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Exponential mixing for finite-dimensional approximations of

the Schrödinger equation with multiplicative noise
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Abstract. We study the ergodicity of finite-dimensional approximations of
the Schrödinger equation. The system is driven by a multiplicative scalar
noise. Under general assumptions over the distribution of the noise, we show
that the system has a unique stationary measure µ on the unit sphere S in Cn,
and µ is absolutely continuous with respect to the Riemannian volume on S.
Moreover, for any initial condition in S, the solution converges exponentially
fast to the measure µ in the variational norm.
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1. Introduction

We consider the problem

i
dz

dt
= Λz + β(t)Bz + εF (z),(1.1)

z(0) = z0,(1.2)
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where Λ and B are Hermitian matrices, F : Cn → Cn is a real-analytic function
such that the scalar product 〈F (z), z〉 is real for any z ∈ Cn, and ε ∈ R is a small
constant. We assume that β(t) is a random process of the form

(1.3) β(t) =

+∞
∑

k=0

Ik(t)ηk(t − k), t ≥ 0,

where Ik(·) is the indicator function of the interval [k, k+1) and ηk are independent
identically distributed (i.i.d.) random variables in L2([0, 1], R).

The restriction of the solution of (1.1), (1.2) at integer times formes a Markov
chain. The aim of this paper is the study of ergodicity of this chain. Noting that
the unit sphere S in Cn is invariant under the flow defined by the equation, we show
that the chain in question has a unique stationary measure on S. Moreover, it is
proved that this measure is exponentially attracting in the variational norm. Once
we have the uniqueness of stationary measure on the sphere S, using the invariance
of S, the class of all stationary measures in Cn can be described.

The ergodicity of finite-dimensional stochastic systems is studied by many au-
thors. Let us mention some earlier results in this direction. Uniqueness of station-
ary measure for non-degenerate diffusion processes is obtained by Hasminskii [10].
The case of the degenerate diffusions is considered by Arnold and Kliemann [6]
and Veretennikov [17, 18]. Various sufficient conditions for ergodicity of abstract
Markov processes are obtained by Meyn and Tweedie in [14] and [13]. E and Mat-
tingly [9] consider the finite-dimensional approximations of the 2D Navier–Stokes
equations, and Romito [15] considers the approximations of the 3D Navier–Stokes
equations. In both cases, the perturbation is an additive white noise and the main
result is the exponential mixing in the variational norm.

We prove the ergodicity of system (1.1), (1.3) under some conditions over the
matrices Λ and B and over the distribution of the random variable η1. Roughly
speaking, we assume that there is no proper vector space invariant under both Λ
and B, and that the support of the law of η1 contains a ball of sufficiently high
dimension. These conditions enable us to use a measure transformation theorem
from [1] and some controllability results from [7] and [8]. Let us emphasize that
the noise in system (1.1) is always one-dimensional, independently of the space
dimension n ≥ 1. Moreover, the distribution of the noise is degenerate and it is not
supposed to have a Gaussian structure.

Our proof is based on a classical coupling argument combined with some con-
trollability properties of the Schrödinger equation. It is divided into two steps.
First, using the measure transformation theorem, we show that there is a ball
D ⊂ S and a constant p ∈ (0, 1) such that the variational distance at time t = 1
between any two solutions issued from D is less than p. Then we show that D
is accessible from any point of S. From the compactness of S it follows that the
first hitting time of D admits an exponential estimate. Combination of the above
properties with a suitable coupling construction gives the proof of the exponential
mixing property.

Let us note that in the case of the diffusion process defined by the Stratonovich
stochastic differential equation

idz = [Λz + εF (z)]dt + Bz ◦ W (t),
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the uniqueness of stationary measure can be obtained as a consequence of [6].
Indeed, under the conditions imposed on Λ and B, a direct verification shows that
the Lie algebra generated by the drift and diffusion fields is full at the point e1,
where e1 is the first eigenvector of the matrix Λ.

As an application of our result, we consider the Galerkin approximations of
the Schrödinger equation with potential of random amplitude. We show that if the
deterministic part of the potential is in a general position, then the property of
exponential mixing holds for any finite-dimensional approximation. The technique
developed in this paper can be applied to finite-dimensional approximations of
other stochastic PDE’s. In particular, using the controllability results of Agrachev
and Sarychev [2] and Shirikyan [16], one can prove ergodicity of finite-dimensional
approximations of 2D and 3D Navier–Stokes equations in the case of degenerate
non-Gaussian forcing. In conclusion, let us note that even though our proof does
not apply to the infinite-dimensional Schrödinger equation, many properties re-
main valid. In particular, an approximate controllability property holds for the
Schrödinger equation, which enables one to show that almost any trajectory of ran-
domly forced equation is unbounded in the Sobolev space of any order s > 0. These
questions will be addressed in a forthcoming paper.
Acknowledgments. The author is grateful to his advisor, Armen Shirikyan, for
many helpful conversations and support.

Notation

In this paper, we use the following notation.
S is the unit sphere in Cn, i.e. S = {x ∈ Cn : ‖x‖Cn = 1}. S is regarded as a
(2n−1)-dimensional real-analytic manifold endowed with the standard Riemannian
metric and the corresponding measure. The latter is denoted by m.
TyS is the tangent space to S at the point y ∈ S, i.e. TyS = {x ∈ Cn : Re〈x, y〉 = 0},
where 〈·, ·〉 stands for the scalar product in Cn.
Cb(S) is the space of real-valued continuous bounded functions on S endowed with
the norm ‖f‖∞ := sup |f |.
B(S) is the Borel σ-algebra of S.
P(S) is the set of probability measures on (S,B(S)).
The set P(S) is endowed with the variational norm:

‖µ1 − µ2‖var := sup
Γ∈B(S)

|µ1(Γ) − µ2(Γ)|, µ1, µ2 ∈ P(S).

