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Abstract

In this paper, we study the problem of controllability of Schrodinger equation. We prove that the system is exactly controllable
in infinite time to any position. The proof is based on an inverse mapping theorem for multivalued functions. We show also that the
system is not exactly controllable in finite time in lower Sobolev spaces.
© 2011 Elsevier Masson SAS. All rights reserved.

Résumé

Dans cet article, on étudie le probleme de contrdlabilité pour 1’équation de Schrédinger. Nous montrons que le systeme est
exactement controlable en temps infini. La démonstration utilise un théoréme d’inversion locale pour des multifonctions. On
montre aussi que le systéme n’est pas exactement controlable en temps fini dans les espaces de Sobolev d’ordre inférieur.
© 2011 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The paper is devoted to the study of the following controlled Schrodinger equation

iz=—Az+V®@)z+u®)Q(x)z, (1.1)
zlap =0, (1.2)
7(0, x) = zo(x). (1.3)

We assume that space variable x belongs to a rectangle D C R, V, Q € C*®°(D, R) are given functions, u is the
control, and z is the state. We prove that the linearization of this system is exactly controllable in Sobolev spaces in
infinite time. Application of this result gives global exact controllability in infinite time in H> for d = 1. We show
also that the system is not exactly controllable in finite time in lower Sobolev spaces.

Let us recall some previous results on the controllability problem of Schrédinger equation. In [6], Beauchard
proves an exact controllability result for the system withd =1, D =(—1,1) and Q(x) =x in H 7-neighborhoods of
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the eigenfunctions. Beauchard and Coron [8] established later a partial global exact controllability result, showing that
the system in question is also controlled between neighborhoods of eigenfunctions. Recently, Beauchard and Laurent
[10] simplified the proof of [6] and generalized it to the case of the nonlinear equation. The proofs of [6,8,10] work
also for the neighborhoods of finite linear combinations of eigenfunctions. In the case of infinite linear combinations,
these arguments do not work, since the linearized system does not verify the property of spectral gap (even if the
problem is 1-D), hence the Ingham inequality cannot be applied.

Chambrion et al. [12], Privat and Sigalotti [26], and Mason and Sigalotti [19] prove that (1.1), (1.2) is approximately
controllable in L? generically with respect to function Q and domain D. In [23,22], the first author of this paper proves
a stabilization result and a property of global approximate controllability to eigenstates for Schrodinger equation.
Combination of these results with the local exact controllability property obtained by Beauchard [6] gives global exact
controllability in finite time for d = 1 in the spaces H 3+e ¢ > 0. See also papers [27,30,3,2,1,9] for controllability
of finite-dimensional systems and papers [17,18,5,31,13,20,15] for controllability properties of various Schrodinger
systems.

In this article, we study the properties of control system on the time half-line R instead of a finite interval [0, T'],
as in all above cited papers. We study the mapping, which associates to initial condition zo and control u the w-limit
set of the corresponding trajectory. We consider this mapping as a multivalued function in the phase space. We show
that this multivalued function is differentiable with differential equal to the limit of the linearization of (1.1), (1.2),
when time ¢ goes to infinity. Observing that the linearized system is controllable in infinite time at almost any point,
we conclude the controllability of the nonlinear system (in the case d = 1), using an inverse mapping theorem for
multivalued functions [21] by Nachi and Penot. Thus (1.1), (1.2) is exactly controllable near any point in the phase
space, hence globally. The controllability of the linearized system is proved for any d > 1, but this result is not directly
applicable to the study of the nonlinear system with d > 2. We have a loss of regularity: the solution of the nonlinear
problem exists for more regular controls than the ones used to control the linear problem. The multidimensional case
is treated in our forthcoming paper.

To our knowledge, the inverse mapping theorem for multivalued functions was never used before in the theory of
control of PDEs. Our proof does not rely on the particular asymptotics of the eigenvalues of Dirichlet Laplacian, so it
is likely to work in other settings. Considering the problem in infinite time enables us to prove the controllability of
the linearized system in the case of any space dimension d > 1, even when the gap condition is not verified for the
eigenvalues (which is the case for d > 3).

In the second part of the paper, we study the problem of non-controllability for (1.1), (1.2) in finite time. We prove
that the system is not exactly controllable in finite time in the spaces H* with k € (0, d). Let us recall that previously
Ball, Marsden and Slemrod [4] and Turinici [29] have shown that the problem is not controllable in the space H>. Our
result is inspired by the paper [28] of Shirikyan, where the non-controllability of 2D Euler equation is established.
More precisely, it is proved in [28] that, if the Euler system is controlled by finite dimensional external force, then
the set of all reachable points in a given time 7 > 0O cannot cover a ball in the phase space. Later this result was
generalized by the second author of the present paper, in [24]: in the case of 3D Euler equation it is proved that the
union of all sets of reachable points at all times 7 > 0 also does not cover a ball.

Using ideas of Shirikyan, we prove that the image by the resolving operator of a ball in the space of controls has a
Kolmogorov e-entropy strictly less than that of a ball in the phase space H*. This implies the non-controllability.

Notation. In this paper, we use the following notation. Let

+00
2
2= {{aj} € C*™: ||{aj}||@2 = Z |aj|2 <400y,
j=1
65 :={{a;} € ¢*: a) eR}.
We denote by H* := H*(D) the Sobolev space of order s > 0. Consider the Schrédinger operator —A + V,
V € C®(D,R) with D(—A + V) := Hé N H?. Let {Aj,v} and {e; v} be the sets of eigenvalues and normalized
eigenfunctions of this operator. Let (-,-) and || - || be the scalar product and the norm in the space L2. Define the
space H(SV) :=D((—A+V)2) endowed with the norm || - |[s,v = [[(A;, v)2(-, e} v}l ;2. When D is the rectangle (0, 14
and V(x1,...,xq) = Vi(x1) + -+ Va(xq), Vk € C*([0, 1], R), the eigenvalues and eigenfunctions of —A + V on
D are of the form
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JoesdasV =R gy o A vy (1.4)

€jprejaV X1y ooy Xa) =€ v (1) o ej, vy(xa), (x1,...,xq) €D, (1.5)
where {A; v, } and {e; v, } are the eigenvalues and eigenfunctions of operator —d‘i—zz + Vi on (0, 1). Define the space

+00
. ; 2
Vi={zel® [zl= > |jj- JHz e jav)|” <+oop. (1.6)
Jtsens ja=1
Notice that, in the case d = 1, the space V coincides with H(3V). The eigenvalues and eigenfunctions of Dirichlet

Laplacian on the interval (0, 1) are Ax o = k2% and e o(x) = ﬁsin(knx), x € (0, 1). It is well known that for any
Ve L*(0,1],R)

1

Ak,vzk2n2+/V(x)dx+rk, (1.7)
0
C
llek,v —exollLe < T (1.8)
d d
kv _ kO <C, (1.9)
dx dx L

where Z,'::O? r,% < 400 (e.g., see [25]). For a Banach space X, we shall denote by By (a, r) the open ball of radius
r > 0 centered at a € X. For a set A, we write 24 for the set consisting of all subsets of A. We denote by C a constant
whose value may change from line to line.

