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Polynomial mixing for the complex Ginzburg–Landau equation
perturbed by a random force at random times

Vahagn Nersesyan

Abstract. In this paper we study the problem of ergodicity for the complex Ginzburg–Landau (CGL) equation
perturbed by an unbounded random kick-force. Randomness is introduced both through the kicks and through the
times between the kicks. We show that the Markov process associated with the equation in question possesses a
unique stationary distribution and satisfies a property of polynomial mixing.

1. Introduction

We consider the CGL equation perturbed by a random kick-force on a domain D ⊂ R
n,

n ≤ 4 with ∂D ∈ C2 :

u̇ − ν�u + iβ|u|2u = η(t, x), x ∈ D, (1.1)

u|∂D = 0, (1.2)

u(0, x) = u0(x), (1.3)

where u = u(t, x) and ν, β > 0. We assume that η(t, x) is a random process of the form

η(t, x) =
∞∑

k=1

ηk(x)δ(t − τk), (1.4)

where δ(t) is the Dirac measure, ηk are independent identically distributed (i.i.d.) random
variables with range in the space H := H1

0 (D), and the waiting times tk = τk − τk−1,

k ≥ 2 and t1 = τ1 are i.i.d. random variables exponentially distributed with parameter λ.
Moreover, we assume that the sequences ηk, tk are independent.

Suppose that {gk}∞k=1 is an orthonormal basis in H . The main result of the present
paper is Theorem 4.2, which states that, if the law of ηk is non-degenerate on the space
spanned by {gk}Nk=1 for sufficiently large N, then there is a unique stationary measure for the
continuous time Markov process associated with (1.1), (1.2), (1.4). Moreover, any solution
of the problem polynomially converges to the stationary measure in the dual Lipschitz norm.
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Many authors have studied similar problems for various PDE’s with different random
perturbations (e.g., see [16, 2, 17, 18, 21, 15, 14, 26] for discrete forcing and [6, 8, 3, 22, 19,
7, 9, 25, 27, 4, 10] for white noise). Several ideas of this article are taken from [18, 15, 26].

The problem of ergodicity for randomly forced Ginzburg–Landau equation was studied
in the following articles. In [9], Hairer considered a real Ginzburg–Landau equation on
multidimensional torus. Odasso [25] studied a class of CGL equations with strong nonlinear
dissipation. In both of these works the property of exponential mixing is established. In [27],
Shirikyan used a sufficient condition for ergodicity of Markov processes to show uniqueness
and mixing for a class of CGL equations with linear dispersion. Finally, in [4], Debussche
and Odasso proved the polynomial mixing property for a damped 1D Schrödinger equation.

The main novelty of the present paper is the condition over the waiting times. Note
that the restriction of the solution at times τk looks like the random dynamical systems
considered by Kuksin, Shirikyan [14], [16], [26] and Masmoudi, Young [21] :

uτk
= Stk (uτk−1) + ηk, (1.5)

but there are some essential differences. As the waiting times can be arbitrarily small,
during any time interval the system can receive any number of kicks. This changes the
dynamics of the associated process, for example:

• The distance between two trajectories having close initial data can be arbitrary large
at any time t > 0.

• The phase space of the problem is not bounded even in the case of bounded kicks.

Let us give in a few words the ideas of the proof of Theorem 4.2. An important tool
for the proof of the result is the Foiaş–Prodi type estimate. This kind of estimates are
often used to prove ergodic properties of PDE’s. Suppose that there are two sequences
of kicks ζk and ζ′

k, having equal high Fourier modes for k ≥ l, such that the solutions
of corresponding problems have equal low Fourier modes at kicking times τk, k ≥ l (see
Lemma 2.1 for the exact formulation). Let N t be the number of kicks before time t, i.e.
Nt = max{k : τk ≤ t}. Then, by Foiaş–Prodi Lemma, we have the following estimate for
the distance between solutions at time t, if t ≥ τl:

‖ut − u′
t‖1 ≤ e−C(Nt−l)


 Nt∏

i=l+1

ti




− 1
2

eϕ‖uτl
− u′

τl
‖1, (1.6)

where ‖·‖1 stands for the norm in H , ut and u′
t are solutions corresponding to the sequences

ζk and ζ′
k respectively, ϕ is a polynomial function of {‖uτi‖1}Nt

i=l and {‖u′
τi
‖1}Nt

i=l and C > 0
is a large constant. Following the ideas from [26], we construct two sequences ζk and ζ′

k

of i.i.d. random variables in H distributed as η1 such that the conditions of Foiaş–Prodi
Lemma are satisfied for a random integer � ≥ 1. Moreover, using the law of large numbers
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and some martingale inequalities, we show that � can be chosen in a such way that the
following properties also hold:

(i)
( ∏Nt

i=�+1 ti
)− 1

2 eϕ ≤ e(Nt−�), if Nt ≥ � + 1,

(ii) ‖uτ�
‖1 + ‖u′

τ�
‖1 ≤ 1,

(iii) E�p ≤ Cp.

As we show in Section 4, properties (i)–(iii) and (1.6) imply the polynomial mixing property.
The random variables ζk, ζ

′
k and � are constructed in Proposition 4.3. In Section 4, we

show how Theorem 4.2 is derived from Proposition 4.3. The proof of Proposition 4.3 is
carried out in Sections 5 and 6.

Note that an exponential estimate for the random variable � in (iii) would immediately
imply the exponential mixing property for the system. Finally, using (i)–(iii), one can show
that the embedded Markov chain uτk

also satisfies a property of polynomial mixing. The
stationary measure of the original process and that of embedded chain are connected with
the Khasminskii relation (see Section 4).

Notation

Let D ⊂ R
n be a bounded domain with smooth boundary and let {gj}j∈N be an orthonor-

mal basis in H . Let HN be the vector span of {g1, ..., gN} and H⊥
N be its orthogonal com-

plement in H . We denote by PN and QN the orthogonal projections onto HN and H⊥
N in

H . Denote by {ej}j∈N the set of normalized eigenfunctions of the Dirichlet Laplacian with
eigenvalues {αj}j∈N and denote by Q′

N the orthogonal projection onto the closure of the
vector span of {eN, eN+1, ...} in L2(D).

Let Hs(D), s ≥ 0 be the Sobolev space of order s. We denote by ‖u‖1 = ‖∇u‖, ‖u‖2 =
‖�u‖ the norms in the spaces H1

0 (D) and H1
0 (D) ∩ H2(D) respectively, where ‖ · ‖ stands

for the norm in L2(D). For a Banach space X, we shall use the following notation.
B(X) is the σ-algebra of Borel subsets of X.
C(X) is the space of real-valued continuous functions on X.
Cb(X) is the space of bounded functions f ∈ C(X).
L(X) is the space of functions f ∈ Cb(X) such that

‖f‖L := ‖f‖∞ + sup
u�=v

|f(u) − f(v)|
‖u − v‖ < +∞.

P(X) is the set of probability measures on (X, B(X)). If µ ∈ P(X) and f ∈ Cb(X), we
set

(f, µ) =
∫
X

f(u)µ(du).
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If µ1, µ2 ∈ P(X), we set

‖µ1 − µ2‖∗
L = sup{|(f, µ1) − (f, µ2)| : f ∈ L(X), ‖f‖L ≤ 1},

‖µ1 − µ2‖var = sup{|µ1(�) − µ2(�)| : � ∈ B(X)}.
For any �1, �2 ∈ B(X), with P(�2) �= 0, denote

P(�1|�2) = P(�1�2)

P(�2)
.

The distribution of a random variable ξ is denoted by D(ξ). We denote by C, Ck unessential
positive constants.