The distribution of a random variable ξ is denoted by D(ξ).
The indicator function of a set Γ is denoted by IΓ.
For a metric space E, we denote by BE(a, r) the open ball of radius r > 0 centered
at a ∈ E. If E = C

n, we simply write B(a, r).
I denotes the set of irrational numbers.

2. Main result

2.1. Uniqueness and exponential mixing. Under the conditions described
at the beginning of Section 1, for any z0 ∈ Cn problem (1.1), (1.2) has a unique
solution almost surely belonging to the space C([0,∞), Cn). Let Uε

t : C
n → C

n be
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the resolving operator of (1.1), (1.2). Note that

(2.1) ‖Uε
t (z0)‖Cn = ‖z0‖Cn , t ≥ 0.

Let z0 be a C
n-valued random variable independent of {ηk}. Denote by Fk the

σ-algebra generated by z0, η0, . . . , ηk−1. Then Uε
k(z0) is a homogeneous Markov

chain with respect to Fk. The corresponding transition function has the form
P ε

k (z, Γ) = P{Uε
k(z) ∈ Γ}, z ∈ Cn, Γ ∈ B(Cn), and the Markov operator is defined

as

Pε∗
k µ(Γ) =

∫

Cn

P ε
k (z, Γ)µ(dz),

where µ ∈ P(Cn). Recall that a measure µ ∈ P(Cn) is called stationary for (1.1),
(1.3) if Pε∗

1 µ = µ.
It follows from (2.1) that the unit sphere S is invariant under the flow defined

by (1.1). The Bogolyubov–Krylov argument and the compactness of S imply the
existence of a stationary measure µ ∈ P(S) for problem (1.1), (1.3).

To be able to show the uniqueness of stationary measure, we need the following
conditions.

Condition 2.1. The random variables ηk have the form

ηk(t) =

∞
∑

j=1

bjξjkgj(t), t ∈ [0, 1],

where {gj} is an orthonormal basis in L2([0, 1], R), bj ≥ 0 are constants with

∞
∑

j=1

b2
j < ∞,

and ξjk are independent real-valued random variables such that Eξ2
jk = 1. Moreover,

the distribution of ξjk possesses a continuous density ρj with respect to the Lebesgue
measure and ρj(r) > 0 for all r ∈ R.

This condition is adapted to the hypotheses of a measure transformation the-
orem from [1]. In particular, under this condition, the image of measure D(ηk)
under a large class of finite-dimensional transformations is absolutely continuous
with respect to the Lebesgue measure.

Let {ej}
n
j=1 be the set of normalized eigenvectors of Λ with eigenvalues λ1 ≤

. . . ≤ λn.

Condition 2.2. The eigenvalues of Λ are distinct and 〈Be1, ej〉 6= 0, j = 1, . . . , n.

Under this condition, some strong controllability properties hold for (1.1). In
particular, the linearization of (1.1) is controllable, which, combined with the in-
verse function theorem, gives a local exact controllability property (see Section
3). Moreover, Condition 2.2 also allows us to use a stabilization result from [8].
Notice that, as in [8], all the results of the paper remain valid under the assump-
tion that for some i = 1, . . . , n we have 〈Bei, ej〉 6= 0 for all j = 1, . . . , n and
|λp − λi| 6= |λq − λi| for all p 6= q. Clearly, in the case i = 1, the last condition
follows from the non-degeneracy of the spectrum of Λ.

The following theorem is our main result.
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Theorem 2.3. Suppose that Conditions 2.1 and 2.2 are satisfied. Then there
is an integer N ≥ 1 and a constant ε0 > 0 such that, if

(2.2) bj 6= 0, j = 1, . . . , N,

then problem (1.1), (1.3) has a unique stationary measure µ ∈ P(S) for |ε| < ε0.
Moreover, µ is absolutely continuous with respect to the measure m, and for any
initial measure ν ∈ P(S), we have

(2.3) ‖Pε∗
k ν − µ‖var ≤ Ce−ck, k ≥ 1,

where C > 0 and c > 0 are constants.

2.2. Proof of Theorem 2.3. The proof of Theorem 2.3 is derived from the
two lemmas below. Their proofs are given in Section 4.

Lemma 2.4. Under the conditions of Theorem 2.3, there are constants δ0 > 0,
ε0 > 0 and p ∈ (0, 1) and integers N ≥ 1 and l ≥ 1 such that, if (2.2) holds, then:

(i) For any z, z′ ∈ S ∩ B(e1, δ0) and |ε| < ε0, we have

‖P ε
1 (z, ·) − P ε

1 (z′, ·)‖var ≤ p.

(ii) For any z ∈ S and |ε| < ε0, the measure P ε
l (z, ·) is absolutely continuous

with respect to m.

For any δ > 0, let us introduce the stopping time

τδ,ε = min{k ≥ 0 : Uε
k(z) ∈ B(e1, δ)}.

Lemma 2.5. Under the conditions of Theorem 2.3, for any δ > 0 there is a
constant εδ > 0 and an integer N ≥ 1 such that, if (2.2) holds, then

(2.4) Eze
ατδ,ε ≤ C for all z ∈ S and |ε| < εδ,

where α > 0 and C > 0 are constants, and the subscript z means that the expectation
is taken for the chain issued from z.

Proof of Theorem 2.3. Step 1. Let z0, z
′
0 ∈ S. The idea of the proof is to

construct two sequences yk and y′
k such that D(yk) = P ε

k (z0, ·), D(y′
k) = P ε

k (z′0, ·)
and the following inequality holds

(2.5) ‖D(yk) −D(y′
k)‖var ≤ Ce−ck, k ≥ 0.

A well-known argument shows that (2.5) implies (2.3) (e.g, see [11]).