2. Controllability of linearized system
2.1. Main result

In this section, we suppose that d =1 and D = (0, 1). For any 7 € H(3V), let U;(Z, 0) be the solution of (1.1)—(1.3)
with zg = Z and u = 0. Clearly,

+o0
UG 0= eV ejve)y. @.1)
j=l1
Lemma 2.1. There is a sequence T, — 400 such that for any 7 € H(3V) we have Ur, (z,0) — Z in H(3V).

Proof. The proof uses the following well-known result (e.g., see [16]).

Lemma 2.2. foranye >0, N> landoj eR, j=1,..., N, thereis k € N such that
N
Z‘emik —1| <e.
j=1

Applying this lemma, we see that for any ¢ > 0 and for sufficiently large N > 1, we have

) 3
|tz 00 = 2[5, < Do [Pk — 1723y Eeyian)
J<N
3
+2) |22 G| < % * % B
j>N

for an appropriate choice of k € N. This proves Lemma 2.1. O
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This subsection is devoted to the study of the linearization of (1.1), (1.2) around the trajectory i (z, 0):

2
it=—2— = V@) +u) QU E, 0), (22)
zlap =0, (2.3)
2(0, x) = 2. (2.4)

Let S be the unit sphere in L2. For y € S, let Ty be the tangent space to S at y € S:

Ty ={z € S: Re(z,y) =0}.

Lemma 2.3. For any zo € T N H(ZO) andu € LllOC R4, R), problem (2.2)—~(2.4) has a unique solution z € C (R, (20))

Furthermore, if R;(-,-) : T3 N H(zo) x L1([0,¢],R) > H (0), (zo, u) — z(t) is the resolving operator of the problem,
then

() Ri(zo,u) € Ty, z,0) for any t >0,
(i1) The operator R; is linear continuous from T; N H(O) x L1([0,¢],R) o H(ZO),

Proof. The proof of existence and (ii) is standard (e.g., see [11]). To prove (i), notice that

o Re(Ri,Us) = Re (R, Uy) + Re(Ry, Uy)
82 82
—Re(i( — — V)R, — iu(t) O}y, U ) + Re R,,i<— _ v)u
ax2 ax2

32 3?
=Re(i __V Rt,[/{t + Re Rt, — =V Z/It =0
0x2 9x2
Since Re(Ry, Up) = Re(zp,z7) =0, we get (). O
As (2.2)—~(2.4) is a linear control problem, the controllability of system with zo = O is equivalent to that with any

20 € T5. Henceforth, we take zo = 0 in (2.4). Let us rewrite this problem in the Duhamel form

t

z(t) = —i / S — s)u(s)Q(x)Us(z,0)ds, (2.5)

0

V)

(0%
where S(¢) = e”(axz is the free evolution. Using (2.1) and (2.5), we obtain

t

(z(). em,v) —lze Pvi(E, e, v)ka/ e u(s)ds, m=>1, (2.6)

k=1 5

where wuk = Ay — Ak and Qi := (Qem,v, ek, v). Let T, = 400 be the sequence in Lemma 2.1. Then e PmvT 5
as n — +o00. Let us take 7 = T, in (2.6) and pass to the limit as n — +oc. For any u € L' (R, R) the right-hand side
has a limit. Equality (2.6) implies that the following limit exists in the L2-weak sense

Roo(0,u):= lim z(T,)= lim Ry7 (0,u). 2.7
n——+00 n—+oco "

The choice of the sequence T}, implies that

(Roo 0, 1), em.v) —zZ 2 e O f kS u(s) ds. 2.8)
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Moreover, R (0, #) € T;. Indeed, using (2.7) and the convergence Ur, (Z,0) — Z in H(3V), we get
Re(Roo(0,u),Z) = lim Re(Ry, (0, u),Ur, (Z,0))=0,
n—>oo

by property (i).
For any u € L'(Ry,R), denote by # the inverse Fourier transform of the function obtained by extending u
as zero to R* :

+00
i(w) = / ' u(s)ds. (2.9)
0
Define the following spaces:
+00
= {d ={dwk: 113, =1du P+ Y ldmil® < 400,
mk=1, m#k

dpm = di1 and dypy = dp, for all m, k > 1},

+00
B:= :u € Lie R, R): Nlulig =Y p?lullfag, ;) < +oo},
p=1
C:={ue 'R, R): {it(om)) € ?}.
The set of admissible controls is the Banach space
O:=ueBNCNH R4+, R)

endowed with the norm |[ulle := llullg + llull 1 + [{it(@mi)} 2 + |l s, where s > 1 is any fixed constant. Clearly,
the space @ is nontrivial. The presence of the space 3 in the definition of @ is motivated by the application to the
nonlinear control system that we give in Section 3 (this guarantees that the trajectories of the nonlinear system with
controls from B are bounded in the phase space). The space C in the definition of © ensures that the operator R (0, -)
takes its values in H(3V).

Lemma 2.4. Foranyz € SN H(3V), R0(0, ) is linear continuous mapping from © to Tz N H(3V).

