)


+Eu


I{ut2>A}mκ(ut)


µ(du)

≤ C1



H


exp(κA) +A−1Eu


ut2mκ(ut)

 
µ(du)

≤ C1



H


exp(κA) + C2A

−1mκ(u)

µ(du),

where we used inequality (5.22). Choosing A > C1C2, we get



H

mκ(u)µ(du) ≤ C1(1− C1C2A
−1)−1 exp(κA) < ∞, (2.17)

so 6 µ ∈ Pm(H). Taking f(u) = un1 in (2.16) and using (5.24) and (2.17),
we obtain



H

un1µ(du) ≤ C1



H

Eu{utn1}µ(du) ≤ C3



H

(1 + u8n)µ(du) < ∞

for any n ≥ 1. This proves (2.14).

5We do not indicate the dependence of different constants on V, t,m, n, and κ.
6Note that this proof is formal. A rigorous proof can be obtained by applying the above

arguments to bounded approximations of m.
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Step 2: Limit (2.15). From (5.23) it follows that

PV
t wmXR

≤ etV ∞ sup
u∈XR

Euwm(ut)

≤ C4 sup
u∈BH(R)

wm(u) = C4(1 +R2m). (2.18)

Using the Cauchy–Schwarz inequality, (2.14), and the Chebyshev inequality, we
see that 

Xc
R

wm(u)µ(du) ≤ 〈w2
m, µ〉1/2µ


Xc

R

1/2 ≤ C5R
−n.

Combining this with (2.18) and choosing n > 2m, we obtain (2.15).

Step 3: Construction of an eigenvector. Let us take any A > 0 and m ≥ 1
and define the convex set

DA,m :=

ν ∈ P(H) : 〈wm, ν〉 ≤ A


.

By the Fatou lemma, DA,m is closed in P(H). Consider the continuous mapping

G := G(t, V ) : DA,m → P(H), ν → PV ∗
t ν

PV ∗
t ν(H)

.

Let us show that G(DA,m) ⊂ DA,m for an appropriate choice of A and m, and
that G(DA,m) is compact in P(H). In view of the Leray–Schauder theorem,
this will imply the existence of an eigenvector µ ∈ DA,m satisfying (2.13) with
eigenvalue λ = PV ∗

t µ(H) > 0. From (5.23) we derive that

wm, G(ν)


≤ exp{tOsc(V )}〈wm,P∗

t ν〉
≤ exp{t(Osc(V )−mα1)}〈wm, ν〉+ C6,

where Osc(V ) := supu∈H V (u) − infu∈H V (u) is the oscillation of V . Choos-
ing A and m so large that exp{t(Osc(V ) −mα1)} ≤ 1/2 and A ≥ 2C6, we get
that G(DA,m) ⊂ DA,m. In view of the Prokhorov compactness criterion (see
Theorem 11.5.4 in [5]), to prove that G(DA,m) is relatively compact, it suffices
to check that



H

u21PV ∗
t ν(du) ≤ C7 for any ν ∈ DA,m.

Using (5.24) and the fact that V is bounded, we get


H

u21PV ∗
t ν(du) ≤ exp(tV ∞)



H

u21(P∗
t ν)(du)

≤ C8



H

u8ν(du)

≤ C9



H

wm(u)ν(du) ≤ C9A =: C7.

Thus there is an eigenvector µ ∈ DA,m.

15



3 Uniform Feller property

In this section, we establish the following result.

Theorem 3.1. For any V ∈ V, the family {PV
t } satisfies the uniform Feller

property with respect to the sequence {XR}, i.e., there is an integer R0 ≥ 1 such
that the family {PV

t 1−1
R PV

t ψ, t ≥ 0} is uniformly equicontinuous on XR for
any ψ ∈ V and R ≥ R0.

See the papers [13, 14, 23] for similar results in the case of a discrete-time
random dynamical system and [22] for the case of the stochastic damped non-
linear wave equation. The main difficulty in the proof of Theorem 3.1 comes
from the fact that the oscillation of the potential V can be arbitrarily large.
To overcome this, we introduce a new auxiliary equation in the construction of
the coupling processes and choose carefully the parameters in order to have a
stabilisation property with an appropriate rate.

3.1 Construction of coupling processes

The coupling processes are constructed following the arguments of [22]. Let us
take any z, z′ ∈ H and denote by ut and u′

t the solutions of (0.5) issued from z
and z′. For any integer N ≥ 1 and number λ > 0, let v be the solution of the
following problem

v̇ +B(v) + Lv + PN [λ(v − u) +B(u)−B(v)] = h+ η(t), v(0) = z′, (3.1)

where η is defined by (0.3). We denote by ν(z, z′) and ν′(z′) the laws of processes
{v(t), t ∈ J} and {u′(t), t ∈ J}, respectively, where J = [0, 1]. We shall use the
following result.

Proposition 3.2. There exists an integer N1 ≥ 1 such that if N ≥ N1 and
λ ≥ N2/2, then for any ε > 0 and z, z′ ∈ H, we have

ν(z, z′)− ν′(z′)var ≤ εa + 2

exp


Cλ,Nεa−2z − z′2eC(z2+z′2)


− 1

1/2
,

(3.2)
where  · var denotes the total variation distance on P(C(J ;H)) and a < 2, C,
and Cλ,N are positive constants not depending on ε, z, z′.

See Section 5.2 for the proof. By Proposition 1.2.28 in [20], there is a prob-

ability space (Ω̂, F̂ , P̂) and measurable functions Z,Z ′ : H ×H × Ω̂ → C(J ;H)
such that (Z(z, z′),Z ′(z, z′)) is a maximal coupling for (ν(z, z′), ν(z′)) for any
z, z′ ∈ H. We denote by ṽ and ũ′

t the restrictions of Z and Z ′ to time t ∈ J .
Then ṽt is a solution of

˙̃v +B(ṽ) + Lṽ + PN [λṽ −B(ṽ)] = h+ ψ(t), ṽ(0) = z′,

where the process {
 t

0
ψ(s)ds, t ∈ J} has the same law as


W (t)−

 t

0

PN [B(us)− λus]ds, t ∈ J


.
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Let ũt be a solution of

˙̃u+B(ũ) + Lũ+ PN [λũ−B(ũ)] = h+ ψ(t), ũ(0) = z.