Step 2. Let z, z′ ∈ S. If z = z′, then define V (z, z′) = V ′(z, z′) = Uε
1 (z).

Let δ0 > 0 and ε0 > 0 be the constants in Lemma 2.4 and |ε| < ε0. If z 6= z′

and z, z′ ∈ B(e1, δ0), then let V (z, z′), V ′(z, z′) be any maximal coupling for
(P ε

1 (z, ·), P ε
1 (z′, ·)) (see [12], Section I.5). Otherwise, let V (z, z′) and V ′(z, z′) be

the values at t = 1 of the solutions of the following problems:

idy
dt

= Λy + η(t)By + εF (y), idy′

dt
= Λy′ + η′(t)By′ + εF (y′),

y(0) = z, y′(0) = z′,

where η and η′ are independent random variables with D(η) = D(η′) = D(η1). Let
Vk, V ′

k, k ≥ 1 be independent copies of the random variables V and V ′ depending
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on the parameters z and z′. Let y0 = z0 and y′
0 = z′0. Define yk and y′

k, k ≥ 1 by
the relations

yk = Vk(yk−1, y
′
k−1),

y′
k = V ′

k(yk−1, y
′
k−1).

Clearly, (yk, y′
k) is a Markov chain. It is easy to see that D(yk) = P ε

k (z0, ·) and
D(y′

k) = P ε
k (z′0, ·). Define

(2.6) T = min{k ≥ 0 : yk, y′
k ∈ B(e1, δ0)}.

Using the same arguments as in the proof of (2.4), one can show that, if ε0 > 0 is
sufficiently small, then

(2.7) EeαT ≤ C for |ε| < ε0,

where α > 0 and C > 0 are some constants not depending on ε (see Remark 4.1).

Step 3. Suppose that there is a random integer ℓ such that

yk = y′
k for all k ≥ ℓ,(2.8)

Eeγℓ ≤ C.(2.9)

Then (2.8) and (2.9) imply (2.5). Indeed, for any f ∈ Cb(S), ‖f‖∞ ≤ 1, we have
∣

∣E(f(yk) − f(y′
k))

∣

∣ ≤ E
∣

∣(f(yk) − f(y′
k))

∣

∣

≤ E
∣

∣(f(yk) − f(y′
k))I{k≥ℓ}

∣

∣ + E
∣

∣(f(yk) − f(y′
k))I{k<ℓ}

∣

∣

≤ 2P{k < ℓ} ≤ 2Ce−γk,

which proves (2.5).

Step 4. Let us introduce the stopping times T (0) = 0, T (1) = T and

T (n) = min{k > T (n − 1) : yk, y′
k ∈ B(e1, δ0)}, n ≥ 2.

Using the strong Markov property and (2.7), we see that

EeαT (n) = EeαT (n−1)
EY (n)e

αT ≤ CEeαT (n−1),

where Y (n) = (yT (n−1), y
′
T (n−1)). Thus

(2.10) EeαT (n) ≤ Cn.

Define
ℓ = min{k ≥ 0 : yn = y′

n for all n ≥ k},

where min{∅} = ∞. Let us show that

(2.11) P{ℓ > T (n + 1)} ≤ pn,

where p ∈ (0, 1) is the constant in Lemma 2.4. Indeed, it follows from Lemma 2.4
and the construction of yk and y′

k that

P{yT (n)+1 6= y′
T (n)+1} = P{yT (n)+1 6= y′

T (n)+1|yT (n) 6= y′
T (n)}P{yT (n) 6= y′

T (n)}

≤ pP{yT (n) 6= y′
T (n)} ≤ pP{yT (n−1)+1 6= y′

T (n−1)+1}.

Iteration of this inequality gives

P{yT (n)+1 6= y′
T (n)+1} ≤ pn.

On the other hand, the definition of ℓ implies that

P{ℓ > T (n + 1)} ≤ P{yT (n)+1 6= y′
T (n)+1},
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which proves (2.11). Thus, by the Borel–Cantelli lemma, we have P{ℓ < ∞} = 1.

Let r > 0 be so large that C
1
r p1− 1

r < 1, and let c be so small that rc < α.
Using the Cauchy–Schwarz inequality and (2.11), we obtain

Eecℓ ≤ 1 +

∞
∑

n=0

E(I{T (n)<ℓ≤T (n+1)}e
cℓ)

≤ 1 +

∞
∑

n=0

E(I{T (n)<ℓ≤T (n+1)}e
cT (n+1))

≤ 1 +

∞
∑

n=0

(EercT (n+1))
1
r P{ℓ > T (n)}1− 1

r

≤ 1 + C
1
r p

1
r
−1

∞
∑

n=0

(C
1
r p1− 1

r )n < ∞.

This completes the proof of (2.3).

Step 5. To show that the stationary measure µ is absolutely continuous with
respect to the Riemannian volume m on S, take any Γ ∈ B(S) such that m(Γ) = 0
and let l ≥ 1 be the integer in Lemma 2.4. Then

µ(Γ) =

∫

S

P ε
l (z, Γ)µ(dz) = 0,

as P ε
l (z, ·) is absolutely continuous with respect to m for any z ∈ S. �

2.3. Stationary measures in Cn. Any measure ν ∈ P(Cn) can be written
in the form

(2.12) ν = αδ0 + (1 − α)ν̄,

where α ∈ [0, 1], δ0 is the Dirac measure concentrated at zero and ν̄ ∈ P(Cn\{0}).
Indeed, it suffices to take α = ν({0}) and ν̄(·) = 1

1−α
ν(·∩Cn\{0}), if α < 1. On the

other hand, for any measure ν̄ ∈ P(Cn\{0}) there is a measure γ ∈ P(R∗
+) and a

random measure µr ∈ P(S), r ∈ R∗
+ (i.e. for any Γ ∈ B(S) the function r → µr(Γ)

is measurable) such that for any bounded measurable function f : C
n\{0} → R we

have

(2.13)

∫

Cn\{0}

f(v)ν̄(dv) =

∫

R∗

+

∫

S

f(ru)µr(du)γ(dr)

(e.g., see [5]). In this case, we write

(2.14) ν̄(dr, du) = µr(du)γ(dr).