Proof. Step 1. Let us admit that for any m, k > 1 we have
m
3

Then (1.7), (2.8), (2.10) and the Schwarz inequality imply that

<C. (2.10)

3
‘ (Qek,v,emv)

+o0
| R @, )], < C 3 [m*(Roo (0. 1), emv)[*

m=1

+00 +00
ey
m=1

13 E emy ) (Qem.vs emv) / u(s)ds

0

2

+00

2

m3 [WmkS

k—3<Q€k,v,€m,v> e u(s)ds
0

+00

+CIEIRy ),

m,k=1, m#k

=12 2
< Clzl3 y llully < +oo.
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Step 2. Let us prove (2.10). Integration by parts gives

1 9? 92
(Qek,V:em,V>= 2 <( 2 +V>(Qek V) ( 2 +V)(em V)>
)‘m,V dx dx

1 30 dex y 9 =l 7y 92
s )
)Lm,V x=0 8.x 3x

ox dx 0x

82
+<< P +V>(Qek,v),Vem,v>>.

In view of (1.4)—(1.9), this implies (2.10). O

)

We prove the controllability of (2.2), (2.3) under below condition with d = 1.

Condition 2.5. Suppose that D is the rectangle (O, 1)d, d > 1, and the functions V, Q € C*® (l_), R) are such that

(1) infpl,jl,...,pd,deI |(P1J1 trrte Pa’jd)Sij| > O’ ij = (erl,..‘,pd,V9 €j,..., j,],V);
(i1) Aiv _)\.j,v #Ap,V —)xq’v foralli, j, p,q > 1 suchthat {i, j} # {p,q} and i # j.

See Appendix A for the proof of genericity of this condition. Let us introduce the set
E:={ze€S:3Ap,q=1, p#q, 2=cpepy +cqeqv. lepl2(Qepvyepv) —leg*(Qeq vy eqv) =0}.
The following result is proved in the next subsection.

Theorem 2.6. Under Condition 2.5 with d = 1, for any 7 € SN H(V) \ &, the mapping Rs(0,-):0 — T3 N H(3V)

admits a continuous right inverse, where the space Tz N H(V) is endowed with the norm of H(3V). IfzeSN H(‘V) neE,
then Ry (0, -) is not invertible.

Remark 2.7. The invertibility of the mapping Rr (0, -) with finite 7 > 0 and Z = ¢; is studied by Beauchard et al. [7].
They prove that for space dimension d > 3 the mapping is not invertible. By Beauchard [6], R7 is invertible in the
case d =1 and z = e1. The case d =2 is open to our knowledge.

Remark 2.8. Let us emphasize that the set {w,x} does not verify the gap condition (even in the case d = 1)

inf |wmk — Wi | > 0.
(m k)7 (m’ k)
Thus one cannot prove exact controllability in finite time near points, which are not eigenfunctions, using arguments
based on the Ingham inequality.

2.2. Proof of Theorem 2.6
The proof of the theorem is based on the following proposition, which is proved in the next subsection.

Proposition 2.9. If the sequence w, € R, m > 1, is such that vy =0 and . < 400 for some p > 1 and

m=2 Iw |P

w; #wj fori # j, then there is a linear continuous operator A from E(Q) to © such that {A(d)(a)m)} =d foranyd € 8(2).

The idea of the proof of Theorem 2.6 is to rewrite (2.8) in the form dy,x = 1t (wyi) With d = {dui} € 22 and to apply
the proposition. Notice that Zm k=lmzk i~ < T00 and w;j # wpq forall i, j, p,q > 1 such that {i, j} # {p, q} and

l;é].LetustakeanyyeTzﬂH .Deﬁne

Qe z(y,em)(ek,z)Q—;(ek, VW(Z, em) Con
m
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where Cy,x € C and e = ¢y . The fact that z € S implies

+00 +00 +00 +00
—i Y () Qi = Y _{y-em)|(Z )| = > ew. ) (o em) (Eoew) =i Y (Z. ex) Qi Comk
k=1 k=1 k=1 k=1
+00
= (v, em) — (. en)(E, ) =i ) (%, ex) Qi Conk-
k=1

By (2.8), we have y = R0 (0, 1), when

+00

i) (2, &) Ok Conk = —(Z, em) 2. ¥) (2.11)

k=1

for all m > 1. Thus if we show that there are C,, € C such that (2.11) is verified and d = {du} € £2, then the proof
of the theorem will be completed, in view of Proposition 2.9. Notice that, under Condition 2.5, we have

2R emen ) 2 a2
Z o S Clyls ylizlls y < +oo.
mok=1,ms#k mk

Thus {dpi} € £2, if Cpu € C are such that

_ l(y’ em)<em’z> - i<eWZ1 Y)(Z: em)

dmm = + Cmm = dOa (212)
Omm
Cok = Crom, (2.13)
+00
> 1Cmkl* < +oo, 2.14)
m,k=1, m#k

where dy € R. Let us show that, for an appropriate choice of dy, there are Cy, satisfying (2.11)—(2.14). Since y € T3,
we have (Z, y) =iIm(Z, y). We can rewrite (2.11) and (2.12) in the following form

+00
Y (. e) Ok Ok = —(Z. em) I (3, y), (2.15)
k=1

Ay = =2Im((y, em){em, 2)) + Com = do. (2.16)

Qmm

Case 1. Let as suppose that Z = ce,,, where ¢ € C, |c| =1 and p > 1. Then (2.13)—(2.16) is verified for C,,; =0, if
m # k and Cp,y defined by (2.16) with dy = %
Case 2. Suppose Z = cpep, + cqeq, Where ¢p, cq € C, |cp|* +1cq|> = 1 and p # q. For any m > 1, define Cym by
(2.16). If m # p, we set
—cn(Im(zZ, y) + QmmCmm)

cpOmp

Crp = , 2.17)

where ¢, = 0 for m # ¢, and C,,;x = 0 for any k > 1 such that k # m, p. Then all the equations in (2.15) are verified,
excepted the case m = p. Let us show that, for an appropriate choice of dy € R, this equation is also satisfied. Eq. (2.15)
form=pis

cpQppCpp +¢40pqCpg = —cpIm(Z, y).