2. Preliminaries

It is well known that problem (1.1)–(1.3) with η ≡ 0 and u0 ∈ H has a unique solution
in the space C(R+, H) ∩ L2

loc(R+, H2(D)). Let St : H → H be the resolving semi-group
for that problem. Let τ0 ≡ 0 and define ut by the relation

ut =
{

St−τk
(uτk

), if t ∈ [τk, τk+1), k ≥ 0,

Stk+1(uτk
) + ηk+1, if t = τk+1.

Then ut is the unique solution of problem (1.1)–(1.4). Clearly, ut exists for all t > 0 with
probability 1, as P{∑ tk = ∞} = 1. Let us define a continuous functional on H :

H(u) =
∫
D

(
α|∇u(x)|2 + β

4
|u(x)|4

)
dx, (2.1)

where α is a positive constant. If α is sufficiently small, we have the estimate

H(St(u)) ≤ e−atH(u), t ≥ 0, (2.2)

where a is a positive constant, and there is a constant C such that

‖St(u) − St(v)‖1 ≤ C exp(C(‖u‖6
1 + ‖v‖6

1))‖u − v‖1, t ≥ 0, (2.3)

‖St(u) − St(v)‖2 ≤ Ct−
1
2 exp(C(‖u‖6

1 + ‖v‖6
1))‖u − v‖1, t > 0, (2.4)

where u, v ∈ H . The proof (2.2), (2.3) and (2.4) is carried out by standard methods and is
given in the Appendix.

For any sequence ak, m ≤ k ≤ n, we set

〈ak〉nm = 1

n − m + 1

n∑
k=m

ak. (2.5)
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Suppose uk, u
′
k ∈ H and tk > 0 are arbitrary sequences. Define ζk and ζ′

k by the relations

uk = Stk (uk−1) + ζk, u′
k = Stk (u

′
k−1) + ζ′

k. (2.6)

LEMMA 2.1. Suppose that

PNuk = PNu′
k, QNζk = QNζ′

k, l + 1 ≤ k ≤ n, (2.7)

ej ∈ HN, j = 1, ..., N ′ (2.8)

for some N ′ ≥ 1 and N ≥ 1. Then

‖uk − u′
k‖1 ≤ (Cα

− 1
2

N ′+1)
k−l


 k∏

i=l+1

ti




− 1
2

× exp
(
C(k − l)(〈‖ui‖6

1〉k−1
l + 〈‖u′

i‖6
1〉k−1

l )
)‖ul − u′

l‖1, (2.9)

for l ≤ k ≤ n, where C is a positive constant not depending on uk, u
′
k, n, l, N and N ′.

Proof. Using (2.4), (2.7) and (2.8), we see that

‖uk − u′
k‖1 = ‖QN(uk − u′

k)‖1 = ‖QN(Stk (uk−1) − Stk (u
′
k−1))‖1

≤ ‖Q′
N ′(Stk (uk−1) − Stk (u

′
k−1))‖1

≤ α
− 1

2
N ′+1‖Stk (uk−1) − Stk (u

′
k−1)‖2

≤ Cα
− 1

2
N ′+1t

− 1
2

k exp
(
C(‖uk−1‖6

1 + ‖u′
k−1‖6

1)
)‖uk−1 − u′

k−1‖1.

Iteration of this inequality results in (2.9). �

3. Markov chains associated with CGL equation and existence
of stationary measures

Let u0 be an H-valued random variable, independent of {ηk} and {tk}, and let ut be the
solution of problem (1.1)–(1.4). Denote by Ft , t ≥ 0 the σ-algebra generated by u0 and
{ζ(s), 0 ≤ s ≤ t}, where

ζ(s) =
∞∑

k=1

I{τk≤s}ηk. (3.1)

LEMMA 3.1. Under the above conditions, ut is a homogeneous Markov process with
respect to Ft .
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The proof of this lemma is given in the Appendix. For any u ∈ H and � ∈ B(H), we set
Pt(u, �) = P{ut(u) ∈ �}. The Markov operators corresponding to the process ut have the
form

Ptf(u) =
∫
H

Pt(u, dv)f(v), P∗
t µ(�) =

∫
H

Pt(u, �)µ(du),

where f ∈ Cb(H) and µ ∈ P(H).

The strong Markov property implies that uτk
is a homogeneous Markov chain with

respect to σ-algebra Gk generated by {ηn, tn, 1 ≤ n ≤ k}. In what follows, we shall write
uk instead of uτk

; this will not lead to confusion.

LEMMA 3.2. (i) For any ε > 0 there is a constant Cε > 0 such that

H(uk) ≤ (1 + ε)ke−aτkH(u0) + Cε

k∑
l=1

e−a(τk−τl)(1 + ε)k−lH(ηl). (3.2)

(ii) Let EH(ηk)
p < ∞ for some p ≥ 1. Then

EH(uk)
p ≤ γk

EH(u0)
p + Cp

1 − γ
EH(ηk)

p, (3.3)

where 0 < γ < 1 and Cp > 0 are some constants not depending on k.

Proof. Using (2.2), we obtain

H(uk) ≤ (1 + ε)e−tkaH(uk−1) + CεH(ηk).

Iteration of this inequality results in (3.2).
To prove (3.3), note that for any ε > 0 there is a constant Cp,ε such that

H(uk)
p ≤ (1 + ε)e−tkapH(uk−1)

p + Cp,εH(ηk)
p. (3.4)

Taking the expectation and using the independence of tk and uk−1, we obtain

EH(uk)
p ≤ (1 + ε)

λ

λ + ap
EH(uk−1)

p + Cp,εEH(ηk)
p.

Choosing ε > 0 so small that γ := (1 + ε) λ
λ+ap

< 1 and iterating the resulting inequality,
we arrive at (3.3). �

LEMMA 3.3. Let E‖ηk‖p

1 < ∞ for all p ≥ 1 and let u0 ∈ H . Then
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(i) There is a constant M > 0 not depending on u0 and a random integer T = T(u0) ≥ 1
such that

〈‖uk‖6
1〉n0 ≤ M for n ≥ T , (3.5)

ETp < ∞ for all p ≥ 1, (3.6)

where 〈·〉n0 is defined by (2.5).
(ii) For any δ ∈ (0, 1) and d > 0, there is a constant R = R(δ, d) > 0 such that

P{〈‖uk‖6
1〉n0 ≤ R, ∀n ≥ 0} ≥ δ, (3.7)

for any u0 ∈ Bd , where Bd = {u ∈ H : ‖u‖1 ≤ d}.
Proof. Let us fix ε > 0. Using (3.4) with p = 3, we obtain

H(uk)
3 ≤ (1 + ε)e−3atkH(uk−1)

3 + CεH(ηk)
3

= (1 + ε)

(
e−3atk − λ

λ + 3a

)
H(uk−1)

3

+ (1 + ε)
λ

λ + 3a
H(uk−1)

3 + CεH(ηk)
3. (3.8)

Choosing ε > 0 so small that q := (1 + ε) λ
λ+3a

< 1 and summing up inequalities (3.8) for
1 ≤ k ≤ n, we arrive at

n∑
k=1

H(uk)
3 ≤ (1 + ε)

n∑
k=1

(
e−3atk − λ

λ + 3a

)
H(uk−1)

3 + q

n∑
k=1

H(uk−1)
3

+ Cε

n∑
k=1

H(ηk)
3,

whence it follows that

α3〈‖uk‖6
1〉n0 ≤ 〈H(uk)

3〉n0 ≤ 1 + ε

1 − q

1

n + 1

n∑
k=1

(
e−3atk − λ

λ + 3a

)
H(uk−1)

3

+ 1

1 − q

H(u0)
3

n + 1
+ Cε

1 − q
m + Cε

1 − q

1

n + 1

n∑
k=1

(H(ηk)
3 − m), (3.9)

where m = EH(ηk)
3. To complete the proof, we need the following lemma, whose proof

is given in the Appendix.