Let µ ∈ P(S) be the stationary measure in Theorem 2.3 for ε = 0, i.e. corre-
sponding to the linear equation.

Theorem 2.6. Under the conditions of Theorem 2.3, there is an integer N ≥ 1
such that, if (2.2) holds, then a measure ν ∈ P(Cn) is stationary for problem (1.1),
(1.3) with ε = 0 if and only if it can be represented in the form (2.12), (2.14) in
a way that µr = µ for γ-almost all r ∈ R∗

+. Moreover, for any initial measure
ν′ ∈ P(Cn) of the form

ν′ = αδ0 + (1 − α)ν̄′,

ν̄′(dr, du) = µ′
r(du)γ(dr),
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we have

(2.15) ‖P0∗
k ν′ − ν‖var ≤ Ce−ck, k ≥ 1,

where C > 0 and c > 0 are constants.

Proof. Without loss of generality, we can assume that α = 0, i.e. ν = ν̄ ∈
P(Cn\{0}). Suppose that ν is a stationary measure. Let us show that µr is
stationary for γ-almost all r ∈ R∗

+. Take any bounded measurable functions f :
S → R and g : R∗

+ → R. By (2.13), we have
∫

Cn\{0}

(fg)(v)ν(dv) =

∫

R∗

+

g(r)

∫

S

f(u)µr(du)γ(dr)

= E

∫

Cn\{0}

(fg)(U0
1 (v))ν(dv)

= E

∫

Cn\{0}

f
( U0

1 (v)

‖U0
1 (v)‖

)

g(‖U0
1 (v)‖)ν(dv)

=

∫

R∗

+

g(r)
[

E

∫

S

f(U0
1 (u))µr(du)

]

γ(dr),(2.16)

where we used the fact that U0
t (v) is a solution of a linear equation. As (2.16) holds

for any bounded measurable functions g and f and the Borel σ-algebras on S and
R∗

+ are countably generated, we see that µr is stationary for γ-almost all r ∈ R∗
+.

By the uniqueness of stationary measure, we get µr = µ for γ-almost all r ∈ R∗
+.

On the other hand, if µr = µ for γ-almost all r ∈ R∗
+ and ν is defined by (2.14),

then by a similar argument, one can prove that ν is a stationary measure.
To prove the second assertion, let us take any bounded measurable functions

f : S → R and g : R
∗
+ → R such that sup |f | ≤ 1 and sup |g| ≤ 1. Then

E

∣

∣

∣

∫

Cn\{0}

(fg)(U0
k (v))ν′(dv) −

∫

Cn\{0}

(fg)(v)ν(dv)
∣

∣

∣

≤ E

∫

R∗

+

|g(r)|

∣

∣

∣

∣

∫

S

f(U0
k (u)))µr(du) −

∫

S

f(u)µ(du)

∣

∣

∣

∣

γ(dr)

≤ Ce−ck.

The general case is obtained by the monotone class theorem. �

Remark 2.7. Denote by Sr the sphere of radius r > 0 in Cn. Let N(r) ≥ 1
and ε0(r) > 0 be the constants in Theorem 2.3 applied for the sphere Sr, and let
µr ∈ P(Sr) be the stationary measure for ε ∈ (0, ε0(r)). In this case, the projections
of measures µr to S depend on r > 0. On the other hand, N(r) → ∞ and ε0(r) → 0
as r → ∞. Taking into account these facts, one can reformulate Theorem 2.6 for
measures ν ∈ P(B(0, r)).

3. Controllability results

Let us consider the control system

i
dz

dt
= Λz + u(t)Bz,(3.1)

z(0) = z0,(3.2)
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where the state is z and the control is u. Let Rt(·, u) : S → S be the resolving
operator of (3.1), (3.2). Recall that Λ and B satisfy Condition 2.2.

Theorem 3.1. System (3.1), (3.2) is globally exactly controllable, i.e. for
any z1, z2 ∈ S there is a time T ≥ 0 and a control u ∈ L2([0, T ], R) such that
RT (z1, u) = z2.

The proof of this theorem can be derived from Theorem 4 in [4], where a
necessary and sufficient condition for the controllability of (3.1) is stated. One can
verify that the condition given in [4] is weaker than Condition 2.2. Here we give
another proof of Theorem 3.1. This proof provides some additional information on
the control (see Remark 3.4), which is important for the application in the proof of
Theorem 2.3.

The proof of Theorem 3.1 is based on several ideas of [7] and [8]. It is derived
from two lemmas below, which are of independent interest. We postponed the proof
of Theorem 3.1 to the end of this section.

Let us introduce the following (2n − 1)-dimensional subspace of L2([0, 1], R):

En = {v ∈ L2([0, 1]) : v(t) =

n−1
∑

k=−(n−1)

dkeiµkt, dk ∈ C, d−k = d̄k, t ∈ [0, 1]},

where µk = λk+1 − λ1 and µ−k = −µk.

Lemma 3.2. For any ν > 0 there is a constant δ > 0 such that for any zi ∈
S ∩ B(e1, δ) and zf ∈ S ∩ B(e1e

−iλ1 , δ) there is a control u ∈ BEn
(0, ν) satisfying

R1(zi, u) = zf .

Proof. We follow the ideas of [7], where the local exact controllability of an
infinite-dimensional Schrödinger equation is proved using the Nash–Moser implicit
function theorem. In our situation, the controllability is derived from the inverse
function theorem.