Using (2.17) for m = g (taking Cp,; = 6qp) and (2.16) for m = p, we get
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—cpIm(Z, y) =, O pp (do + 2Im({y. ¢phiep. Z))> +c¢q qu<—cq(lm(2, Y+ Qqchtﬂ)
Opp ¢pQqp

=y Qpp (o4 ZOE I g (ZUBED ) g, (ZeBactan ),

Opp cpQap CpQqp
Now using (2.16) for m = g, we rewrite this equality in an equivalent form
(|Cp|2Qpp - |Cq |2Qqq)d0 =A

for some constant A € R. Thus if Z is such that |cp|2Qp,, - |cq|2Qqq # 0, then we are able to find C,,; satisfying
(2.13)~(2.16).If |cp 2 Opp —lcq 2 Qg4 =0, then linear system (2.2), (2.3) is not controllable, since for any u € ® and
t > 0 we have

d ‘ .
o Im(R, 0, u), cpe_’)‘P’ep — cqe_”‘q’eq)

52 . ) . .
_ . . —iApt —iAgt —iApt —iAgt
_Im<z<ﬁ—V Ri(0,u) —iuQ(cpe™""ey +cge ' ey), cpe” M0 e, — cqem ey

Es —idpt —igt
+Im<R,(O,u),1(W -V (cpe rle, —cqem!M eq)
= Im(—iuQ(cpefi)‘”'ep + cqefi)“’teq), cpefi)"’tep — cqef"kqteq>

=—u(lcpl* Qpp = legl® Qqq) = 0.

This non-controllability property is a remark of Beauchard and Coron [8].

Case 3. Here we suppose that 7 = Z}fo cjej with cpc ey #0, and p, g, r are not equal to each other. If we define
again Cy,p, m # p, by (2.17) and C,,x =0 for any k > 1 such that k # m, p, then the arguments of Case 2 give the
following equation for dy

<|c,,|2Qpp -y |cm|2Qmm>do =A

m#p
for some constant A € R. This implies that for any z such that |cp|2Qpp — Zm;ﬁp lem > Qmm # 0, we can find Cpni
satisfying (2.13)—(2.16). Let us suppose that

lep*Qpp = Y lemI* Qum =0. (2.18)
m#p
In this case, we define Cy,;, by (2.17) only for integers m > 1 such that m # p, g, r and Cp = 0 for any k > 1 such
that k # m, p, g, r. Then all the equations in (2.15) are verified, except for m = p, g, r. We take any C,, € C and
choose C,; and C;, such that
Cp Qrpcrp + ¢4 qu er +cp OrrCrr = —¢, Im(z, y), (2.19)
cpQuqpCyp +¢40qqCqq +¢rQygrCyr = —c4 Im(z, y). (2.20)

Replacing the value of Cj,, from (2.20) into (2.19), then the value of C,, from (2.19) into (2.15) with m = p, and
using (2.13), we get the following equation for dy

<|Cp|2QpP + |cq|2Qqq - Z |Cm|2Qmm>d0 =A

m#p.q

for some constant A € R. Equality (2.18) implies that
lep?Qpp +1cg* Qg — D leml* Qum =0
m#p.q

if and only if |c, |2Qqq = 0, which is not the case: ¢; # 0, Q44 # 0. Thus solution dp € R exists, and the sequence
Cuk is constructed for any 7 ¢ E.
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2.3. Multidimensional case

In this section, we suppose that D is the rectangle (0, D4, d>=1,and V(xi,...,xq5) = Vi(x1) + - + Vi(xg),
Vi € C*°([0, 1], R). This subsection is devoted to the study of the linearization of (1.1), (1.2) around the trajectory
U (Z,0):

iz=—Az+V(X)z+u®) Q@)U Z,0), 2.21)
zlap =0, (2.22)
2(0, x) = zo. (2.23)

The proof of Theorem 2.6 does not work in the multidimensional case for a general Z. Indeed, the well-known asymp-
totic formula for eigenvalues Ax y ~ Cdk% implies that the frequencies w,,x are dense in R for space dimension
d > 3. Thus the moment problem i (wyx) = dux cannot be solved in the space L (R4, R) for a general d,,x € 22.The
asymptotic formula for eigenvalues implies that the moment problem cannot be solved also in this case d = 2. Clearly,
this does not imply the non-controllability of linearized system. Let us prove the controllability of (2.21), (2.22) for
Z = ek, v . See our forthcoming publication for the case of a general z and for an application to the nonlinear control
problem.
For z = ey v the mapping R (0, u) is given by

<Roo(07 u), em,V) =—i kaﬁ(wmk)
(cf. 2.8).

Lemma 2.10. The mapping R (0, -) is linear continuous from © to T, ,, NV, where V is defined by (1.6).

Proof. Step 1. Let us admit that forany m;, k; > 1, j =1,...,d we have

(my - mg)3
(k] ..... kd)3 (Qekl ..... kq, Vs €my,..., md,V) < C. (224)
Then (2.8), (2.24) and the Schwarz inequality imply that
2 = 2
[Rec@ )= D" fmi - mi(Roo (0, ), emy..my.v )|
mi,..., mg=1
+o0 o0 2
CCY |t ety ons v Qe v ey [ )
m=1 0
s =Xy mg)3 s 2
FOIER Y [ (et v i) [ i) ds
m,k=1, m#k (kp - ka)
=1, 0

=12 110,112
S Clizlylluliy < +oo.

Step 2. Let us prove (2.24). To simplify notation, let us suppose that d = 2; the proof of the general case is similar.
Let V(x1, x2) = Vi(x1) + Va(x2). Integration by parts gives

1 32 92
<Qek1,k2,V7 eml,mQ,V) = — + Vl (Qekl,kQ,V)a —s + Vl (eml,mz,V)

Afnl,vl 8x12 ax%
1 x1=1
_ 1 _2% aekl,kz,\/ 3€m1,m2,v dx
A2 dx;  0xp 0x1 _ 2
my,Vy x1=0
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0 32 0em; my,v
{———+V , Zmena. v
<8x1 < 8x12 1)(Qek1,k2,\/) axl

32
+ <<——2 + V1)(Q6k1,k2,v), Vleml,mz,v>)
dx]

=h+ DL+

Again integrating by parts, we get

1 —_—
I = _72/(_3_2 n Vz) (@ 8ek1,k2,v><_£ n V2> 0em, my,v x=1 o
A v v, J 9x3 dxi  0xp 9x2 0x1 |y o
_ -2 L, 82Q 826k|,k2,V aZeml’mLV x1=1jx=1
)"3"1,‘/1)\'512,‘/2 0x10x2 0x10x2 0x10x2 1201 x2=0
1 j—
J dx2 \ 9x3 axp  dxg 9x19x2  |y,—o
: 92 90 dex, & de v [F1=1
() (L e )
0 3x2 axl 8.X1 8_)(1 x1=0
In view of (1.4)—(1.9), this implies that
..... 3
(my mq) nl<c.
(ky«--- kq)3
The terms I, I3 are treated in the same way. We omit the details. O
We rewrite (2.8) in the form
(wmk) = dm, (2.25)

where d,, = W We have Y00 |, oz < +0o for fixed k > 1. Under Condition 2.5(), dy € €.