LEMMA 3.4. Suppose that Mk is a sequence of random variables that satisfies the
inequality

E|Mk|2p ≤ Cpkp for all p ≥ 1. (3.10)

Then the following assertions take place.
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(i) There is a random integer T ≥ 1 such that

1

k
|Mk| ≤ 1 for k ≥ T, (3.11)

ETp < ∞ for all p ≥ 1. (3.12)

(ii) For any δ ∈ (0, 1), there is a constant R > 0 such that

P

{ |Mk|
k

≤ R, ∀k ≥ 1

}
≥ δ. (3.13)

Let us set

M ′
k =

k∑
i=1

(
e−3ati − λ

λ + 3a

)
H(ui−1)

3,

M ′′
k =

k∑
i=1

(H(ηi)
3 − m), M ′

0 = M ′′
0 = 0.

Clearly M ′
k and M ′′

k are martingales. For M ′′
k it is easy to verify that (3.10) holds, as

M ′′
i − M ′′

i−1 = H(ηi)
3 − m, i ≥ 1 are centered i.i.d. random variables. To prove (3.10) for

M ′
k, we need Burkholder’s inequality for martingales ([11], Section 2.4):

C1E

∣∣∣ k∑
i=1

X2
i

∣∣∣p ≤ E|M ′
k|2p ≤ C2E

∣∣∣ k∑
i=1

X2
i

∣∣∣p, (3.14)

where Xi = M ′
i − M ′

i−1, i ≥ 1, p ≥ 1 and C1, C2 are positive constants depending only
on p. Using (3.14) and (3.3), we obtain

E|M ′
k|2p ≤ C2E

∣∣∣ k∑
i=1

(
e−3ati − λ

λ + 3a

)2H(ui−1)
6
∣∣∣p

≤ C

k∑
i=1

EH(ui−1)
6pkp−1 ≤ C′kp,

where C′ depends on ‖u0‖1. Applying Lemma 3.4, let T ′ and T ′′ be the random variables
corresponding to martingales M ′

k and M ′′
k . Setting

T = T1 ∨ T2 ∨
(
H(u0)

1

1 − q

)
, M =

( 1 + ε

1 − q
+ Cε(m + 1)

1 − q
+ 1

)
α−3,

it is easy to verify that we have (3.5) and (3.6) for T and M.
To prove (3.7), we apply (3.13) to the sequence

Mk = 1 + ε

1 − q
M ′

k + Cε

1 − q
M ′′

k ,
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and using (3.9), we see that (3.7) holds with

R1 = R + Cd

1

1 − q
+ Cε

1 − q
m,

where Cd = supu∈Bd
H(u)3. �

Let τR be the first hitting time of the ball BR:

τR = min{k ≥ 0 : ‖uk‖1 ≤ R}.

LEMMA 3.5. Let EH(η1) < +∞. Then there are positive constants δ, C and R not
depending on u such that

Eue
δτR ≤ C(1 + H(u)).

Proof. It suffices to show that uk possesses a Lyapunov function (see [24]), i.e. there is
a continuous functional F on H such that

(i) F(u) ≥ 1 and lim‖u‖1→∞ F(u) = +∞.

(ii) There are positive constants n, R′, C′ and a < 1 that

EuF(un) ≤ aF(u) for ‖u‖1 ≥ R′, (3.15)

EuF(uk) ≤ C′ for ‖u‖1 < R′, k ≥ 0. (3.16)

Let

F(u) =
{

H(u), if H(u) ≥ A,

A, if H(u) < A,

where A ≥ 1. Then (i) is satisfied. Let ‖u‖1 ≥ R′. Note that

EuF(un) = EuF(un)I{H(un)<A} + EuF(un)I{H(un)≥A}
≤ A + EuH(un) ≤ γnH(u) + A + CEH(η1), (3.17)

where we used (3.3). Choosing n and R′ so large that 2γn < 1 and A+CEH(η1) ≤ γnR′2α,
where α is the constant in (2.1), we arrive at (3.15) with a = 2γn. It remains to note that
(3.16) follows from (3.3). �

DEFINITION 3.6. A measure µ ∈ P(H) is said to be stationary for problem (1.1),
(1.2), (1.4), if P∗

t µ = µ for any t ≥ 0.

Using the classical Bogolyubov-Krylov argument and Fatou’s lemma, one can prove the
following theorem. Its proof is outlined in the Appendix.
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THEOREM 3.7. Let EH(ηk) < ∞, then problem (1.1), (1.2), (1.4) has at least one
stationary measure. Moreover, if EH(ηk)

p < ∞ for some p ≥ 1, then for any stationary
measure µ we have:

Hp(µ) :=
∫
H

H(u)pµ(du) < +∞.

We denote by P1(H) the set of measures µ ∈ P(H) such that H(µ) := H1(µ) < +∞.

4. Main result

To show the uniqueness of stationary measure for (1.1), (1.2), (1.4), we shall need the
following condition satisfied for ηk:

Condition 4.1. The random variables ηk are i.i.d. and have the form

ηk =
∞∑

j=1

bjξjkgj(x),

where {gi}i∈N is an orthonormal basis in H , bj ≥ 0 are some constants with

B :=
∞∑

j=1

b2
j < ∞,

and ξjk are independent scalar random variables. Moreover, the distribution of ξjk pos-
sesses a density pj(r) (with respect to the Lebesgue measure), which is a function of bounded
variation such that

ε∫
−ε

pj(r)dr > 0,

+∞∫
−∞

|r|ppj(r)dr ≤ Cp < ∞, (4.1)

for all ε > 0, p ≥ 1, j ≥ 1 and for some constants Cp > 0.

Clearly, if Condition 4.1 is satisfied, then

E‖ηk‖p

1 < ∞ for all k ≥ 1, p ≥ 1. (4.2)

THEOREM 4.2. Suppose that Condition 4.1 is satisfied. For any B > 0 there is an
integer N ′ ≥ 1 such that, if

ej ∈ HN, j = 1, ..., N ′ (4.3)
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for some N ≥ 1, and

bj �= 0, j = 1, ..., N, (4.4)

then there is a unique stationary measure µ ∈ P(H). Moreover, for any initial measure
µ′ ∈ P1(H) we have

‖P∗
t µ

′ − µ‖∗
L ≤ Cp(1 + H(µ′))t−p, t > 0, (4.5)

where Cp is a constant not depending on µ′.

Proof. Step 1. It suffices to show that for any u, u′ ∈ H we have

|Ptf(u) − Ptf(u′)| ≤ Cp‖f‖L(1 + H(u) + H(u′))t−p, (4.6)

for any p ≥ 1, t > 0 and some constant Cp > 0 not depending on (u, u′) and t.
Indeed, suppose that (4.6) is already proved. Then for any two initial measures µ′, µ′′ ∈
P1(H) we derive from (4.6):

‖P∗
t µ

′ − P∗
t µ

′′‖∗
L ≤ Cp(1 + H(µ′) + H(µ′′))t−p. (4.7)

This inequality shows the uniqueness of stationary measure in P1(H). It follows from
Theorem 3.7 that any stationary measure µ is in P1(H). Taking µ′′ = µ in (4.7), we arrive
at (4.5).

Step 2. Inequality (4.6) is a direct consequence of the following proposition.