Then {ũt, t ∈ J} has the same law as {ut, t ∈ J}. Now the coupling operators R
and R′ are defined by

Rt(z, z
′,ω) = ũt, R′

t(z, z
′,ω) = ũ′

t, z, z′ ∈ H, ω ∈ Ω̂, t ∈ J.

By Proposition 3.2, for any ε > 0, N ≥ N1, and λ ≥ N2/2, we have

P̂{∃t ∈ J s.t. ṽt ∕= ũ′
t}

≤ εa + 2

exp


Cλ,Nεa−2z − z′2eC(z2+z′2)


− 1

1/2
. (3.3)

Let (Ωk,Fk,Pk), k ≥ 0 be a sequence of independent copies of (Ω̂, F̂ , P̂) and
(Ω,F ,P) the direct product of (Ωk,Fk,Pk). For any ω = (ω1,ω2, . . .) ∈ Ω and
z, z′ ∈ H, we set ũ0 = z, ũ′

0 = z′, and

ũt(ω) = Rs(ũk(ω), ũ
′
k(ω),ω

k), ũ′
t(ω) = R′

s(ũk(ω), ũ
′
k(ω),ω

k),

ṽt(ω) = Zs(ũk(ω), ũ
′
k(ω),ω

k),

where t = s + k, s ∈ [0, 1). We shall say that (ũt, ũ
′
t) is a coupled trajectory at

level (N,λ) issued from (z, z′).

3.2 Proof of Theorem 3.1

Step 1: Stratification. Let us take any V,ψ ∈ V and z, z′ ∈ XR such that
d := z − z′ ≤ 1. We need to prove the uniform equicontinuity of the family
{gt, t ≥ 0} on XR, where

gt = PV
t 1−1

R PV
t ψ.

Without loss of generality, we can assume that ψ and V are non-negative, ψ ≤ 1,
and the integer N in representation (0.10) is the same for ψ and V (we denote
it by N0). Let (ut, u

′
t) := (ũt, ũ

′
t) be a coupled trajectory at level (N,λ) issued

from (z, z′) and let vt := ṽt be the associated process. The parameters N ≥ N0

and λ ≥ N2/2 will be chosen later.

Following [22, 14], for any integers r ≥ 0 and ρ ≥ 1, we introduce the events 7

Ḡr =

r

j=0

Gj , Gj = {vt = u′
t, ∀t ∈ (j, j + 1]}, Fr,0 = ∅,

Fr,ρ =


sup

t∈[0,r]

 t

0


us21 + u′

s21

ds−Kt


≤ z2 + z′2 + ρ;

ur2 + u′
r2 ≤ ρ


,

7The event Ḡr is well defined also for r = +∞.
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where K is the constant in (5.19), and the pairwise disjoint events

A0 = Gc
0, Ar,ρ =


Ḡr−1 ∩Gc

r ∩ Fr,ρ


\ Fr,ρ−1, r ≥ 1, ρ ≥ 1, Ã = Ḡ+∞

We decompose as follows

PV
t ψ(z)−PV

t ψ(z
′) = E


IA0


ΞV
t ψ(ut)− ΞV

t ψ(u
′
t)


+

∞

r,ρ=1

E

IAr,ρ


ΞV
t ψ(ut)− ΞV

t ψ(u
′
t)


+ E

IÃ


ΞV
t ψ(ut)− ΞV

t ψ(u
′
t)


= It0 +

∞

r,ρ=1

Itr,ρ + Ĩt, (3.4)

where

It0 = E

IA0

[ΞV
t ψ(ut)− ΞV

t ψ(u
′
t)

,

Itr,ρ = E

IAr,ρ

[ΞV
t ψ(ut)− ΞV

t ψ(u
′
t)

,

Ĩt = E

IÃ


ΞV
t ψ(ut)− ΞV

t ψ(u
′
t)

.

In Steps 2 and 3, we estimate It0, I
t
r,ρ, and Ĩt.

Step 2: Estimates for It0 and Itr,ρ. We have following inequalities

|It0| ≤ C1(R, V )PV
t 1R P(A0)

1/2, (3.5)

|Itr,ρ| ≤ C2(R, V )erV ∞PV
t 1R P(Ar,ρ)

1/2 (3.6)

for any integers r, ρ ≥ 1 and R ≥ R0, where R0 is the number in Proposition 2.1.
Let us prove (3.6), the other inequality is proved in a similar way. First assume
that r + 1 ≤ t. Using ψ ≤ 1, the positivity of ΞV

t ψ, and the Markov property,
we derive

Itr,ρ ≤ E

IAr,ρΞ

V
t ψ(ut)


≤ E


IAr,ρΞ

V
t



= E

IAr,ρE


ΞV
t

Fr+1


≤ erV ∞E


IAr,ρ(P

V
t−r−11)(ur+1)


,

where {Ft} is the filtration generated by (ut, u
′
t). Then from the positivity of V

and (2.1) it follows that

PV
t−r−11(y) ≤ PV

t 1(y) ≤ MPV
t 1R0

w(y), y ∈ H,

so that

Itr,ρ ≤ C3e
rV ∞PV

t 1R0E

IAr,ρw(ur)



≤ C3e
rV ∞PV

t 1R0


P(Ar,ρ)Ew2(ur)

1/2
.
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Using this, (5.23), and the symmetry, we obtain (3.6). If r > t, then

Itr,ρ ≤ erV ∞P(Ar,ρ) ≤ erV ∞PV
t 1R P(Ar,ρ)

1/2,

which implies (3.6) by symmetry.

Step 3: Estimate for Ĩt. Let us show that

|Ĩt| ≤ C4(R, V,λ, N,ψ)PV
t 1Rd. (3.7)

Indeed, we write

Ĩt = E

IÃΞ

V
t [ψ(ut)− ψ(u′

t)]

+ E


IÃ[Ξ

V
t − ΞV ′

t ]ψ(u′
t)

=: J t

1 + J t
2,

where ΞV ′
t := exp

 t

0
V (u′

s)ds

. Then by (5.3), on the event Ã we have

PN (us − u′
s) ≤ e−λsd, s ∈ [0, t].