For any z ∈ S and u ∈ En, define Φ(z, u) = (z,R1(z, u)). Note that Φ(e1, 0) =
(e1, e1e

−iλ1). We are going to show that the conditions of inverse mapping theo-
rem are satisfied in a neighborhood of the point (e1, 0) ∈ S × En. Clearly, Φ is
continuously differentiable. Let us show that mapping DΦ(e1, 0) : Te1S × En →
Te1S×Te1e−iλ1 S is an isomorphism. Consider the linearization of (3.1), (3.2) around

(e1e
−iλ1t, 0):

i
dy

dt
= Λy + w(t)Be1e

−iλ1t,(3.3)

y(0) = y0,(3.4)

where w ∈ En and y0 ∈ Te1S. Denote by yt = yt(y0, w) the solution of problem
(3.3), (3.4). One can verify that DΦ(e1, 0)(y0, w) = (y0, y1). Note that (3.3), (3.4)
is equivalent to

(3.5) yt = e−iΛty0 − i

∫ t

0

e−iΛ(t−s)w(s)Be1e
−iλ1sds.

Let Bij = 〈Bei, ej〉, i, j = 1, . . . , n. Taking the scalar product of (3.5) with eke−iλk ,
we obtain for t = 1

(3.6) 〈y1, eke−iλk〉 = 〈y0, ek〉 − iB1k

∫ 1

0

eiµk−1sw(s)ds.
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Clearly y1(y0, w) ∈ Te1e−iλ1 S, if y0 ∈ Te1S. Let y′
1 ∈ Te1e−iλ1 S. By Condition 2.2,

we have B1k 6= 0. Hence, the equality y1(y0, w) = y′
1 is equivalent to

(3.7) ck :=
〈y′

1, eke−iλk〉 − 〈y0, ek〉

−iB1k

=

∫ 1

0

eiµk−1sw(s)ds, k = 1, . . . , n.

Since (y0, y
′
1) ∈ Te1S × Te1e−iλ1 S and B11 ∈ R, we have c1 ∈ R. As the func-

tions {eiµks}n−1
k=−(n−1) are linearly independent, there is a unique solution w ∈

span{eiµks}n−1
k=−(n−1) of the problem

ck =

∫ 1

0

eiµk−1sw(s)ds, c̄k =

∫ 1

0

e−iµk−1sw(s)ds, k = 1, . . . , n.

Then w = w̄, as w̄ is a solution of the same problem. Thus w ∈ En. This shows
the surjectivity of DΦ(e1, 0). Finally, applying the inverse mapping theorem, we
conclude that Φ is a C1 diffeomorphism in the neighborhood of (e1, 0). �

For any u ∈ L2([0, l]), l ∈ N, define uj ∈ L2([0, 1]) as follows:

uj = u(j + ·)
∣

∣

[0,1]
, j = 0, . . . , l − 1.

Lemma 3.3. For any ν > 0, δ > 0 and s ∈ R the following assertions hold.

(i) For any z0 ∈ S there is a time l ∈ N and a control u ∈ L2([0, l], R) such
that Rl(z0, u) ∈ S ∩ B(e1e

is, δ).
(ii) There is an integer N ≥ 1 such that for any z0 ∈ S the control u in (i)

can be chosen in a way that

(3.8) uj ∈ span{g1, . . . , gN} and ‖uj‖L2([0,1]) ≤ ν, j = 0, . . . , l − 1

Proof. Step 1. To prove (i), note that, without loss of generality, we can
assume that the first eigenvalue of Λ is of the form λ1 = 2πα, where α ∈ I.

Indeed, for any γ ∈ R, define the matrix Λγ := Λ + γB. Clearly, Λγ is an
Hermitian matrix and Condition 2.2 is satisfied, if |γ| is sufficiently small. Let
{λk,γ} and {ek,γ} be the sets of eigenvalues and normalized eigenvectors of Λγ .
Clearly, the resolving operator of problem (3.1), (3.2) with Λ replaced by Λγ is
R·(·, · + γ). First let us show that it is possible to choose a sequence γn → 0 such
that λ1,γn

= 2παn, where αn ∈ I. Indeed, suppose that for some η > 0 we have
λ1,γ = λ1 for any γ ∈ (−η, η). Then det(Λγ − λ1I) = 0 for any γ ∈ (−η, η), where
I is the n × n identity matrix. But det(Λγ − λ1I) is a polynomial in γ, and the
coefficient of the first order term is 〈Be1, e1〉(λ2 − λ1) · . . . · (λn − λ1), which is not
zero by Condition 2.2. This contradiction shows that above-mentioned choice of
the sequence γn is possible.

If (i) holds for problem (3.1), (3.2) with Λ replaced by Λγn
, then there are se-

quences ln ∈ N and un ∈ L2([0, ln], R) such that Rln(z0, γn+un) ∈ S∩B(e1,γn
eis, δ

2 ).

If n is sufficiently large, we have e1,γn
∈ B(e1,

δ
2 ), thus γn+un is the desired control.

Thus, we can suppose that λ1 = 2πα, where α ∈ I. It follows that the set
{e−iλ1k : k ∈ N} is dense in the circle {z ∈ C : |z| = 1}.

Step 2. Here we prove that (i) holds, if λ1 = 2πα, α ∈ I. Define C = {e1e
it :

t ∈ R}. It suffices to show that

(a) For any z0 ∈ S there is a time l ∈ N and a control u ∈ L2([0, l], R) such
that Rl(z0, u) ∈ Cδ := {y ∈ S : dist(y, C) ≤ δ}.
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(b) For any z0 ∈ Cδ there is a time k ∈ N and a control v ∈ L2([0, k], R) such
that Rk(z0, v) ∈ S ∩ B(e1e

is, δ).