PROPOSITION 4.3. Under the conditions of Theorem 4.2, for any B > 0 there is an
integer N ′ ≥ 1 such that, if (4.3) and (4.4) hold for some integer N ≥ 1, then there
is a probability space (�, F, P) and a sequence of i.i.d. random variables {tk} that are
exponentially distributed with parameter λ such that for any u, u′ ∈ H one can construct
random sequences uk, u

′
k defined on � with the following properties:

(i) The initial value of the trajectory (uk, u
′
k) is (u, u′):

u0 = u, u′
0 = u′.

Furthermore, the random variables ζk and ζ′
k defined by (2.6) are i.i.d., and their

distribution coincides with that of ηk:

D(ζk) = D(ζ′
k) = D(ηk).
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(ii) There is a random integer � = �(u, u′) and a constant M depending only on B such
that

PNuk = PNu′
k for k ≥ � + 1, (4.8)

QNζk = QNζ′
k for k ≥ 1, (4.9)

〈‖ui‖6
1 + ‖u′

i‖6
1〉k� ≤ M for k ≥ � + 1, (4.10)

1

2

1

k − �

∣∣ k∑
i=�+1

log ti
∣∣ ≤ M for k ≥ � + 1. (4.11)

(iii) There is a positive constant Cp not depending on (u, u′) such that

E�p ≤ Cp(1 + H(u) + H(u′)) for all p ≥ 1, (4.12)

‖u�‖1 ∨ ‖u′
�‖1 ≤ 1. (4.13)

To prove (4.6), let uk and u′
k be the random sequences constructed in Proposition 4.3

and corresponding to the initial value (u, u′). Let τk = ∑k
n=1 tn, n ≥ 1 and τ0 = 0. Define

ut =
{

St−τk
(uk), if t ∈ [τk, τk+1), k ≥ 0,

Stk+1(uk) + ζk+1, if t = τk+1,

and u′
t is defined in a similar way. Clearly, ut and u′

t have the same distributions as the
solutions of (1.1)–(1.4) corresponding to u and u′, respectively. Thus

|Ptf(u) − Ptf(u′)| = |E(f(ut) − f(u′
t))|. (4.14)

Let

Nt = max{k ≥ 0 : τk ≤ t}, (4.15)

then Nt is a Poisson random variable with parameter λt (e.g., see [13]). Define Gt = {ω :
2� + 1 ≤ Nt} = {ω : τ2�+1 ≤ t}. As τk is a Gamma random variable with parameters λ

and k (e.g., see [5]), we have

Eτ
q

2�+1 ≤
∞∑

n=1

E[τq

2n+1I{�=n}] ≤
∞∑

n=1

(Eτ
2q

2n+1)
1
2 P{� = n} 1

2

≤ C(1 + H(u) + H(u′))
∞∑

n=1

1

n2
< ∞, (4.16)

for any q ≥ 1, where we used the Cauchy–Schwarz inequality and (4.12) with p = 2(2+q).
It follows that

P(Gc
t ) ≤ C′

p(1 + H(u) + H(u′))t−p for any p ≥ 1. (4.17)
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Using (2.3), we see that

‖ut − u′
t‖1 ≤ C exp(C(‖uτNt

‖6
1 + ‖u′

τNt
‖6

1))‖uτNt
− u′

τNt
‖1,

whence, using (4.8)–(4.11), (4.13) and Lemma 2.1, we obtain

E[IGt‖ut − u′
t‖1] ≤ E[2(Cα

− 1
2

N ′+1)
Nt−�e2CM(Nt−�)].

Choosing N ′ so large that log αN ′+1 ≥ 2(2CM + log C + 2), we arrive at

E[IGt‖ut − u′
t‖1] ≤ Ee−Nt = e−ct, (4.18)

where c = λ − λ
e
. Let f ∈ L(H). Then, using (4.14), (4.17) and (4.18), we derive

|Ptf(u) − Ptf(u′)| ≤ E|f(ut) − f(u′
t)|

≤ ‖f‖LE[IGt‖ut − u′
t‖1] + EIGc

t
2‖f‖∞

≤ ‖f‖Le−ct + 2‖f‖LC′
p(1 + H(u) + H(u′))t−p

≤ Cp‖f‖L(1 + H(u) + H(u′))t−p. (4.19)

This completes the proof of (4.6). �

REMARK 4.4. 1. The embedded Markov chain uτk
also satisfies a property of polyno-

mial mixing. This follows from Proposition 4.3 and is proved using the same arguments
as in the proof of Theorem 4.2. The stationary measures of the original process and that of
embedded chain are connected with the Khasminskii relation:

(f, µ) = 1

Eντ1
Eν

τ1∫
0

f(ut)dt,

where ν and µ are the stationary measures of uτk
and ut respectively.

2. The integer N in Theorem 4.2 depends on the viscosity ν. In the case of the 2D
Navier–Stokes equations on the torus, controllability and exponential mixing property hold
under condition (4.4) with N not depending on ν (see [1, 23, 10]). It would be interesting
to establish similar results in the setting of the present paper.

3. The proof of Theorem 4.2. can be generalized to the case of external forcing of the
form

η(t, x) = h(x) +
∞∑

k=1

ηk(x)δ(t − τk), (4.20)
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where h ∈ H is a deterministic function. In this case, one needs to replace the first inequality
in (4.1) by the following one:

a+ε∫
a−ε

pj(r)dr > 0 for all a ∈ R, ε > 0 and j ≥ 1. (4.21)

The proofs of all the results, except that of Lemma 5.4, remain literally the same. The proof
of Lemma 5.4 in the general case is given at the end of Section 5.

5. Coupling operators

Let ηk be a sequence of random variables with range in H and suppose that Condition
4.1 is satisfied for ηk. Clearly, if bj �= 0, j = 1, ..., N, then the distribution of the random
variable PN(η1) is absolutely continuous with respect to the Lebesgue measure, and its
density has the form

p(x) :=
N∏

j=1

qj(xj), qj(xj) = b−1
j pj(xjb

−1
j ), x = (x1, ..., xN) ∈ HN.

Now we have the following lemma, which is a version of Lemma 3.2 in [18]:

LEMMA 5.1. Suppose that Condition 4.1 is satisfied and bj �= 0 for j = 1, ..., N,

where N ≥ 1 is an integer. Then there is a probability space (�, F, P) such that for any
u, u′ ∈ H there are H-valued random variables ζ = ζ(u, u′, ω), ζ′ = ζ′(u, u′, ω) and a
real-valued random variable t = t(ω) with the following properties:

(i) The random variables ζ, ζ′ and η1 have the same distributions, and t is exponentially
distributed with parameter λ.

(ii) The random variables (PNζ, PNζ′) and (QNζ, QNζ′) are independent, and ζ and
ζ′ are independent of t.

(iii) The random variables QNζ and QNζ′ are equal for all ω ∈ � and do not depend
on (u, u′).

(iv) The random variables ζ and ζ′ are measurable functions of (u, u′, ω) ∈ H ×H ×�.