Since ψ ∈ Lb(H), we derive from this

|J t
1| ≤ E


IÃΞ

V
t |ψ(ut)− ψ(u′

t)|

≤ ψLe−λtPV

t 1Rd ≤ ψLPV
t 1Rd.

Similarly, as V ∈ Lb(H),

|J t
2| ≤ E


IÃ|ΞV

t − ΞV ′

t |

≤ E


IÃΞ

V
t


exp

 t

0

|V (us)− V (u′
s)|ds


− 1



≤

exp


Cλ,Nλ−1V Ld(1− e−λt)


− 1


PV

t 1R
≤ [exp (C5(R, V,λ, N)d)− 1] PV

t 1R.

Recalling that d ≤ 1 and combining the estimates for J t
1 and J t

2, we get (3.7).

Step 4: Uniform equicontinuity of gt. We use the following lemma, which is
proved at the end of this subsection.

Lemma 3.3. For any α > 0, there is an integer N2(α) ≥ 1 and positive numbers
a and β such that

P{A0} ≤ C6(R,λ, N)da/2, (3.8)

P{Ar,ρ} ≤ C7(R)


dae−aαr+


exp


C8(R,λ, N)daeC

′ρ−aαr

−1

1/2

∧e−βρ



(3.9)

for any N ≥ N2(α), λ ≥ N2/2, R ≥ 1, and a universal constant C ′ > 0.

From (3.4)-(3.9) it follows that, for any z, z′ ∈ XR, t ≥ 0, R ≥ R0, and α > 0,
we have

gt(z)− gt(z
′)
 ≤ C9(R, V,λ, N,ψ)


da/4 + d

+

∞

r,ρ=1

erV ∞


da/2e−aαr/2 +


exp


C8d

aeC
′ρ−aαr


− 1

1/4
∧ e−βρ/2


,
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provided that N ≥ N0 ∨N1 ∨N2(α) and λ ≥ N2/2. When d = 0, the series on
the right-hand side vanishes. So to prove the uniform equicontinuity of {gt}, it
suffices to show that the series converges uniformly in d ∈ [0, 1]. Since its terms
are positive and monotone, it suffices to show the converge for d = 1:

∞

r,ρ=1

erV ∞


e−aαr/2 +


exp


C8e

C′ρ−aαr

− 1

1/4
∧ e−βρ/2


< ∞.

(3.10)

To prove this, we will assume that α is sufficiently large. Let

S1 = {(r, ρ) ∈ N2 : ρ ≤ aαr/(2C ′)}, S2 = N2 \ S1.

Then taking α > 16V ∞/a, we see that



(r,ρ)∈S1

erV ∞


e−aαr/2 +


exp


C8e

C′ρ−aαr

− 1

1/4

≤ C10(R,N)


(r,ρ)∈S1

erV ∞e−aαr/8 ≤ C11(R,N)

∞

r=1

e−aαr/16 < ∞.

Choosing α > 8C ′V ∞/(aβ), we get



(r,ρ)∈S2

erV ∞e−βρ/2 ≤ C12

∞

ρ=1

e−βρ/4 < ∞.

These two inequalities show that (3.10) holds.

Proof of Lemma 3.3. Taking ε = d in (3.3) and using d ≤ 1, we get

P

A0


≤ da + 2


exp


Cλ,Ndae2CR2


− 1

1/2
≤ C6(R,λ, N)da/2

for N ≥ N1 and λ ≥ N2/2. This gives (3.8). From the inclusion Ar,ρ ⊂ F c
r,ρ−1

and inequalities (5.19) and (5.21) it follows that

P{Ar,ρ} ≤ C13(R)e−βρ, (3.11)

where β := γ0/2. By Proposition 5.1, on the event Ar,ρ we have

ur − u′
r ≤ exp(−αr + c(z2 + z′2 + ρ))d ≤ C13(R)e−αr+cρd, (3.12)

provided that N ≥ N ′
1(α) :=

√
α+ cK and λ ≥ N2/2. Recall that on the same

event we have also
ur2 + u′

r2 ≤ ρ. (3.13)
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Using the Markov property, (3.3) with ε = de−αr, (3.12) and (3.13), we obtain

P{Ar,ρ} ≤ P

Ḡr−1 ∩Gc

r ∩ Fr,ρ


= E


IḠr−1∩Fr,ρ

E

IGc

r

Fr


≤ dae−aαr

+2E

IḠr−1∩Fr,ρ


exp


Cλ,Nda−2e−(a−2)αrur − u′

r2eC(ur+u′
r)


− 1

1/2 

≤ dae−aαr + 2

exp


C8(R,λ, N)daeC

′ρ−aαr

− 1

1/2
.

Combining this with (3.11) and takingN ≥ N2(α) := N1∨N ′
1(α) and λ ≥ N2/2,

we get the required inequality (3.9).

4 Proof of Theorem 1.1

The results of Sections 2 and 3 show that the conditions of Theorem 5.6 are
satisfied if we choose

PV
t (u,Γ) = (PV ∗

t δu)(Γ), X = H, XR = BH1(R), R ≥ R0,

w(u) = wm(u) = 1 + u2m, C = V, V ∈ V

with sufficiently large m and R0. Thus there are eigenvectors µV ∈ P(H) and
hV ∈ L∞

w (H) corresponding to an eigenvalue λV > 0. Moreover, for any R ≥ 1,
the restriction of hV toXR is continuous and strictly positive, so hV : H1 → R is
continuous and strictly positive. As Pu{u1 ∈ H1} = 1 and h(u) = λ−1

V PV
1 hV (u),

we have
hV (u) ≥ λ−1

V e−V ∞ EuhV (u1) > 0 u ∈ H.

The continuity of hV : H → R follows from the uniform convergence in (1.4),
and the uniqueness of µV and hV from (1.4) and (1.5). The proof of (1.4) is
carried out in Steps 1-3, and that of (1.6) in Step 4. Convergence (1.5) follows
immediately from (1.4).