To prove (a), following the ideas of [8], we introduce the feedback design

(3.9) u(z) = c Im(〈Bz, e1〉〈e1, z〉),

where c > 0 is a small constant. Let us consider the problem

i
dz

dt
= Λz + u(z)Bz,

z(0) = z0.

As in [8], one can show that for any z0 ∈ S such that 〈z0, e1〉 6= 0, we have

lim
t→∞

dist(Rt(z0, u(z(t))), C) = 0.

The proof of our case is easier, as the linearization of (3.1), (3.2) around the tra-
jectory (e1, u ≡ 0) is controllable. Now (a) follows from the fact that the set
{z0 ∈ S : 〈z0, e1〉 6= 0} is dense in S and the distance between two solutions of (3.1)
corresponding to the same control is constant.
The proof of (b) follows from the fact that λ1 = 2πα, α ∈ I. Indeed, consider the
solution of (3.1), (3.2) with control u ≡ 0, that is e−iΛtz0. As z0 ∈ Cδ, there is a
τ ∈ R such that ‖z0 − e1e

iτ‖Cn < δ. Clearly, the set {e1e
−iλ1k+iτ : k ≥ 1} is dense

in C and

‖e−iΛkz0 − e1e
−iλ1k+iτ‖Cn = ‖z0 − e1e

iτ‖Cn < δ.

Thus e−iΛkz0 ∈ B(e1e
is, δ) for some k ∈ N. This completes the proof of (i).

Step 3. To prove (ii), note that any z0 ∈ S has a neighborhood whose points
are controlled to S∩B(e1e

is, δ) with controls from span{g1, . . . , gN} for some N :=
N(z0). As S is compact, we can find a universal constant N . The second part of
(ii) follows directly from the construction (note that we can choose the constant c
in (3.9) arbitrarily small). �

Proof of Theorem 3.1. Step 1. Take any z1, z2 ∈ S. Thank to Lemma
3.2, it suffices to find controls uj ∈ L2([0, Tj], R), Tj > 0, j = 1, 2 and a point
y ∈ S ∩ B(e1e

−iλ1 , δ) such that RT1(z1, u1) ∈ S ∩ B(e1, δ) and RT2(y, u2) = z2.

Step 2. Clearly, we can take as u1 the control provided by Lemma 3.3 for
z0 = z1 and s = 0.

To construct the control u2 and the point y, first note that, if RT (z̄, u) = ȳ,
then RT (y, u′) = z, where u′(·) = u(T −·). Now let u ∈ L2([0, T2], R) be the control
provided by Lemma 3.3 for z0 = z̄2 and s = λ1. It remains to take u2(·) = u(T2− ·)

and y = RT (z̄2, u). Clearly, y ∈ S ∩ B(e1e
−iλ1 , δ) and RT2(y, u2) = z2. �

Remark 3.4. It follows from the proof of Theorem 3.1 that for any ν > 0 there
is an integer N ≥ 1 such that the control u and the time T can be chosen in a way
that T ∈ N and (3.8) is verified.

Now let us consider the system

i
dz

dt
= Λz + u(t)Bz + εF (z),(3.10)

z(0) = z0.(3.11)
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Let Rε
t (·, u) : S → S be the resolving operator of (3.10), (3.11). Clearly, R0

t ≡ Rt.

Theorem 3.5. For any ν > 0 and δ > 0 there is a constant ε0 = ε0(ν, δ) > 0
and integers N ≥ 1 and k ≥ 1 such that following assertions hold.

(i) For any z ∈ S there is a control u ∈ L2([0, k], R) such that Rε
k(z, u) ∈

B(e1, δ) for all |ε| < ε0.
(ii) For any z ∈ S the control u in (i) can be chosen such that (3.8) is verified.

Notice that the time k ≥ 1 is the same for all z ∈ S.

Proof. Step 1. First we prove (i) for ε = 0. Let us choose points xj ∈ S,

j = 1, . . . , q such that S ⊂ ∪q
j=1B(xj ,

δ
2 ) and 〈xj , e1〉 6= 0. Using the arguments in

Step 1 of the proof of Lemma 3.3, one can choose small constants γj , j = 1, . . . , q
such that λ1,γj

= 2παj and {1, α1, . . . , αq} are rationally independent, where λ1,γ

stands for the first eigenvalue of the matrix Λγ = Λ+γB. Then using the feedback
(3.9), we construct a time l ≥ 1 and controls vj ∈ L2([0, l], R) such that

dist(Rl(xj , γj + vj), Cγj
) ≤

δ

2
,(3.12)

where Cγ = {e1,γeit : t ∈ R} and e1,γ is the eigenvector corresponding to λ1,γ . Let

|γj | be so small that ‖e1− e1,γj
‖ ≤ δ

4 . From (3.12) and the fact that {1, α1, . . . , αq}
are rationally independent it follows the existence of an integer l′ ≥ 1 such that

e−iΛγj
l′Rk(zj , γj + vj) ∈ B(e1,γj

, δ
4 ). Thus we have constructed controls uj ∈

L2([0, k], R), k := l + l′ such that Rk(xj , uj) ∈ B(e1,
δ
2 ). As in the case ε = 0 the

distance between two solutions is constant and S ⊂ ∪q
j=1B(xj ,

δ
2 ), for any z ∈ S

there is an integer j ∈ [1, q] such that Rk(z, uj) ∈ B(e1, δ). Clearly, as in Step 3 in
the proof of Lemma 3.3, we can suppose that the controls uj satisfy assertion (ii).

Step 2. Let us prove the lemma in the general case. Let z0 ∈ S and let
u ∈ L2([0, k], R) be the control constructed in Step 1. It is easy to see that

(3.13) lim
(z,ε)→(z0,0)

Rε
k(z, u) = Rk(z0, u).