Proof. Suppose that t1 = t1(ω1) is a random variable that is exponentially distributed with
parameter λ and is defined on the space (�1, F1, P1). Let (v, v′) be a maximal coupling for
(νu,ω1 , νu′,ω1), where νu,ω1 is a measure on HN given by the density p(x − PNSt1(ω1)(u))

(see [20], Section I, 5). By Theorem 4.2 in [18], we can assume that the random variables
v and v′ are defined on the same probability space (�2, F2, P2) for all u, u′ ∈ H , ω1 ∈ �1

and are measurable functions of (u, u′, ω1, ω2) ∈ H × H × �1 × �2. Suppose that
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η1 is defined on the space (�3, F3, P3). We denote by (�, F, P) the direct product of
(�i, Fi, Pi), i = 1, 2, 3, and define ζ, ζ′ and t by the relations:

t(ω) = t1(ω1),

PNζ(ω) = v(u, u′, ω1, ω2) − PNSt(ω1)(u),

PNζ′(ω) = v′(u, u′, ω1, ω2) − PNSt(ω1)(u
′),

QNζ(ω) = QNζ′(ω) = QNη1(ω3),

where ω = (ω1, ω2, ω3) ∈ �. Using the definition of ζ and Fubini’s theorem, we see that

P{PNζ ∈ �} = EI{PNζ∈�} = E1P2{PNζ(ω1) ∈ �}
= E1P2{v − PNSt1(u) ∈ �} =

∫
�

p(x)dx = P{PNη1 ∈ �}, (5.1)

for any � ∈ B(HN), where E1 is the expectation corresponding to the measure P1. All
assertions of lemma follow from the construction and relation (5.1). �

REMARK 5.2. Using inequality (3.8) in Lemma 3.2, [18] for the variational distance
between νu,ω1 and νu′,ω1 , we obtain the inequality:

‖νu,ω1 − νu′,ω1‖var ≤ CN‖St(u) − St(u
′)‖1,

which holds P1-a.s.. Then the definition of maximal coupling gives

P2{v �= v′} ≤ CN‖St(u) − St(u
′)‖1. (5.2)

REMARK 5.3. Let (�′, F ′, P
′) be the direct product of (�i, Fi, Pi), i = 2, 3. For any

ω1 ∈ �1, let Eω1 = {ω′ ∈ �′ : v(u, u′, ω1, ω
′) �= v′(u, u′, ω1, ω

′)}. As (v, v′) is a
maximal coupling for (νu,ω1 , νu′,ω1), we have

P
′{v(u, u′, ω1, ·) ∈ �, v′(u, u′, ω1, ·) ∈ �′|Eω1}

= P
′{v(u, u′, ω1, ·) ∈ �|Eω1}P′{v′(u, u′, ω1, ·) ∈ �′|Eω1},

if P
′{Eω1} > 0 and �, �′ ∈ B(H). Now it is easy to notice that

P
′{vω1 ∈ �, v′

ω1
∈ �′, Eω1} ≥ P

′{vω1 ∈ �, Eω1}P′{v′
ω1

∈ �′, Eω1}. (5.3)

Let us define coupling operators by the formulas

R(u, u′, ω) = St(ω)(u) + ζ(u, u′, ω), R′(u, u′, ω) = St(ω)(u
′) + ζ′(u, u′, ω),

where u, u′ ∈ H and ω ∈ �.
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LEMMA 5.4. Under the conditions of Lemma 5.1, there exists a constant γ ∈ (0, 1)

such that for any r > 0 and an appropriate constant ε := ε(r) > 0 we have

P1
r := P{H(R(u, u′, ·)) + H(R′(u, u′, ·)) ≤ (

γ(H(u) + H(u′))
) ∨ r} > ε, (5.4)

for all u, u′ ∈ H.

Proof. Step 1. It suffices to show that there is C > 0 such that for any δ > 0 and an
appropriate constant εδ > 0 the following inequality holds P1-a.s.:

P2
δ (ω1) := P

′{H(R(u, u′, ω1, ·)) + H(R′(u, u′, ω1, ·))
≤ C(H(St(ω1)(u)) + H(St(ω1)(u

′))) + δ} ≥ εδ. (5.5)

Indeed, define the event
V = {e−at(ω1) ≤ (2C)−1}.

Then P1(V) > 0, as t is exponentially distributed. We deduce from (2.2):

C(H(St(ω1)(u)) + H(St(ω1)(u
′))) + δ ≤ Ce−at(ω1)(H(u) + H(u′)) + δ

≤ 1

2
(H(u) + H(u′)) + δ,

if ω1 ∈ V . Setting γ = 3
4 and δ = r

3 , we see that

1

2
(H(u) + H(u′)) + δ ≤ (

γ(H(u) + H(u′))
) ∨ r.

Combining this with (5.5), we obtain P1
r ≥ E1P

2
δ (ω1)IV (ω1) ≥ εδP(V).

Step 2. Let us fix arbitrary δ > 0 and ω1 ∈ �1. Suppose that

H(PNSt(ω1)(u)) ≤ H(PNSt(ω1)(u
′)) (5.6)

(the proof of the other case is similar). Define the events

Aδ =
{
ω′ ∈ �′ : H(PNR(ω1, ω

′)) ≤ 8H(PNSt(ω1)(u
′)) + δ

32

}
,

Fδ =
{
ω′ ∈ �′ : H(QNR(ω1, ω

′)) ≤ 8H(QNSt(ω1)(u)) + δ

32

}
,

G′
δ =

{
ω′ ∈ �′ : H(PNR′(ω1, ω

′)) ≤ 8H(PNSt(ω1)(u
′)) + δ

32

}
,

F ′
δ =

{
ω′ ∈ �′ : H(QNR′(ω1, ω

′)) ≤ 8H(QNSt(ω1)(u
′)) + δ

32

}
,
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Clearly, if ω′ ∈ AδFδ, then

H(R) ≤ 8H(PNR) + 8H(QNR) ≤ 64(H(PNSt(u
′)) + H(QNSt(u))) + δ

2
.

As dim HN < ∞, we obtain

H(PNSt(u)) ≤ C1H(St(u)),

therefore
H(QNSt(u)) ≤ C2H(St(u)).

Finally, we have

H(R(u, u′, ω1, ω
′)) + H(R′(u, u′, ω1, ω

′)) ≤ C(H(St(u)) + H(St(u
′))) + δ,

if ω′ ∈ AδG
′
δFδF

′
δ. Using property (ii) of Lemma 5.1, we see that

P2
δ (ω1) ≥ P

′(AδFδG
′
δF

′
δ) = P

′(AδG
′
δ)P

′(FδF
′
δ).

Hence, it suffices to find a constant kδ > 0 not depending on ω1 ∈ �1 such that

P
′(AδG

′
δ) ≥ kδ, P

′(FδF
′
δ) ≥ kδ. (5.7)

Step 3. It follows from (4.1) that for any τ > 0 there is qτ > 0 such that

P
′{‖ζ‖1 ≤ τ} ≥ qτ, P{‖ζ′‖1 ≤ τ} ≥ qτ. (5.8)

In view of property (iii) of Lemma 5.1, we have

P
′
{

8H(QNζ) = 8H(QNζ′) ≤ δ

32

}
≥ q′

δ,

where q′
δ > 0, therefore

P
′(FδF

′
δ) ≥ q′

δ.

Step 4. We deduce from (5.8) and (5.6) that

P
′(Aδ) ≥ q′

δ, P
′(G′

δ) ≥ q′
δ. (5.9)

Let E = {PNR �= PNR′}. Then AδE
c = G′

δE
c = AδG

′
δE

c. If P
′(E) = 0, then

P
′(AδG

′
δ) = P

′(Aδ) ≥ q′
δ.

Suppose that P
′(E) > 0. Using Remark 5.3, we obtain

P
′(AδG

′
δ) = P

′(AδG
′
δE

c) + P
′(AδG

′
δE) ≥ P

′(AδE
c) + P

′(AδE)P′(G′
δE). (5.10)

If P
′(AδE

c) ≥ ( q′
δ

2

)2 =: kδ, then P
′(AδG

′
δ) ≥ kδ. If P

′(AδE
c) < kδ, then

P
′(AδG

′
δ) ≥ (P′(Aδ) − P

′(AδE
c))(P′(G′

δ) − P
′(AδE

c)) ≥
(
q′
δ −

(q′
δ

2

)2)2 ≥ kδ.