Step 1: Proof of (1.4) for f ∈ V. In view of (5.32), for any f ∈ V, we
have limit (1.4) in C(XR) ∩ L1(H,µV ). We claim that this limit holds also
in C(BH(R)) for any R ≥ 1. Indeed, it suffices to check condition (5.33)
with B = BH(R) and s = 1, i.e.,

AR,r := sup
u∈BH(R)



H\Xr

wm(v)PV
1 (u, dv) → 0 as r → ∞.

From the Poincaré inequality and (5.24) it follows that

AR,r ≤ r−2 sup
u∈BH(R)

Eu


wm(u1)u121 ΞV

1



≤ r−2eV ∞ sup
u∈BH(R)

Eu


(1 + α−m

1 u12m1 )u121


≤ r−2C(m)R8(m+1) → 0 as r → ∞.

This implies (1.4) for f ∈ V.
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Step 2: Proof of (1.4) for f ∈ Cb(H). For any n ≥ 1, let f̃n ∈ Lb(H) be
such that

sup
u∈BH(n)

|f̃n(u)− f(u)| ≤ 1

n
.

Then the functions fn = f̃n ◦ Pn belong to the space V, satisfy fn∞ ≤ f∞
and fn → f as n → ∞, uniformly on compact subsets of H. Setting

∆t(g) = sup
u∈BH(R)

λ−t
V PV

t g(u)− 〈g, µV 〉hV (u)
, g0,R = sup

u∈BH(R)

|g(u)|,

for any t ≥ 0 and n ≥ 1, we write

∆t(f) ≤ ∆t(fn) + hV 0,R |〈f − fn, µV 〉|+ λ−t
V PV

t (f − fn)0,R.

Since fn ∈ V, the first term on the right-hand side of this inequality goes to zero
as k → ∞ for any fixed n ≥ 1. The Lebesgue theorem on dominated convergence
implies that |〈f − fn, µV 〉| → 0 as n → ∞. Thus, the required convergence will
be established if we show that

sup
t≥1

λ−t
V PV

t (f − fn)0,R → 0 as n → ∞. (4.1)

To prove this limit, we take any ρ > 0 and write

PV
t (f − fn)0,R ≤ J1(t, n, ρ) + J2(t, n, ρ), (4.2)

where

J1(t, n, ρ) = PV
t


(f − fn)IXρ


0,R

, J2(t, n, ρ) = PV
t


(f − fn)IXc

ρ


0,R.

By (2.2), we have

J1(t, n, ρ) ≤ ε(n, ρ) PV
t 10,R ≤ ε(n, ρ)CR PV

t 1R0
,

where ε(n, ρ) = f − fnXρ
→ 0 as n → ∞. Convergence (1.4) with f = 1

implies that
the set {λ−t

V PV
t 1R0}t≥0 is bounded in R. (4.3)

It follows that
sup
t≥0

λ−t
V J1(t, n, ρ) → 0 as n → ∞. (4.4)

To estimate J2, we use (2.8). For any ρ, n ≥ 1 and t ≥ 0, we have

λ−t
V J2(t, n, ρ) ≤ 2f∞ρ−2λ−t

V PV
t F0,R

≤ CRf∞ρ−2λ−t
V PV

t 1R0 .

By (4.3), the right-hand side of this inequality goes to zero as ρ → ∞, uniformly
with respect to t ≥ 1. Combining this with (4.4), we see that supremum over
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t ≥ 1 of the right-hand side of (4.2) can be made arbitrarily small by choosing
first ρ > 0 and then n ≥ 1 sufficiently large. This proves (4.1).

Step 3: Proof of (1.4) for f ∈ Cm(H). We use again an approximation ar-
gument. Let us fix any κ ∈ (0, γ0) and f ∈ Cm(H) with m = mκ . We define a
sequence {fn} by the relation fn = f+∧n−f−∧n. Then fn ∈ Cb(H), |fn| ≤ |f |
for any n ≥ 1, and fn → f in L∞

m′(H) with m′ = mκ′ for any κ′ ∈ (κ, γ0). Fur-
thermore, in view of (1.4) and the Lebesgue theorem on dominated convergence,
we have

sup
u∈BH(R)

λ−t
V PV

t fn(u)− 〈fn, µV 〉hV (u)
 → 0 as t → ∞ for any fixed n ≥ 1,

|〈f − fn, µV 〉| → 0 as n → ∞.

Thus, as in the previous step, it suffices to prove that

sup
t≥0

λ−t
V PV

t (f − fn)0,R → 0 as n → ∞ (4.5)

To see this, we use (2.7) for m′:

PV
t (f − fn)0,R ≤ εn PV

t m
′0,R ≤ CR εn PV

t 1R0 ,

where εn = f−fnL∞
w′ → 0 as n → ∞. Combining this with (4.3), we get (4.5).

Step 4: Proof of (1.6). In view of (1.4), it suffices to show that

sup
(t,ν)∈R+×Λ(κ′,M)



BH(R)c

λ−t
V PV

t f − 〈f, µV 〉hV

 ν(du)


→ 0 as R → ∞.

(4.6)
By (2.7) and (4.3), we have

PV
t fL∞

m
≤ C1PV

t 1R0 ≤ C2λ
t
V for all t ≥ 0.

It follows that λ−k
V PV

t f(u)
 ≤ C3mκ(u).

Since κ < κ′, hV ∈ Cw(H), and

sup
ν∈Λ(κ′,M)



BH(R)c
mκ(u) ν(du) ≤ Me(κ−κ′)R2 → 0 as R → ∞,

we obtain (4.6). This completes the proof of Theorem 1.1.