Applying Proposition 2.9, we obtain the following theorem:

Theorem 2.11. Under Condition 2.5, the mapping Roo(0, ) : @ — T, ,, NV admits a continuous right inverse, where
the space T, , NV is endowed with the norm of V.

2.4. Proof of Proposition 2.9
The construction of the operator A is based on the following lemma.

Lemma 2.12. Under the conditions of Proposition 2.9, for any d € E% and ¢ > 0, there is u € Bg(0, ) such that
{it(wm)} = d.

Proof of Proposition 2.9. Let d" be any orthonormal basis in Zg. Applying Lemma 2.12, we find a sequence

u, € Be (0, rll) such that {ii,,(w;,)} = d". For any d € 22, there is ¢ € £% such that d = :zocf cpd". Let us define
A in the following way

+00
A) = chun.
n=1

Asu, € Bp (0, %), this sum converges in ®:
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|A@)

+00 +00 % +00 %
2 2
o < leallunllo <[ Y leal? ) | Dol | < Clidllea.
n=1 n=1 n=1

Thus A: E% — @ is linear continuous and {A(d) (wm)} =d, by construction. O

Proof of Lemma 2.12. Let us take any d € 6% and ¢ > 0 and introduce the functional

+00
Hw) = {ii@n)} = d iz = D lii(@n) = dn’
m=1
defined on the space ©.

Step 1. First, let us show that there is ug € Bg (0, €) such that

Huo) = inf  H(u). (2.26)
ueBp (0,¢)

To this end, let u,, € Bo (0, ¢) be an arbitrary minimizing sequence. Since BN H* (R4, R) is reflexive, without loss
of generality, we can assume that there is uo € Bgnps(r,,r) (0, &) such that u, — ug in BN H* (R4, R). Using the
compactness of the injection H*([0, N]) — C([0, N]) for any N > 0 and a diagonal extraction, we can assume that
u, (t) = up(t) uniformly for ¢ € [0, N]. The Fatou lemma implies that

+o00 +o00

/|u0(s)|ds<liminf/ |un(s)|ds <e.
n—oo

0 0

Again extracting a subsequence, if it is necessary, one gets {it, (wp,)} = {tto(wm)} in Z% as n — +o00. Indeed, the tails
on [T, 400), T > 1, of the integrals (2.9) are small uniformly in n (this comes from the boundedness of u,, in 13), and
on the finite interval [0, T'] the convergence is uniform.

This implies that ug € ® and

Huo) < inf  H(u).
ueBg (0,e)

The fact that ug € Bg(0, ¢) follows from the Fatou lemma and lower weak semicontinuity of norms. Thus we
have (2.26).

Step 2. To complete the proof, we need to show that H(up) = 0. Suppose, by contradiction, that H(up) > 0. As we
shall see below, this implies that there is v € Bg (0, €) such that

<0. (2.27)

d
EH((I — NDug + tv) Y

Since (1 — H)ug +tv € B (0, &) for all ¢ € [0, 1], (2.27) is a contradiction to (2.26).
To construct such a function v, notice that the derivative is given explicitly by

d +00 -
GH(a=Dug )| =2 > " Re[ (¥(em) — it (@m)) (iio (@m) — dm)].
1=0 m=1

In view of this equality, the existence of v follows immediately from the following lemma:

Lemma 2.13. Under the conditions of Proposition 2.9, the set
U = {{ii(om)}: u € Bo(0,¢)}

is dense in E%.
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Proof. Suppose that i € 6(2) is orthogonal to U. Then for any u € Bp (0, &) N Cgo((O, +00)) we have
+00
> ti(@m)hm =0. (2.28)
m=1

Replacing in this equality it (wj,) by its integral representation, we get integrating by parts

400 +00 +oo oo la)mé
0= Z / ' u(s)ds hy, = / (s)u(p)(s)ds hi+ Z / u® (s)ds hp,
m=1 | 0 m=2 (—iwm)P

+00

uUﬂ(S)(P (S)h1+2( — m)ph )ds:O,

where P), is a polynomial of degree p > 1. Since this equality holds for any u € B (0, &) N C3°((0, +-00)), there is a

Il
S

polynomial Pp,l (s) of degree p — 1 such that for any s > 0

l Wm S

(—iwpm)P

Py(s)h1 + Z =Py (s).
By Lemma 2.14, we have h,, = 0 for any m > 2. Equality (2.28) implies that 41 = 0. This proves that U is dense. O

The following lemma is a generalization of Lemma 3.10 in [22].

Lemma 2.14. Suppose that rj € R* and ry # r; for k # j and P, is a polynomial of degree p > 1. If
o
> cjel"i = Pp(s) (2.29)

Sfor any s > 0 and for some sequence c; € C such that Zj 1lejl < oo, thencj =0 forall j > 1and P, =0.

Proof. Since the sum in the left-hand side of (2.29) is bounded in s, the polynomial P,(s) is constant. The case of
constant right-hand side follows from Lemma 3.10 in [22]. O

3. Controllability of nonlinear system
3.1. Well-posedness of Schrodinger equation

In this section, we suppose that d = 1, D = (0, 1). We consider the following Schrodinger equation

2,
iz=— a2 —+—V(x)z+u(t)Q(x)z+v(t)Q(x)y, (3.1)
zlop =0, (3.2)
2(0, x) = zo(x). (3.3)

See Proposition 2 in [10] for the proof of well-posedness of this system with V = 0. Here we prove well-posedness
in the case of V # 0 and we give an estimate for the solution which is important for the study of the controllability

property.