This completes the proof of the lemma. �
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Proof of Lemma 5.4 in the case of forcing of the form (4.20). Notice that Lemma 5.4
is used only to show assertion (ii) in the proof of Lemma 6.1. Thus, it suffices to prove
(5.4) for all ‖u‖1 + ‖u′‖1 ≤ R, where R > 0 is a constant. Using condition (4.21) and the
arguments of the proof of Lemma 3.2 in [26], one can show that for any N ≥ 1 such that
(4.4) holds and any δ > 0 there is a constant ε := ε(R, N, δ) > 0 such that

P

{
H(PNR) ∨ H(PNR′) ≤ δ, H(QNζ) = H(QNζ′) ≤ δ, t ∈

[1

2
,

3

2

]}
≥ ε (5.11)

for all ‖u‖1 + ‖u′‖1 ≤ R. Let St : H → H be the resolving semi-group for (1.1)–(1.3)
with η ≡ h. Let N ′ ≥ 1 and N ≥ 1 be such that (4.3) and (4.4) hold. Then

8H(QNSt(u)) ≤ CH(Q′
N ′St(u)) ≤ C′α− 1

2
N ′+1‖St(u)‖2.

Thus, for sufficiently large N ′ ≥ 1, we have

8H(QNSt(u)) ≤ 1

2
H(u) (5.12)

for all t ∈ [ 1
2 , 3

2

]
and ‖u‖1 ≤ R. Finally, choosing δ = r

128 and taking into account (5.12)
and (5.11), we show that the following estimate holds with probability ≥ ε:

H(R) + H(R′) ≤ 8(H(PNR) + H(PNR′) + H(QNR) + H(QNR′))
≤ 16δ + 8H(QNSt(u)) + 8H(QNSt(u

′)) + 16H(QNζ)

≤ 1

2
(H(u) + H(u′)) + 32δ

≤ 3

4
(H(u) + H(u′)) ∨ r.

�

6. Proof of Proposition 4.3

Let (�k, Fk, P
k), k ≥ 1 be independent copies of the probability space constructed in

Lemma 5.1, and let (�, F, P) be their direct product. Let u0 = u and u′
0 = u′, where

u, u′ ∈ H. We set

uk(ω) = R(uk−1(ω), u′
k−1(ω), ωk), u′

k(ω) = R′(uk−1(ω), u′
k−1(ω), ωk),

ζk(ω) = ζ(uk−1(ω), u′
k−1(ω), ωk), ζ′

k(ω) = ζ′(uk−1(ω), u′
k−1(ω), ωk),

tk(ω) = t(ωk),

where ω = (ω1, ω2, ...) ∈ �. Clearly, for Uk := (uk, u
′
k) assertion (i) of Proposition 4.3

is satisfied. Since ζk, ζ
′
k and tk are sequences of independent random variables and {ζk}∞k=1
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and {ζ′
k}∞k=1 are independent of {tk}∞k=1, the sequence Uk is a Markov chain in the space

H := H × H.

Let us introduce the stopping time

τd = min{k ≥ 0, ‖uk‖1 ∨ ‖u′
k‖1 ≤ d}.

LEMMA 6.1. For any d > 0 there are positive constants γ and C such that

EUeγτd ≤ C(1 + H(u) + H(u′)) for all U := (u, u′) ∈ H. (6.1)

Proof. It is well known (e.g., see [12] or Proposition 2.3 in [26]) that inequality (6.1) will
follow from two statements below:

(i) There are positive constants δ, R and C such that

EUeδτR ≤ C(1 + H(u) + H(u′)) for all U ∈ H. (6.2)

(ii) For any R > 0 and d > 0 there is an integer l ≥ 1 and a constant p > 0 such that

PU{Ul ∈ Bd} ≥ p for any U ∈ BR, (6.3)

where Bd = {(u, u′) ∈ H : ‖u‖1 ∨ ‖u′‖1 ≤ d}.
The proof of (i) is similar to that of Lemma 3.5. To prove (ii), we use the definition of
Uk = (uk, u

′
k), Lemma 5.4 and the Markov property:

PU{H(ul) + H(u′
l) ≤ (

γl(H(u) + H(u′))
) ∨ (

d2α
)} ≥ εl,

for all l ≥ 1, where ε depends only on d. Choosing l so large that γlCR < d2α, where
CR = supU∈BR

(H(u) + H(u′)), we obtain (6.3). �

The proof of the following lemma is similar to that of Lemma 3.3, and we shall not dwell
on it.

LEMMA 6.2. (i) There is a constant M > 0 such that for any U0 = (u0, u
′
0) ∈ H

and an appropriate random integer T = T(u0, u
′
0) ≥ 1 the following inequalities

hold

〈‖uk‖6
1 + ‖u′

k‖6
1〉n0 ≤ M for n ≥ T , (6.4)

ETp < ∞ for all p ≥ 1. (6.5)

(ii) For any δ ∈ (0, 1) and d > 0, there is a constant R = R(δ, d) > 0 such that

P{〈‖uk‖6
1 + ‖u′

k‖6
1〉n0 ≤ R, ∀n ≥ 0} ≥ δ, (6.6)

for any U0 = (u0, u
′
0) ∈ Bd .
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For any M > 0, we introduce the stopping times

T1(M) = min{k ≥ 1 : 〈‖ui‖6
1 + ‖u′

i‖6
1〉k0 > M},

T2(M) = min{k ≥ 1 :
1

2
〈log ti〉k0 > M},

T3(M) = min{k ≥ 1 : PNuk �= PNu′
k},

σ(M) = T1(M) ∧ T2(M) ∧ T3(M).

LEMMA 6.3. For any B ≥ 0, there is an integer N ′ ≥ 1 and a constant M > 0 such
that, if (4.3) and (4.4) hold for some integer N ≥ 1, then

PU{σ(M) = ∞} ≥ 1

2
, (6.7)

EU [I{σ(M)<∞}σ(M)p] < +∞ for all p ≥ 1, (6.8)

where U ∈ Bd , d = 1
2CN

and CN ≥ 1 is the constant in (5.2).

Proof. Let M > 0 be sufficiently large and let m ≥ 1. Then

{σ(M) = m} ⊂ {T1(M) = m} ∪ {T2(M) = m} ∪ Am, (6.9)

where Am = {T3(M) = m, T1(M) ≥ m, T2(M) ≥ m}. Note that

Am = {PNum �= PNu′
m, σ(M) > m − 1}.

It follows from Lemma 2.1 that for PU -a.e. ω ∈ {σ(M) > m − 1}, we have

‖Stm(um−1) − Stm(u′
m−1)‖1 ≤ 2d(Cα

− 1
2

N ′+1)
me2CMm.

Choosing N ′ so large that log αN ′+1 ≥ 2(2CM + log C + 2), we see that

‖Stm(um−1) − Stm(u′
m−1)‖1 ≤ 2de−2m.