5 Appendix

5.1 The Foiaş–Prodi estimate

Let us take any numbers T,λ > 0, any function ϕ ∈ L2([0, T ];H), any integer
N ≥ 1, and consider the equations

u̇+B(u) + Lu = h(x) + ∂tϕ(t, x), (5.1)

v̇ +B(v) + Lv + PN [λ(v − u) +B(u)−B(v)] = h(x) + ∂tϕ(t, x), (5.2)
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where PN is the orthogonal projection inH onto the spaceHN defined by (0.11).
The following result is a version of the Foiaş–Prodi estimate obtained in [8];
see also Section 2.1.8 in [20] for a similar result for the Navier–Stokes system
(with different equation instead of (5.2)) and Section 7.3 in [22] for the damped
nonlinear wave equation.

Proposition 5.1. Let u, v ∈ C([0, T ];H) ∩ L2([0, T ];H1) be solutions of (5.1)
and (5.2) issued from z and z′, respectively. Then

PN (ut − vt) ≤ e−λtPN (z − z′), t ∈ [0, T ]. (5.3)

If we assume additionally that

 t

0

(us21 + vs21) ds ≤ ρ+Kt, t ∈ [0, T ] (5.4)

for some numbers ρ > 0 and K > 0, then for any α > 0, we have

ut − vt ≤ Cλ,Ne−αt+cρz − z′, t ∈ [0, T ], (5.5)

provided that 2λ > N2 ≥ α+ cK. Here c > 0 is an absolute constant and Cλ,N

is a constant depending on λ and N .

Proof. Step 1: Proof of (5.3). Let us set y = PN (u− v). Then

ẏ + Ly + λy = 0.

Taking the scalar product in H of this equation with y, we obtain

1

2

d

dt
y2 + y21 + λy2 = 0.

Hence
d

dt
y2 + 2λy2 ≤ 0,

which implies (5.3).

Step 2: Proof of (5.5). Let w = u− v. Then

ẇ + Lw + λPNw + QN [B(u)−B(v)] = 0, (5.6)

where QN = 1−PN . For any a, b ∈ H1, let us set B(a, b) = Π(〈a,∇〉b). Taking
the scalar product of (5.6) with w, and using the equality

B(v)−B(u) = B(v, w) +B(w, u), (5.7)

we get

1

2

d

dt
w2 + w21 + λPNw2 = 〈B(v)−B(u),QNw〉

= 〈B(v, w),QNw〉+ 〈B(w, u),QNw〉
=: I1 + I2. (5.8)
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Using the identity
〈B(a, b), b〉 = 0, a, b ∈ H1

and the Hölder inequality, we obtain

|I1| = |〈B(v,PNw),QNw〉| ≤ C1



T2

|v||∇PNw||QNw|dx

≤ C1v∇PNw∞w ≤ 1

2
∇PNw2∞ + C2v2w2. (5.9)

To estimate I2, we use the Hölder inequality, the inclusion H
1
2 ⊂ L4, and the

interpolation inequality a21/2 ≤ aa1:

|I2| = |〈B(w, u),QNw〉| ≤ C3



T2

|w||∇u||QNw|dx

≤ C3wL4u1QNwL4 ≤ C4ww1u1 ≤ 1

2
w21 + C5w2u21.

Combining this with (5.8) and (5.9), and using the Poincaré inequality

NQNw ≤ w1,

we get

d

dt
w2 +


l − c1(u21 + v21)


w2 ≤ ∇PNw2∞, (5.10)

where l = min{N2, 2λ}. From (5.3) we deduce that

∇PNwt2∞ ≤ CNe−2λtw02.

Hence, (5.10) and (5.4) imply that

wt2 ≤

1 + CN

 t

0

e(l−2λ)sds


w02 exp (−lt+ c1(ρ+Kt)) .

Choosing λ and N such that 2λ > N2 ≥ 2α+ c1K, we get (5.5) with c = c1/2.

5.2 Proof of Proposition 3.2

We closely follow the arguments of the proof of a similar result from Section 7.3
of [22] in the case of the nonlinear wave equation (see also Section 3.3.3 of [20]).

Note that inequality (3.2) concerns the laws of the solutions and not the solu-
tions themselves. Thus we can choose the underlying probability space (Ω,F ,P).
We assume that Ω is the space C(R+;R) endowed with the topology of uniform
convergence on bounded intervals, P is the law of the Wiener process W in (0.3),
and F is the completion of the Borel σ-algebra of Ω with respect to P. We define
a stopping time by

τu = inf{t ≥ 0 : Eu(t) ≥ z2 +Kt+ ρ},
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where Eu(t) is the functional and K is the number in Lemma 5.3, and ρ > 0 is
a constant to be chosen later. The stopping times τu

′
and τv are defined in a

similar way. Then by inequality (5.19), we have

P{τu < ∞}+ P{τu′
< ∞} ≤ 2e−γ0ρ. (5.11)

We define a transformation Λ : Ω → Ω by

Λ(ω)(t) = ω(t)−
 t

0

ϕ(s,ω)ds, ϕ(t,ω) = I{t≤τ̃}PN [λ(v − u) +B(u)−B(v)],

where τ̃ = τu∧ τu
′ ∧ τv and I{t≤τ̃} is the indicator function of the interval [0, τ̃ ].

We use the following result, whose proof is given at the end of this section.

Lemma 5.2. There is an integer N1 ≥ 1 such that for any numbers N ≥ N1,
λ ≥ N2/2, and ρ > 0 and any initial points z, z′ ∈ H, we have

Λ∗P− Pvar ≤

exp


Cλ,Nz − z′2eC(z2+z′2+ρ)


− 1

1/2
, (5.12)

where Λ∗P stands for the image of P under Λ, and C and Cλ,N are positive
constants not depending on ρ, z, z′.

Let us introduce auxiliary processes yu′ and yv in H defined as follows:
for t ≤ τ̃ they coincide with the processes u′ and v, respectively, while for t ≥ τ̃
and τ̃ < ∞ they are zero. With probability 1, we have

yv(t,ω) = yu′(t,Λ(ω)), t ∈ J. (5.13)

Let us denote by u′
1 and v1 the restrictions of u′(t) and v(t) to J . Then

ν(z, z′)− ν′(z′)var = sup
Γ

|P{v1 ∈ Γ}− P{u′
1 ∈ Γ}|

≤ P{τ̃ < ∞}+ sup
Γ

|P{v1 ∈ Γ, τ̃ = ∞}− P{u′
1 ∈ Γ, τ̃ = ∞}| = L1 + L2,

where the supremum is taken over all Borel subsets of C(J ;H). Note that

L2 ≤ Λ∗P− Pvar.