Proposition 3.1. For any zg € H(V)’ u,ve L'Ry,R)yNBand y e CR,, H(3V))’ problem (3.1)—(3.3) has a unique
solution z € C(R4, (V)). Furthermore, there is a constant C > 0 such that
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sup [z 5y < C(llzolls,v + sup [y@ 5y (Il gy + ||v||3))
teR4 teRy

x exp(C(llullpir,) + 1) exp(llull))- (3.4)
If v=0, then for all t > 0 we have

lz@® ] = llzoll- (3.5)

Proof. The proof follows the ideas of Proposition 2 in [10]. We give all the details for the sake of completeness.
Let us rewrite (3.1)—(3.3) in the Duhamel form

t

zt)=S)z0 — 1 f N s)[u(s)QZ(s) + v(s) Qy(s)] ds. (3.6)

0
For any u € L! Ry, R)NBand z € CRy, H(3V)), we estimate the function

t

Gi(2) = [ S(=5)(u(s)Qz(5)) s
0

Integration by parts gives (we write A, e; instead of A v, e v)

V1 32 v
(0z(s). ¢j) = E<< Pyl )(Qz) e,>

(e ()

1 92 =l 32 3 32 3
= sraa09gce]_,+((V(-am v )eoa) {5 (-5a )0 50
=: 1] +Jj.
Thus
+o0 t 2 4o t 2
||Gt(z)||§’v =Z(f/e”‘jsu(s)(Qz(s),ej>ds> =Z(j3/ei)\jsu(s)(1j—i—Jj)ds) . (3.7)
Jj=1 0 j=1 0

Using (1.9), we get

L2 i) o Lo\l 2 (=L 4 v) 0e Vacos(inn)) 45,
£<_ﬁ+ 0z o)) = jm 5(‘@* 0z, v2cos(jmx)) +5(2),

where |s;(z)| < Cl|z|l3,v for all j > 1. The definition of J;, the fact that {+~/2cos(jmx)} is an orthonormal system in
L2, (1.7) and the Minkowski inequality yield

too t 2 ! 2
Z(f/e”fsu(sﬂj ds) <C<f|M(S)|||Z(S)i|3,Vd5> - (3.8)
j 0

Jj=1 0
On the other hand, (1.9) implies that
x=1

+35j(2) =t jcj(2) +5j(2),
x=0

82 x=1

Q(Qz)aixe] (Qz)\/icos(]nx)

x=0
where |5;| < C|lzll3,v forall j > 1. Again applying the Minkowski inequality, we obtain
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+oo /.3 ! ‘ 2 t 2
Z(ij/ezxjm(sﬁj(z)ds) <C</|u(s)|||z(s)||3yvds) . (3.9)
0

Ji=1\"Iy
Since c;(z) depends on the parity of j, without loss of generality, we can assume that c(z) := c;(z) does not depend

on j. Thus we cannot conclude as in the case of J;. Here we use the fact that u € B. Let P > 1 be an integer such that
P <t < P+ 1. Using the Cauchy—Schwarz and the Ingham inequalities, we obtain

t

+00 2
Z (/ e u(s)e(z) ds)

J=1\}

+o0 t P P 2
:Z<(/+Z /)eiA’SM(S)C(z)dS)
J=IANNp p=l,Ty

400 / 2 too/ Py P p 2
éZZ(/e”‘fsu(s)c(z)ds> +2Z(Z—2> (Z,ﬁ( f e“‘f'su(s)c(z)ds> )
J=1\p j=1 \p=1 p p=1

p—1

P 400 2

p
< Cllus)e(z) ||iz([P,,]) +Cy p? Z( / et u(s)e(z) ds

p=l =130

P
< Clue@ | y2gpa +€ 3 P U@z
p=1

r—1,pD

t
<c [uwlz0l}, as
0
where w(s) = [u(s) P x1p.i1(s) + X p—; P21u(s) P X1p—1.p1(s). Notice that
1
/w(s)ds <luly forallz > 0. (3.10)
0
Combining (3.7)—(3.10), we get
t % t
HGA@MV<C(/w@wavﬁyw> +€ [ o)1zl as. @1
0 0
The quantity
t
Gi(f) = f S(=5)(v(s)Qy(s)) ds
0
is estimated in a similar way
t % t
namygc(/wmmwwgﬂg € [yl o
0 0
<C sup [[y®)]5 (10l @,y +IvIB), (3.12)
s€[0,T]

A

where 1 (s) = [v(5) 2 x1p.1(s) + Y h_; PPV P X1p—1,p1(5).
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Existence of a solution is obtained easily from (3.11) and (3.12), by a fixed point theorem (cf. Proposition 2 in [10]).
Uniqueness follows from (3.4).
Let us prove (3.4). From (3.6) and (3.11) we have

||z(t)||3v C(llzoll3,y + 1G5y + 1G5y
t

t 2
C<nzon§,v + 1G5,y + / w(s) |23,y ds + ( / |u<s>|||z<s>||3,vds> )
0

0
The Gronwall inequality implies
1 2 t
2 ~
lz®]5y <C<nzou%,v +IGH3,y + ( / |u<s>}||z<s>||3,vds> )exp(c f w(s)ds)-
0 0
Taking the square root of this inequality, using (3.10) and the Gronwall inequality, we obtain
t t t

|25, < C(llzolls,v +1Gill3, v)f»qa( (/w(S)ds+/|M(S)|dSGXP</w(S)dS>))

0 0 0
C(lzolls.v + 1G:l3.v) exp(C(lull 1 e, + 1) exp(llull)).
In view of (3.12), this completes the proof of the proposition. 0O

Remark 3.2. Let us notice that, one should not expect to have a well-posedness property in any Sobolev space H*
with controls in L!. Indeed, exact controllability property in H>, proved by Beauchard and Laurent [10] in the case
d = 1, implies that the problem is not well posed in spaces H317 for any o > 0 (a point z; € H> \ H>*? would not
be accessible from a point zg € H3+?). Schrodinger equation is well-posed in higher Sobolev spaces, when control u
is more regular.