Thus there is a constant ε(z0) > 0 such that Rε
k(z, u) ∈ B(e1, δ) for all |ε| < ε0(z0)

and z ∈ S ∩ B(z0, ε0(z0)). From the compactness of S it follows that there is
a uniform constant ε0 > 0 such that assertions (i) and (ii) of Theorem 3.5 are
satisfied. �

4. Proof of Lemmas 2.4 and 2.5

Proof of Lemma 2.4. Step 1. To prove assertion (i), let us consider the
mapping

R·
1(·, ·) : (−ε0, ε0) × S ∩ B(e1, δ0) × X → S,

(ε, z0, u) → Rε
1(z0, u),

where Rε
t is the resolving operator of problem (3.10), (3.11), X ⊂ L2([0, 1], R) is a

closed subspace and ε0 > 0 and δ0 > 0 are constants. We are going to show that
the measure D(η1) and the function R·

1(·, ·) satisfy the conditions of Theorem 2.2
in [1] for an appropriate choice of X and the constants ε0 and δ0. For the reader’s
convenience, we recall the theorem in Section 6 (see Theorem 6.3).



EXPONENTIAL MIXING 179

Clearly, R·
1(·, ·) is a continuous function, Rε

1(z0, ·) is analytic for any |ε| ≤ ε0

and z0 ∈ S ∩ B(e1, δ0), and DuR·
1(·, ·) is continuous.

Using Lemma 3.2, we see that for some positive constant ν the interior of the
set R0

1(e1, BEn
(0, ν)) is non-empty. Denote by PN the orthogonal projection onto

the space span{g1, . . . , gN} in L2([0, 1], R). The continuity of R·
1(·, ·) implies that

for any η > 0 there is an integer N ≥ 1 and positive constants δ0 and ε0 such that

‖Rε
1(z, PNu) −R0

1(e1, u)‖ < η

for all |ε| ≤ ε0, z ∈ S ∩ B(e1, δ0) and u ∈ BEn
(0, ν). A standard degree theory

argument implies that the interior of the set Rε
1(z, PN (BEn

(0, ν))) is non-empty
for any |ε| ≤ ε0 and z ∈ S∩B(e1, δ0). Clearly, if (2.2) holds for the integer N , then

conditions of Theorem 6.3 are satisfied for X = span{ej : bj 6= 0, j ≥ 1}. Thus the
function

R·
1∗(·,D(η1)) : (−ε0, ε0) × S ∩ B(e1, δ) → P(S),

is continuous, where Rε
1∗(z,D(η1)) stands for the image of the measure D(η1) under

the mapping Rε
1(z, ·) and P(S) is endowed with the total variation norm. This

completes the proof of assertion (i).

Step 2. To prove assertion (ii), we apply Theorem 6.3 to the mapping

R·
k+1(·, ·) : (−ε0, ε0) × S × Xk+1 → S,

(ε, z, u) → Rε
k+1(z, u),

where k is the integer in Theorem 3.5, X is defined in Step 1 and Xk+1 is the set of
functions u ∈ L2([0, k+1], R) such that u(j+ ·)

∣

∣

[0,1]
∈ X , j = 0, . . . , k. Using Theo-

rem 3.5 and the arguments of Step 1, one can show that for sufficiently small ε0 > 0
and for any z ∈ S there is a ball Bz in a finite-dimensional subset of Xk+1 such that
Rε

k+1(z, Bz) has a non-empty interior for all |ε| < ε0. Clearly, the other conditions

of Theorem 6.3 also hold. Thus the image of the measure
⊗k+1

j=1 D(ηj) under the

mapping Rε
k+1(z, ·) (which is equal to D(Uε

k+1(z))) is absolutely continuous with
respect to the Riemannian volume m on S. �

Proof of Lemma 2.5. Step 1. We write τ instead of τδ,ε. Let us show that
for any δ > 0 there is a constant εδ > 0 such that

(4.1) Pz{τ < +∞} = 1 for all |ε| < εδ and z ∈ S.

Using Theorem 3.5 and Condition 2.1, one can show that for any δ > 0 and z0 ∈ S
there is a time k = k(δ) ≥ 1, a constant εδ = εδ(z0) > 0 and a neighborhood
O = O(z0) of z0 such that

sup
(z,ε)∈O×(−εδ,εδ)

Pz{τ > k} < 1.

From the compactness of S it follows that there is a constant εδ > 0 such that

(4.2) a := sup
(z,ε)∈S×(−εδ,εδ)

Pz{τ > k} < 1.

Using the Markov property and (4.2), we obtain

Pz{τ > nk} = Ez(I{τ>(n−1)k}PUε
(n−1)k

(·){τ > k}) ≤ aPz{τ > (n − 1)k}.
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Thus

(4.3) Pz{τ > nk} ≤ an.

This proves (4.1).

Step 2. Using (4.1) and (4.3), we obtain for sufficiently small α > 0

Eze
ατ ≤ 1 +

∞
∑

n=0

Ez(e
ατI{nk<τ≤(n+1)k}) ≤ 1 +

∞
∑

n=0

eα(n+1)k
Pz{τ > nk}

≤ 1 +

∞
∑

n=0

eα(n+1)kan = 1 +
eαk

1 − eαka
.

�

Remark 4.1. An estimate similar to (2.4) holds for the Markov chain (yn, y′
n)

constructed in Step 2 of the proof of Theorem 2.3. Namely, let T be the stopping
time defined by (2.6). Let us show that (2.7) holds.

Indeed, it follows from the above proof that inequality (2.7) will be established
if we show that for any δ > 0 and z0, z

′
0 ∈ S there is a time l = l(δ, z0, z

′
0) ≥ 1, a

constant εδ = εδ(z0, z
′
0) > 0 and a neighborhood O = O(z0, z

′
0) of the point (z0, z

′
0)

such that

(4.4) sup
(z,z′,ε)∈O×(−εδ,εδ)

P(z,z′){T > l} < 1.