Further, we have

L1 ≤ P{τv < ∞, τu ∧ τu
′
= ∞}+ P{τu < ∞}+ P{τu′

< ∞}.

Moreover, thanks to (5.13),

P{τv < ∞, τu ∧ τu
′
= ∞} ≤ P{τyv < ∞} = Λ∗P{τyu′ < ∞}

≤ P{τyu′ < ∞}+ Λ∗P− Pvar
≤ P{τu′

< ∞}+ Λ∗P− Pvar.
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Combining last four inequalities, we infer that

ν(z, z′)− ν′(z′)var ≤ 2

P{τu < ∞}+ P{τu′

< ∞}+ Λ∗P− Pvar

.

Finally using this with inequalities (5.11) and (5.12), we get

ν(z, z′)−ν′(z′)var ≤ 4 e−γ0ρ+2

exp


Cλ,Nz − z′2eC(z2+z′2+ρ)


− 1

1/2
.

Choosing a = 2γ0/(γ0 + 1) and ρ = −γ−1
0 a ln(ε/41/a), we obtain (3.2).

Proof of Lemma 5.2. Step 1: Girsanov theorem. We write Ω = ΩN +̇Ω⊥
N , where

ΩN = C(R+;HN ) and Ω⊥
N = C(R+;H

⊥
N ). For any ω = ω1+̇ω2 ∈ Ω, we

write ω = (ω1,ω2) ∈ ΩN × Ω⊥
N . Then the transformation Λ can be written

as Λ(ω) = (Υ(ω),ω2), where Υ : Ω → ΩN is given by

Υ(ω)(t) = ω1(t) +

 t

0

ϕ(s,ω)ds.

It is not difficult to see that

Λ∗P− Pvar ≤


Ω⊥
N

Υ∗(PN ,ω2)− PNvarP⊥
N (dω2),

where PN and P⊥
N are the images of P under the projections P̂N : Ω → ΩN and

Q̂N : Ω → Ω⊥
N , respectively. Let

X = ω1(t), X̂ = ω1(t) +

 t

0

ϕ(s,ω)ds.

Then PN coincides with the law D(X) of the random variable X and Υ∗(PN ,ω2)
coincides with that of X̂. By the Girsanov theorem (see Theorem A.10.1 in [20]),
we have

D(X̂)−D(X)var ≤ 1

2


E exp


6 max
1≤j≤N

b−1
j

 ∞

0

ϕ(t)2dt
 1

2

− 1

 1
2

,

(5.14)
provided that the Novikov condition

E exp


p

 ∞

0

ϕ(t)2dt


< ∞ for any p > 0

is satisfied. In Step 2, we show that

E exp


p

 ∞

0

ϕ(t)2dt


≤ exp

Cp,λ,Nz − z′2eC(z2+z′2+ρ)


(5.15)

for any p > 0. Clearly, this and (5.14) imply (5.12).
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Step 2: Proof of (5.15). By Proposition 5.1, the following inequalities hold

PN (ut − vt) ≤ e−λtPN (z − z′), t ≥ 0, (5.16)

ut − vt ≤ C1e
−t+c(z2+z′2+ρ)z − z′, t ∈ [0, τ̃ ], (5.17)

if 2λ > N2 ≥ 1 + cK. We have

E exp


p

 ∞

0

ϕ(t)2dt


= E exp


p

 τ̃

0

ϕ(t)2dt


≤ E exp


C2

 τ̃

0


PN [u− v]2 + PN [B(u)−B(v)]2


dt


. (5.18)

Integrating by parts and using the Hölder inequality, we see that

|〈B(a, b), ej〉| ≤ C ′
ja1b, a, b ∈ H1, j ≥ 1.

Combining this with (5.7) and (5.16)-(5.18), we get

E exp


p

 ∞

0

ϕ(t)2dt


≤ E exp


C3z − z′2

 ∞

0

e−t+c(z2+z′2+ρ)(1 + z2 + z′2 +Kt+ ρ)2dt



≤ E exp


C4z − z′2

 ∞

0

e−t/2+2c(z2+z′2+ρ)dt



= exp

2C4z − z′2eC(z2+z′2+ρ)


.

This proves (5.15).

5.3 A priori estimates

The following lemma gathers some standard a priori estimates for the solutions
of the stochastic Navier–Stokes system. The reader is referred to Section 2.4.2
in [20] for more general results.

Lemma 5.3. Assume 8 that B1 < ∞, h ∈ H1, and ut is a solution of (0.5)
issued from u ∈ H. Then we have the following estimates.

Exponential moments. There are numbers γ0 = γ0(B0) > 0 and K =
K(B0, h) > 0 such that for any κ ∈ (0, γ0),

Pu


sup
t≥0

(E(t)−Kt) ≥ u2 + ρ


≤ e−γ0ρ, ρ ≥ 0, (5.19)

Eue
κE(t) ≤ C1(κ,B0)e

κ(Kt+u2), (5.20)

Eu exp(κut2) ≤ e−κt exp(κu2) + C2(κ,B0, h), (5.21)

Eu


ut2 exp(κut2)


≤ C3(t,κ,B0, h) exp(κu2), (5.22)

8Recall that Bi =


j≥1 α
i
jb

2
j , i = 0, 1.
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where E(t) = Eu(t) := ut2 +
 t

0
us21ds.

Polynomial moments. For any m ≥ 1,

Euut2m ≤ e−mα1tu2m + C4(m,B0, h), (5.23)

Euut2m1 ≤ C5(t,m,B1, h1)u8m. (5.24)

Proof. Estimate (5.19) is established in Proposition 2.4.10 in [20]. To prove (5.20),
we denote C̃ρ := Cρ−1 \ Cρ, where Cρ the event on the left-hand side of (5.19)
and C−1 := Ω. Then for any κ ∈ (0, γ0), we have

Eue
κE(t) =

∞

ρ=0

Eu


eκE(t)IC̃ρ


≤ eκ(Kt+u2)

∞

ρ=0

eκρP{Cρ−1}

≤ eκ(Kt+u2)+γ0

∞

ρ=0

e(κ−γ0)ρ =
eκ(Kt+u2)+γ0

1− e(κ−γ0)
.