Corollary 3.3. Denote by U, (-,-) : H(SV) x L1 R, RYINB— H(SV) the resolving operator of (1.1), (1.2). Then U; (-,-)

is locally Lipschitz continuous, i.e., for any § > 0 there is C > 0 such that

sup [ (z0. ) = Uy (20, u )Hav C|[(zo,u) — (2 u )”m JXLI(Ry R)NB (.13)

teR +
for all (zo, u), (z(’), u') e BH<3V)><L1(]R+,R)OB(O’ 8), where L! (R4, R) N B is endowed with the norm || - ||L1(IR+,1R<)OB =
-llge+ 1B

Proof. Notice that z(7) :=U; (20, u) — Us (2, u') is a solution of problem
2

d
i = =2 U0 QW)+ (1) = ') QU (2. 1),

zlapp =0,
2(0, x) = z0(x) — zg(x).
Applying Proposition 3.1, we get (3.13). O

3.2. Exact controllability in infinite time

For any control u € @, problem (3.1), (3.2) is well-posed in Sobolev space H?V). Equality (3.5) implies that it

suffices to consider the controllability properties of (3.1), (3.2) on the unit sphere S in L?. Let Uso(z0, u) be the
H (3V)-weak w-limit set of the trajectory corresponding to control # € @ and initial condition zg € H (3‘,)

Uoso (2o, u) := {z € H(3V) ‘U, (2o, u) = z in H(3V) for some t,, — +oo}. (3.14)
By (3.4), U, (zo, u) is bounded in H(?’V), thus Uso (20, 1) is non-empty.
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Definition 3.4. We say that (3.1), (3.2) is exactly controllable in infinite time in subset H C S, if for any zg,z; € H
there is a control u € ® such that z; € Uso (20, u).

Below theorem is one of the main results of this paper.

Theorem 3.5. Under Condition 2.5, for any z € S N H(3V) there is 6 > 0 such that problem (3.1), (3.2) is exactly
controllable in infinite time in S N BH(sv (z,9).
)

See Section 3.3 for the proof.

Remark 3.6. Let us emphasize that the novelty of Theorem 3.5 with respect to the previous result proved for (3.1),
(3.2) in [23] (see Theorem 3.1) is that the controllability here is realized with controls which have small norms.

Working in higher Sobolev spaces, one can prove similar exact controllability results with more regular controls.
For example:

Theorem 3.7. Under Condition 2.5, for any z € S N Hg‘f)g, o € (0, 2] there is § > 0 such that problem (3.1), (3.2) is

exactly controllable in infinite time in S N B 315 (Z, 8) with controls u € WLIR,L, R)YN HS (R, R) forany s > 1.
)

These local exact controllability properties imply the following global exact controllability result.

Theorem 3.8. Under Condition 2.5, problem (3.1), (3.2) is exactly controllable in infinite time in S N H(3V) in the

following sense: for any zog € S N H(3‘j“)”, 0€(0,2],and z1 € SN H(3V) there is a control u € L'(R4, R) such that

Proof. Let y:[0,1] = SN H(3V) be any continuous function such that y (0) = zg, y(1) =z1 and y(s) € H(3‘}L)" for
any s € [0, ). Using the compactness of the curve y and Theorem 3.7, we prove that there is a control v and time
T > 0 such that U7 (0, v) € BH(3V) (21, 8z,), where §;, > 0 is the constant in Theorem 3.5 corresponding to z1. This

completes the proof. O

Remark 3.9. We do not know if problem (1.1)—(1.3) is well posed in the space V for d > 2 with ®-controls.
Well-posedness in V with u € ® would imply the controllability of the multidimensional problem. The nonlinear
problem’s solution is in V for more regular controls.

3.3. Proof of Theorem 3.5

The proof is based on an inverse mapping theorem for multivalued functions. We apply the inverse mapping
theorem established by Nachi and Penot [21], which suits well to the setting of Schrodinger equation. For the reader’s
convenience, we recall the statement of their result in Appendix A (see Theorem A.3).

Let us first slightly modify the definition (3.14) of the set Uxo(z0, u). Let T,, — 400 be the sequence defined in
Section 2.1. Define

Uno(z0,u) = {z € H(3v) :Ur,, (z0,u) = z in H? for some ny — +00}. (3.15)
Consider the multivalued function
Uso(-,): 8N H(3V) X 6 — 2SﬂH<3\/),
(z0, u) = Uso (20, u).

Since the result of Nachi and Penot is stated in the case of Banach spaces, we cannot apply it directly to {/~,. Following
Beauchard and Laurent [10], we project the system onto the tangent space 7;. We apply Theorem A.3 to the following
multivalued function
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~ v 3
Uso(-): Tz N HYyy x © — 21000,
(20, u) = PUso(P™'20, 1),
where P is the orthogonal projection in L? onto T;,ie., Pz=z—Re(z,2)Z,z € L?. Notice that P! :B1.(0,8) > S
is well defined for sufficiently small § > 0. By the definition of 7,, we have lim,_, U7, (Z,0) = Z. Hence

(3.15) implies that U (z,0) = Z and Uso(0,0) = {0}. If we show that Us is strictly differentiable at (xg, yg) with
x0=1(00,0)eT:N H(3V) x® and yo=0€eT: N H(3V) (see Definition A.2), and the derivative admits a right inverse,

then Theorem 3.5 will be proved as a consequence of Theorem A.3.

Proposition 3.10. The multifunction Uy, is strictly differentiable at (0,0) € T: N H(3V) X @ in the sense of
Definition A.2. Moreover, the differential is the mapping
Roo(): Tz N HYyy x © — T: N HYyy,
(20, u) = Roo(20, 1),

where Ro is defined in Section 2.1.

Proof of Theorem 3.5. Case 1. Let us suppose that z € S N H(3V) \ €. For any (zg,u) € BTzﬂva)X@(O’ 38), the

set Uso(z0, 1) is closed and non-empty, if § > 0 is sufficiently small. The mapping R, is invertible in view of
Theorem 2.6. Thus Theorem A.3 completes the proof.

Remark 3.11. Let us point out that in Case 1 the controls u can be chosen such that 1 (0) = --- = u®~D(0) = 0.

Case 2. Inthecasez e SN H(3V) N &, the linearized system (2.2), (2.3) is not controllable, and R, is not invertible.
Controllability in finite time near z is obtained combining the results of [8] and [10]: there is a constant § > 0 and a
time T > O such that for any zg,z; € SN BHﬁv)(Z’ 8) there is a control v € L%([0, T], R) verifying Ur (zg, v) = z;. Let

us prove that the problem is exactly controllable in infinite time in SN B H, (z,6). Takeany z1 € SN B H, (z,6) and

let us show that there is a control u € ® such that 71 € Uy (Z, u). Let us suppose first that z; ¢ £. Then, by Case 1,
there is 6;; > O such that exact controllability in infinite time holds in S N B H3 (21, 8,). By exact controllability
V)

property in finite time and by an approximation argument, one can find a control u; € C3°((0, T), R) such that
Ur(zZ,u1) e B 13, (21, 8,). Thus the existence of u; follows from Case 1 and Remark 3.11.