Using Remark 5.2, construction of the space (�, F, P) and the Markov property, we obtain

PU(Am) ≤ 2dCNe−2m = e−2m. (6.10)

Let T ′
2 be the random integer constructed in Lemma 3.4 for the sequence 1

2 log ti, and T ′
1 be

the random integer in Lemma 6.2. Then, it follows from the definition of T1 and T2 that

T1I{T1<∞} < T ′
1,

T2I{T2<∞} < T ′
2.
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To prove (6.8), note that

EU [I{σ<∞}σp] =
∞∑

m=1

P{σ(M) = m}mp

≤
∞∑

m=1

(P{T ′
1 > m} + P{T ′

2 > m} + P{Am})mp

≤ C

∞∑
m=1

(m−p−2 + e−2m)mp < ∞,

where we used (6.9), (6.10), (6.5) and (3.12).
To prove (6.7), we use (6.9) and (6.10):

P{σ < ∞} ≤ P{T1 < ∞} + P{T2 < ∞} + 1

e2 − 1
. (6.11)

It follows from (6.6) and (3.13) that for any δ ∈ (0, 1) there is M = M(δ, d) > 0 such that

P{T1(M) < ∞} + P{T2(M) < ∞} < δ.

Choosing δ = 1
2 − 1

e2−1
, we arrive at (6.7). �

To construct the random integer � in Proposition 4.3, we follow the ideas of [26]. Suppose
that N ≥ 1, M and d ≤ 1 are the constants in Lemma 6.3. Let ρ0 be the first hitting time
of the set Bd . If for some ω ∈ � we have

PNuk = PNu′
k, 〈‖ui‖6

1 + ‖u′
i‖6

1〉kρ0
≤ M,

1

2
〈log ti〉kρ0

≤ M for all k ≥ ρ0 + 1. (6.12)

we set �(ω) = ρ0(ω), otherwise, let ρ′
1 be the first time when one of the conditions in

(6.12) is not satisfied and let ρ1 be the first hitting time of the ball Bd after ρ′
1. Suppose that

ρ1 < ∞ and (6.12) is verified for ω ∈ �, with ρ0 replaced by ρ1, then we set �(ω) = ρ1(ω).
Continuing this process and using the same arguments as in [26], one can show that � is
well defined for a.e. ω ∈ � and satisfies (4.12). The other assertions of Proposition 4.3
follow immediately from the construction.

7. Appendix

7.1. Proof of inequality (2.2)

Let u0 ∈ H . Setting u(t) = St(u0), we have

d

dt
H(u(t)) = (−2α�u + β|u|2u, u̇), (7.1)
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where (u, v) = Re
∫
D

uv̄dx. Since u is the solution of (1.1)–(1.3) with η ≡ 0, we deduce
from (7.1) that

d

dt
H(u) = (−2α�u + β|u|2u, ν�u − iβ|u|2u)

≤ −2αν‖�u‖2 + (β|u|2u, ν�u) + (2α�u, iβ|u|2u). (7.2)

It is clear that

(2α�u, iβ|u|2u) ≤ 2αβ(|∇u|2, |u|2), (7.3)

(β|u|2u, ν�u) = −βν(|u|2, |∇u|2) − βν(u∇(|u|2), ∇u). (7.4)

Substituting (7.3) and (7.4) into (7.2) and noting that

(u∇(|u|2), ∇u) = Re
∫
D

u∇ū∇(|u|2)dx = 1

2
Re

∫
D

(∇(|u|2))2dx ≥ 0,

we obtain

d

dt
H(u) ≤ −2αν‖�u‖2 − βν(|u|2, |∇u|2) + 2αβ(|u|2, |∇u|2).

Choosing α sufficiently small and applying Poincaré’s inequality to the function |u|2, we
arrive at

d

dt
H(u) + αν‖�u‖2 ≤ −aH(u), (7.5)

for some positive constant a. Application of Gronwall’s inequality results in (2.2). Finally,
note that the integration of (7.5) gives

αν

t∫
0

‖�u‖2ds ≤ H(u0). (7.6)

7.2. Proof of inequalities (2.3) and (2.4)

Step 1. Let u(t) = St(u0) and u0 ∈ H. Then

u · t
1
2 ∈ C([0, ∞), H2(D)). (7.7)

Indeed, formally taking the scalar product of −�u̇t and Equation (1.1) with η ≡ 0, we
obtain

(u̇ − ν�u + iβ|u|2u, −�u̇t) = 0.
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Integration of this equality in t results in

ν

2
t‖�u‖2 +

t∫
0

s‖∇u̇‖2ds ≤ ν

2

t∫
0

‖�u‖2ds + β

t∫
0

s|(|u|2u, �u̇)|ds. (7.8)

Note that

β

t∫
0

s|(|u|2u, �u̇)|ds ≤ 1

2

t∫
0

s‖∇u̇‖2ds + C

t∫
0

s‖∇u‖2
L4‖|u|2‖2

L4 ds

≤ 1

2

t∫
0

s‖∇u̇‖2ds + C

t∫
0

s‖�u‖2‖u‖4
L8 ds, (7.9)

where we used Sobolev embedding H1(D) ↪→ L4(D). Substituting this inequality into
(7.8) and using Gronwall’s inequality, we arrive at

t‖�u‖2 ≤
t∫

0

‖�u‖2ds · exp


C

t∫
0

‖u‖4
L8 ds


 . (7.10)

Using the Gagliardo–Nirenberg inequality

‖u‖L8 ≤ C‖u‖
1
2
L4‖�u‖ 1

2 , (7.11)

and inequalities (2.2) and (7.6), we see that

exp(C

t∫
0

‖u‖4
L8 ds) ≤ exp(C

t∫
0

‖u‖2
L4‖�u‖2ds)

≤ exp(CH(u0)
3
2 ) ≤ C exp(C‖u0‖6

1). (7.12)

Now substituting (7.12) into the right-hand side of (7.10), and using (7.6), we obtain

sup
τ∈[0,t]

τ‖�u(τ)‖2 ≤ C exp(C‖u0‖6
1). (7.13)

To prove (7.7), we use Galerkin’s method, choosing as a base in L2(D) the set of normalized
eigenfunctions of the Dirichlet Laplacian. It is easy to verify that (7.13) holds for Galerkin
approximations. Then passing to the limit, we arrive at (7.7) and (7.13).

Step 2. Let u0, v0 ∈ H and u = St(u0), v = St(v0). Then we have the following estimate
for w = u − v :

‖∇w‖2 + ν

t∫
0

‖�w‖2ds ≤ C‖∇w0‖2 exp(C(‖u0‖6
1 + ‖v0‖6

1)). (7.14)
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where w0 = u0 − v0 and C is a positive constant. Indeed, w is a solution of the following
equation

ẇ − ν�w + iβ(|u|2u − |v|2v) = 0. (7.15)

Taking the scalar product of this equation with −�w and integrating the resulting equality
in t, we see that

1

2
‖∇w‖2 + ν

t∫
0

‖�w‖2ds ≤ 1

2
‖∇w0‖2 + β

t∫
0

|(|u|2u − |v|2v, �w)|ds

≤ 1

2
‖∇w0‖2 + ν

2

t∫
0

‖�w‖2ds + C

t∫
0

‖|u|2 + |v|2‖2
L4‖∇w‖2ds. (7.16)

We deduce from Gronwall’s inequality:

‖∇w‖2 ≤ ‖∇w0‖2 exp(C

t∫
0

‖|u|2 + |v|2‖2
L4 ds).

Now substituting this inequality into the right-hand side of (7.16) and using (7.12), we
arrive at (7.14).