Estimates (5.21) and (5.24) are proved in Propositions 2.4.9 and 2.4.12 in [20],
respectively. To show 9 (5.23), we set F (u) = u2m. Then

∂uF (u; v) = 2mu2(m−1)〈u, v〉,
∂2
uF (u; v) = 2mu2(m−1)v2 + 4m(m− 1)u2(m−2)〈u, v〉2,

so applying the Itô formula for the functional F and taking the expectation:

Euut2m = u2m + Eu

 t

0


2mus2(m−1)〈us,−Lus −B(us) + h〉

+mus2(m−1)B0 + 2m(m− 1)us2(m−2)
∞

j=1

b2ju
2
j


ds,

where uj = 〈u, ej〉. The identity

〈u,B(u)〉 = 0 (5.25)

and the Cauchy–Schwarz and Poincaré inequalities imply that

Euut2m ≤ u2m + Eu

 t

0


2mus2(m−1)(−us21 + ush)

+mus2(m−1)B0 + 2m(m− 1)us2(m−1)B0


ds

≤ u2m −mα1

 t

0

Euus2mds+ tC6(m,B0, h).

Combining this with the Gronwall inequality, we obtain (5.23).

9We confine ourselves to a formal derivation of (5.23). The accurate proof is based on the
same arguments applied to the stopped solutions u(t∧τn), where τn = inf{t ≥ 0 : u(t) > n}.
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To prove (5.22), we apply the Itô formula for F (t, u) = tu2 exp(κu2),
use the equalities

∂tF (t, u; v) = u2 exp(κu2),
∂uF (t, u; v) = 2t exp(κu2)(1 + κu2)〈u, v〉,
∂2
uF (t, u; v) = 2t exp(κu2)


2κ(2 + κu2)〈u, v〉2 + (1 + κu2)v2


,

and take the expectation:

tEu


ut2 exp(κut2)


= Eu

 t

0


us2+2s(1+κus2)〈us,−Lus−B(us)+h〉

+ s

∞

j=1


2κ(2 + κus2)b2ju2

j + (1 + κus2)b2j


exp(κus2)ds.

Again using (5.25) and the Cauchy–Schwarz and Poincaré inequalities, we get
for sufficiently small γ0 = γ0(B0) > 0 and any κ ∈ (0, γ0),

tEu


ut2 exp(κut2)


≤ Eu

 t

0


us2 + 2s(1 + κus2)(−us21 + ush)

+s2κ(2 + κus2)us2B0 + s(1 + κus2)B0


exp(κus2)ds

≤ Eu

 t

0


us2 + sC7(κ,B0, h)


exp(κus2)ds.

Thus (5.22) follows from (5.21), the Poincaré inequality, and the estimate

Eu

 t

0

us21 exp(κus2)ds


≤ C8(t,κ,B0, h) exp(κu2).

The latter is easily proved by applying the Itô formula for F (u) = exp(κu2).
This completes the proof of the lemma.

5.4 Hyper-exponential recurrence

For any R > 0, let τ(R) be the first hitting time of the set XR:

τ(R) = inf{t ≥ 0 : ut ∈ XR}. (5.26)

We have the following standard estimate for the exponential moment of τ(R).

Proposition 5.4. For any γ > 0, there are positive numbers m,R, and C
such that

Eu exp

γτ(R)


≤ C wm(u), u ∈ H. (5.27)
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Proof. See Proposition 5.1 in [14] for a similar result in the discrete-time case.
The proof of (5.27) follows the same arguments. The idea is to establish the
inequality for the first hitting time of a ball in H and then to use the regularising
property of the Navier–Stokes system.

Step 1: Hyper-exponential recurrence in H. For any r > 0, we denote by
τ0(r) the first hitting time of the ball BH(r):

τ0(r) = inf{t ≥ 0 : ut ∈ BH(r)}.

Let us prove that, for any γ > 0, there are positive numbers m, r, and C
such that

Eu exp

γτ0(r)


≤ C wm(u), u ∈ H. (5.28)

Indeed, let m > 0 be so large that q := 2e−mα1 < 1. Then, by (5.23), we have

Euu12m ≤ q

u2m ∨ r


, u ∈ H, (5.29)

where r = emα1C4(m,B0, h). The Markov property and (5.29) imply that

pk(u) := Eu


I{τ0(r)>k}uk2m


≤ qku2m, k ≥ 0, u ∈ H

(cf. proof of Lemma 3.6.1 in [20]), hence

Pu{τ0(r) > k} ≤ r−2mpk(u) ≤ r−2mqku2m. (5.30)

As q < 1, the Borel–Cantelli lemma gives that Pu{τ0(r) < ∞} = 1. Choos-
ing m ≥ 1 so large that eγq < 1, we derive from (5.30)

Eu exp

γτ0(r)


≤ 1 +

∞

k=1

eγkPu{τ0(r) > k − 1}

≤ 1 + r−2mu2m
∞

k=1

eγkqk−1 ≤ C wm(u),

which proves (5.28).

Step 2: Hyper-exponential recurrence in H1. First note that, for any num-
bers p ∈ (0, 1) and r > 0, there is R > 0 such that

Pu


u1 ∈ XR


≥ 1− p, u ∈ BH(r). (5.31)

Indeed, this follows immediately from the Chebyshev inequality and (5.24):

Pu


u11 > R


≤ R−2Euu121 ≤ CR−2u8 ≤ CR−2r8 ≤ p

for any u ∈ BH(r) and sufficiently large R = R(r, p).

Now we combine (5.28) and (5.31) to prove (5.27). We introduce the se-
quences of stopping times

τ ′0 = τ0(r), τ ′n = inf{t ≥ τ ′n−1 + 1 : ut ∈ BH(r)}, n ≥ 1
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and τn = τ ′n + 1. Let
n̂ = min{n ≥ 0 : τn ∈ XR}.