The case z0 = z′0 follows from the definition of the sequence (yn, y′
n) and (4.2), and

the case z0, z
′
0 ∈ B(e1, δ) is clear. Thus it suffices to prove (4.4) in the case z0 6= z′0

and z0 /∈ B(e1, δ). Let (Ω,F , P) be the underlying probability space. Define the
event

Ω1 := {ω ∈ Ω : yn = y′
n for some n = 1, . . . , k} ∈ F ,

where k ≥ 1 is the integer in Theorem 3.5. Let Ω2 := Ω\Ω1. It follows from the
definition of (yn, y′

n) that

yk = y′
k for any ω ∈ Ω1.

Using again the definition of (yn, y′
n) and (4.2), we get

(4.5) sup
(z,z′,ε)∈O′×(−ε′

δ
,ε′

δ
)

P(z,z′){τ > 2k|Ω1} < 1,

where ε′δ = ε′δ(z0, z
′
0) > 0 and O′ = O′(z0, z

′
0) is a neighborhood of the point

(z0, z
′
0). On the other hand, by Theorem 3.5, Condition 2.1 and the construction

of (yn, y′
n), we have

(4.6) sup
(z,z′,ε)∈O′′×(−ε′′

δ
,ε′′

δ
)

P(z,z′){τ > k|Ω2} < 1

for some ε′′δ = ε′′δ (z0, z
′
0) > 0 and O′′ = O′′(z0, z

′
0). Combining (4.5) and (4.6), we

get (4.4).
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5. Application

In this section, we apply Theorem 2.3 to the Galerkin approximations of the
Schrödinger equation. For any integer k ≥ 2, denote by Qk the vector space of all
polynomials of degree k with real coefficients. Let λ be the Lebesgue measure on
Qk.

Consider the problem

i
∂z

∂t
= −z′′ + β(t)V (x)z + ε|z|σz, x ∈ (0, 1),(5.1)

z(t, 0) = z(t, 1) = 0,(5.2)

z(0, x) = z0(x),(5.3)

where σ > 0 and ε are constants, β(t) is a random process of the form (1.3) and
V ∈ Qk. Denote by {ej}j∈N the set of normalized eigenfunctions of the Dirichlet
Laplacian. For any n ∈ N, let Hn := span{e1, . . . , en} and let Pn be the orthogonal
projection onto Hn in L2([0, 1]). The Galerkin approximation of order n of (5.1)
has the form

(5.4) i
∂z

∂t
= −z′′ + β(t)Pn(V (x)z) + εPn(|z|σz).

Clearly, (5.4) can be rewritten in the form (1.1). Denote by 〈·, ·〉 the scalar product
in L2([0, 1]) and by S the unit sphere in Hn.

Theorem 5.1. Suppose that Condition 2.1 is satisfied. Then for λ-almost all
V ∈ Qk there is an integer N ≥ 1 and a constant ε0 > 0 such that, if (2.2) holds,
then problem (5.4), (1.3) has a unique stationary measure µ ∈ P(S) for |ε| < ε0.
Moreover, µ is absolutely continuous with respect to the Riemannian volume on S
and for any initial measure ν ∈ P(S) inequality (2.3) holds.

Proof. It suffices to note that 〈x2e1, ej〉 6= 0 for j = 1, . . . , n, and thus the
set of polynomials V ∈ Qk with 〈V e1, ei〉 = 0 for some i = 1, . . . , n has a zero
λ-measure. It remains to apply Theorem 2.3. �

6. Appendix

Here we recall a result on the finite-dimensional transformations of measures.
Let X be a separable Hilbert space with the norm ‖ · ‖X . We deal with measures
µ ∈ P(X) satisfying the following condition.

Condition 6.1. The measure µ ∈ P(X) has a finite second moment
∫

X

‖x‖2
Xµ(dx) < ∞.

Moreover, there is an orthonormal basis {gj} ⊂ X such that

µ =

∞
⊗

j=1

µj ,

where µj is the projection of µ to the space Xj generated by gj and ⊗ denotes the
tensor product of measures. Finally, for any j ∈ N, the measure µj possesses a
continuous density with respect to the Lebesgue measure on Xj.
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Example 6.2. Let η be a random variable satisfying Condition 2.1. Then
choosing X := span{ej : bj 6= 0, j ≥ 1}, it is easy to see that Condition 6.1 is
satisfied for the measure D(η) ∈ P(X).

Let H be a metric space and M be a finite-dimensional analytic Riemannian
manifold.

Theorem 6.3. Let f : H × X → M be a continuous function such that f(u, ·)
is analytic for any u ∈ H and the derivative Dxf(u, x) is continuous with respect
to (u, x). Suppose that, for any u ∈ H, there is a ball Bu in a finite-dimensional
subspace Xu ⊂ X such that the interior of the set f(u, Bu) is non-empty. Then for
any measure µ ∈ P(X) satisfying Condition 6.1, we have:

(i) For any u0 ∈ H, the measure f∗(u0, µ) is absolutely continuous with re-
spect to the Riemannian volume on M , where f∗(u0, µ) is the image of
the measure µ under the mapping f(u0, ·) : X → M .

(ii) The function f∗(u0, µ) from H to the space P(M) endowed with the total
variation norm is continuous.

See [1] for the proof of this theorem in the case of finite-dimensional vector
space M . The result in the case of a Riemannian manifold is deduced from the case
of finite-dimensional vector space.

Note that the main result of the paper could be stated under more general
assumptions over the distribution of the random variable η1 that are adapted to a
measure transformation theorem from [3]. Our choice is explained by the simplicity
of the conditions of Theorem 6.3.
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