Step 3. Taking the scalar product of (7.15) with −t�ẇ and integrating the resulting equality,
we obtain

ν

2
t‖�w‖2 +

t∫
0

s‖∇ẇ‖2ds ≤ ν

2

t∫
0

‖�w‖2ds

+ β2

2

t∫
0

s‖∇(|u|2u − |v|2v)‖2ds + 1

2

t∫
0

s‖∇ẇ‖2ds. (7.17)

Using Hölder’s inequality, we see that

t∫
0

s‖∇(|u|2u − |v|2v)‖2ds

≤ C

t∫
0

s(‖|u|2∇w‖2 + ‖wu∇v‖2 + ‖wv∇v‖2)ds

≤ C

t∫
0

(s‖�w‖2‖u‖4
L8 + s‖w‖2

L8‖∇v‖2
L4(‖v‖2

L8 + ‖u‖2
L8))ds. (7.18)
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Substituting (7.18) into (7.17) and using Gronwall’s inequality, we arrive at

t‖�w‖2 ≤ C


 t∫

0

‖�w‖2ds +
t∫

0

s‖w‖2
L8‖∇v‖2

L4(‖v‖2
L8 + ‖u‖2

L8)ds




× exp


C

t∫
0

‖u‖4
L8 ds


 . (7.19)

By the Cauchy–Schwarz inequality,

P :=
t∫

0

s‖w‖2
L8‖∇v‖2

L4(‖u‖2
L8 + ‖v‖2

L8)ds ≤ C sup
[0,t]

s‖�v‖2

×

 t∫

0

‖w‖4
L8 ds




1
2




 t∫

0

‖u‖4
L8 ds




1
2

+

 t∫

0

‖v‖4
L8 ds




1
2

 . (7.20)

To estimate the right-hand side of this inequality, note that

sup
[0,t]

s‖�v‖2





 t∫

0

‖u‖4
L8 ds




1
2

+

 t∫

0

‖v‖4
L8 ds




1
2



≤ C exp(C(‖u0‖6
1 + ‖v0‖6

1)), (7.21)

where we used (7.12) and (7.13). Using (7.11) and (7.14), we see that


 t∫

0

‖w‖4
L8 ds




1
2

≤ C sup
[0,t]

‖∇w‖

 t∫

0

‖�w‖2ds




1
2

≤ C‖∇w0‖2 exp(C(‖u0‖6
1 + ‖v0‖6

1)). (7.22)

We deduce from (7.21) and (7.22) that

P ≤ C‖∇w0‖2 exp(C(‖u0‖6
1 + ‖v0‖6

1)). (7.23)

Finally, substituting (7.23) into (7.19), and using (7.14) and (7.12), we arrive at (2.4).

7.3. Proof of Lemma 3.1

Let Nt be defined by (4.15). Then, for 0 ≤ s ≤ t, Nt − Ns is a Poisson random variable
with parameter λ(t − s), independent of Ft (e.g., see [13]), where Ft is defined in Section
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3. Let ζ be defined by (3.1), then we have

ζ(t) − ζ(s) =
Nt∑

k=Ns+1

ηk. (7.24)

It follows from (7.24) that ζ has independent increments. Using (7.24) and the fact that
the distribution of Nt − Ns depends only on t − s, it is easy to see that the distributions of
processes ζ(·) and ζ(· + s) − ζ(s) coincide:

D(ζ(t), t ≥ 0) = D(ζ(t + s) − ζ(s), t ≥ 0), (7.25)

for any s ≥ 0. Note that u(t) is determined by {ζ(τ) : 0 ≤ τ ≤ t} and u(t) is Ft-measurable.
We have

P{u(t, u0, {ζ(τ) : 0 ≤ τ ≤ t}) ∈ �|Fs}
= P{u(t − s, us, {ζ(τ) − ζ(s) : s ≤ τ ≤ t}) ∈ �|Fs}
= P{u(t − s, v, {ζ(τ) − ζ(s) : s ≤ τ ≤ t}) ∈ �}∣∣

v=us
, (7.26)

for any � ∈ B(H), where we used the independence of increments of ζ. Using (7.25), we
arrive at

P{u(t, u0) ∈ �|Fs} = P{u(t − s, v) ∈ �}∣∣
v=us

, (7.27)

which completes the proof of the lemma.

7.4. Proof of Lemma 3.3

Let us introduce the random variable

T = min{n ≥ 1 :
1

k
|Mk| ≤ 1 for all k ≥ n},

where min {∅} = +∞. It is easy to see that P{T = ∞} = 0, as

P{T = ∞} ≤
∞∑

k=m

P

{
1

k
|Mk| > 1

}
≤ C

∞∑
k=m

1

k2
→ 0, m → ∞,

where we used (3.10) with p = 2 and Chebyshev’s inequality. To estimate the moments of
T , we use (3.10) with l = p + 2:

ETp =
∞∑

n=1

P{T = n}np ≤ 1 +
∞∑

k=1

P

{
1

k
|Mk| > 1

}
(k + 1)p

≤ 1 + C

∞∑
k=1

k−l(k + 1)p < +∞.
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To prove (3.13), we use (3.10) with p = 2 and Chebyshev’s inequality

P

{ |Mk|
k

≤ R, ∀k ≥ 1

}
≥ 1 −

∞∑
k=1

P

{ |Mk|
k

> R

}
≥ 1 − C2

R4

∞∑
k=1

1

k2
.

Choosing R sufficiently large, we obtain (3.13).

7.5. Proof of Theorem 3.7

Let ut be the trajectory of (1.1)–(1.4) with u0 ≡ 0. It suffices to show that the family D(ut)

is tight in H . Let Nt be defined by (4.15). First we shall show that the family D(uNt
) is

tight. By Ulam’s theorem, there is a compact K1
ε such that P{η1 /∈ K1

ε } ≤ ε
2 . Using the

independence of {ηp} and Nt , we obtain

P{ηNt
/∈ K1

ε , Nt �= 0} =
∞∑

p=1

P{ηp /∈ K1
ε , Nt = p}

=
∞∑

p=1

P{ηp /∈ K1
ε }{Nt = p} ≤ ε

2
.

Using (3.2), it is easy to show that there is a constant M > 0 such that

E
(‖uτNt−1‖1I{Nt �=0}

) ≤ M, for all t ≥ 0.

Let Rε ≥ 4M
ε

. By the Chebyshev inequality, we have

P{‖uτNt−1‖1I{Nt �=0} ≥ Rε} ≤ M

Rε

≤ ε

4
. (7.28)

Define Bε = {v ∈ H : ‖v‖1 ≤ Rε} and K2
ε = S[a,b](BRε), where b > 0, a > 0. Then K2

ε

is compact in H . We deduce from (7.28) that

P{StNt
(uτNt−1) /∈ K2

ε , Nt �= 0} ≤ P{tNt
> b, Nt �= 0} + P{tNt

< a, Nt �= 0}

+ P{uτNt−1 /∈ Bε, Nt �= 0} ≤
∞∑

p=1

(P{tp > b, Nt = p} + P{tp < a, Nt = p}) + ε

4

≤ P{t1 > b} + P{t1 < a} + ε

4
≤ ε

2
,

if b is sufficiently large and a is sufficiently small. Let Kε = K1
ε + K2

ε . We can assume
that 0 ∈ Kε. As uNt

= 0, if Nt = 0, we have

P{uτNt
/∈ Kε} = P{uτNt

/∈ Kε, Nt = 0} + P{uτNt
/∈ Kε, Nt �= 0}

≤ P{ηNt
/∈ K1

ε , Nt �= 0} + P{StNt
(uτNt−1) /∈ K2

ε , Nt �= 0} ≤ ε.
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Thus D(uτNt
) is tight in H .

Define Tε = S[0,∞)(Kε) and note that ut = St−τNt
(uτNt

), t ≥ 0. Then Tε is compact in H .
Finally, we have

P{ut /∈ Tε} ≤ P{uτNt
/∈ K} ≤ ε.

The proof of the other assertion of the theorem is standard.
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