From (5.31) and the strong Markov property we have

Pu{n̂ > k} ≤ (1− p)k, k ≥ 0, u ∈ H,

so n̂ is almost surely finite. For any integers k,M ≥ 1, we can write

Pu


τ(R) ≥ M


= Pu


τ(R) ≥ M, τk < M


+ Pu


τ(R) ≥ M, τk ≥ M



≤ Pu


τ(R) > τk


+ Pu


τk ≥ M


.

Since {τ(R) > τk} ⊂ {n̂ > k}, the first probability is estimated by (1 − p)k.
The second one is estimated using (5.28) and the strong Markov property

Pu


τk ≥ M


≤ Ck

1 wm(u)e−3γM ,

where C1 > 0 does not depend on k,M ≥ 1 and u ∈ H. Thus, we obtain

Pu


τ(R) ≥ M


≤ (1− p)k + Ck

1 wm(u)e−3γM .

To complete the proof, it remains to choose appropriately the parameters k
and R. We take k ∼ εM , where ε > 0 is so small that ε logC1 ≤ γ, and R > 0
so large that ε log(1− p)−1 ≥ 2γ. Then

Pu


τ(R) ≥ M


≤ 2e−2γMwm(u),

which implies (5.27).

5.5 Generalised Markov semigroups

For the reader’s convenience, we recall here a result on the large-time asymp-
totics of generalised Markov semigroups in a Polish space X. It is established
in [14] in the discrete-time setting, then extended to the continuous-time in [22].
Let us first recall some terminology.

Definition 5.5. We shall say that {Pt(u, ·), u ∈ X, t ≥ 0} is a generalised
Markov family of transition kernels if the following two properties are satisfied.

Feller property. For any t ≥ 0, the function u → Pt(u, ·) is continuous from X
to M+(X) and does not vanish.

Kolmogorov–Chapman relation. For any t, s ≥ 0, u ∈ X, and Borel set Γ ⊂
X, the following relation holds

Pt+s(u,Γ) =



X

Ps(v,Γ)Pt(u, dv).
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To any such family we associate two semigroups by the following relations:

Pt : Cb(X) → Cb(X), Ptψ(u) =



X

ψ(v)Pt(u, dv),

P∗
t : M+(X) → M+(X), P∗

tµ(Γ) =



X

Pt(v,Γ)µ(dv), t ≥ 0.

For a measurable function w : X → [1,+∞] and a family C ⊂ Cb(X), we
denote by Cw the set of functions ψ ∈ L∞

w (X) that can be approximated with
respect to the norm  · L∞

w
by finite linear combinations of functions from C.

We shall say that a family C ⊂ Cb(X) is determining if for any µ, ν ∈ M+(X)
satisfying 〈ψ, µ〉 = 〈ψ, ν〉 for all ψ ∈ C, we have µ = ν. Finally, a family
of functions ψt : X → R is uniformly equicontinuous on a subset K ⊂ X if
for any ε > 0 there is δ > 0 such that |ψt(u) − ψt(v)| < ε for any u ∈ K,
v ∈ BX(u, δ) ∩K, and t ≥ 0. The following result is Theorem 7.4 in [22].

Theorem 5.6. Let {Pt(u, ·), u ∈ X, t ≥ 0} be a generalised Markov family of
transition kernels satisfying the following four properties.

Growth conditions. There is an increasing sequence {XR}∞R=1 of compact sub-
sets of X such that X∞ := ∪∞

R=1XR is dense in X. The measures Pt(u, ·)
are concentrated on X∞ for any u ∈ X and t > 0, and there is a measur-
able function w : X → [1,+∞] and an integer R0 ≥ 1 such that 10

sup
t≥0

PtwL∞
w

Pt1R0

< ∞,

sup
t∈[0,1]

Pt1∞ < ∞,

where  · R and  · ∞ denote the L∞ norm on XR and X, respectively,
and we set ∞/∞ = 0.

Time-continuity. For any g ∈ Cw(X) and u ∈ X, the function t → Ptg(u) is
continuous from R+ to R.

Uniform irreducibility. For sufficiently large ρ ≥ 1, any R ≥ 1 and r > 0,
there are positive numbers l = l(ρ, r, R) and p = p(ρ, r) such that

Pl(u,BX(û, r)) ≥ p for all u ∈ XR, û ∈ Xρ.

Uniform Feller property. There is a number R0 ≥ 1 and a determining fam-
ily C ⊂ Cb(X) such that 1 ∈ C and the family {Pt1−1

R Ptψ, t ≥ 0} is
uniformly equicontinuous on XR for any ψ ∈ C and R ≥ R0.

Then for any t > 0, there is at most one measure µt ∈ Pw(X) such that
µt(X∞) = 1 and

P∗
tµt = λ(t)µt for some λ(t) ∈ R

10The expression (Ptw)(u) is understood as an integral of a positive function w against a
positive measure Pt(u, ·).
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satisfying the following condition:

PtwR


X\XR

w(u)µt(du) → 0 as R → ∞.

Moreover, if such a measure µt exists for all t > 0, then it is independent of t (we
set µ := µt), the corresponding eigenvalue is of the form λ(t) = λt, λ > 0,
suppµ = X, there is a non-negative function h ∈ L∞

w (X) such that 〈h, µ〉 = 1,

(Pth)(u) = λth(u) for u ∈ X, t > 0,

the restriction of h to XR belongs to C+(XR), and for any ψ ∈ Cw and R ≥ 1,
we have

λ−tPtψ → 〈ψ, µ〉h in C(XR) ∩ L1(X,µ) as t → ∞. (5.32)

Finally, if a Borel set B ⊂ X is such that

sup
u∈B



X\XR

w(v)Ps(u, dv) → 0 as R → ∞ (5.33)

for some s > 0, then

λ−tPtψ → 〈ψ, µ〉h in L∞(B) as t → ∞

for any ψ ∈ Cw.
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[8] C. Foiaş and G. Prodi. Sur le comportement global des solutions non-
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