Now let us suppose that z; € £. Since £ C ﬂ,fil H(]‘V), by [8] and [10], there is a control 1 € C*([0, T'], R) such
that Uy (Z,u1) =z and u(0) = --- =u® (0) =u(T) =--- =u®(T) = 0. Extending u; by 0 on [T, +00), we obtain
21 €Uso(Z,ur). O

Proof of Proposition 3.10. It suffices to show that for any ¢ > 0 there exists § > 0 for which
e(Uso (20, ) — Roo (20, ), Uno (20, ') — Roo (2. ")) < & (z0, u) — (20, u') ||T;QH(3V)X@, (3.16)

whenever (zg, u), (16, u') € By H, %0 ((0,0), 8). Here e(-,-) stands for the Hausdorff distance (see Appendix A for

the definition). It is clear from the definition of e(-,-), that (3.16) follows from the following stronger estimate

sup [84 (120, Ro 0~ 2P~ 25) 4 Rt g, <00 — 5 g, o
reR+ 2 Z

To prove this estimate, notice that the function

y(t) :=U (P 20, u) — Ry (zo, u) — Uy (P~ "2, ') + Re (20, ')

is a solution of the problem
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&y
dx?
ylap =0,

y(0,x) =P 'z0—z0 — P72+ 2

iy= + (u - u’)Q(Z/l,(P_IZO, u) — U (Z, 0)) + u/Q(Z/I,(P_IZ(), M) —Uz(P_lZ6, M))’

We have

|y, <ellzo—zollsv (3.17)

for any zo, z(/) € Br. H(sv) (0, &) and for sufficiently small § > 0. Using (3.4) (we use the version of the inequality with
v1 f1 + v2 f> instead of vf), Corollary 3.3 and (3.17), we get

sup Hy(t)H3,v < C(HY(O)H3.V + sup ”uf(P_IZOv“) _UI(Z’O)H3,vH” - “/H@
IGRJr i IGRJr

o)

<C(lyOlls y + (lzollz.y +llull) |u =l + 20 = 25 v '] )

<e|/(zo.u) — (25, ') HTEQHSV)X@

+ sup Huf(Pfle»”) _ul(Pilzé)v“)”&v””/

teRy

for sufficiently small 8. This proves the proposition. O
4. Non-controllability result
4.1. Main result

In this section, we study the problem of non-controllability of Schrodinger system (1.1)-(1.3), where D C RY is
a bounded domain with smooth boundary, V, Q € C*°(D, R) are arbitrary given functions. The following lemma
establishes the well-posedness of system (1.1)—(1.3) in the space L?.

Lemma 4.1. For any zg € L? and for any u € Ll (R4, R), problem (1.1)—(1.3) has a unique solution z € C (R, L?).

loc
Furthermore, the resolving operator U; (-, u) : L?>— L? taking zo to z(t) satisfies the relation

|td: zo. ) || = lizoll, 7 >0.
See [11] for the proof. Let us define the set of attainability of system (1.1), (1.2) from an initial point z¢ € S:

A(z0) := [Us (z0, u): for allu € Wi (R4, R) and 1 > 0}. .1

The following theorem is the main result of this section.

Theorem 4.2. For any constant k € (0, d), any initial condition zo € S and any ball B C H(kv), we have

A(z)) NBN S # 2.

Let us emphasize that this theorem does not exclude exact controllability in H(kv) with controls form a larger space
than W, (R4, R).

The proof of this theorem is an adaptation of ideas of Shirikyan [28] to the case of Schrédinger equation. Using a
Holder type estimate for the solution of the equation, we show that the image by the resolving operator I/ of a ball in
the space of controls has a Kolmogorov e-entropy strictly less than that of a ball B in the phase space H("V). As we
show, this implies the non-controllability.
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4.2. Some g-entropy estimates

Let X be a Banach space. For any compact set K C X and ¢ > 0, we denote by N.(K, X) the minimal
number of sets of diameters < 2¢ that are needed to cover K. The Kolmogorov e-entropy of K is defined as
H:(K,X)=InN,(K, X).

Let Y be another Banach space and let f : K — Y be a Holder continuous function:

| £ = f)|y < Llluy —ualf (4.2)

for any u1, uy € K and for some constants L > 0 and 6 € (0, 1). The following lemma follows immediately from the
definition of e-entropy (cf. Lemma 2.1 in [28]).

Lemma 4.3. For any compact set K C X and any function f: K — Y satisfying inequality (4.2), we have

He(f(K),Y)gH( )é(K, X) foralle>0.

£

L

We also need the following two lemmas.
Lemma 4.4. For any T > 0 and for any closed ball B C Wl'l([O, T1,R), there is a constant C > O such that

H:(B,L'([0, T1,R)) < glné.

This is Proposition 2.3 in [28].

Lemma 4.5. For any k > 0 and any closed ball B := BH(kV) (zo, r) such that BH(kV) (zo,7) NS # O there is a constant
C > 0 such that

1 d
H:(BNS, H) > c(-) . (4.3)
I
Proof. It is well known that
1\¢ 1\¢
c (_) < Hy(B.H ) < cz(-> (4.4)
I &

for some constants C1, C; > 0 (e.g., see [14]). Consider the mapping
f:[l,é} xBﬂS—)Hk_l,
2°2
(s,z) = sz.

The set f ([%, %] x B N S) has a non-empty interior, so there is a ball B in H* such that

~ 13
B —,—|xBNS). 4.5
Clearly,

| fGs1.20) = fGs2.22) | < C(Is1 = 52l + llz1 = 22llk-1).-
Using (4.5) and Lemma 4.3, we get

. 13 13
H:(B, H* ") < H£<f<[§, 5} x BﬂS),Hk_l> < Hé([i, E] x BNS,R x Hk_1>

< H_(B %},R) +H:(BNS, H') < C(lnl + H(BNS, Hkl)>.
&

9!

Combining this with (4.4) for B, we obtain (4.3). O
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4.3. Proof of Theorem 4.2

Let us suppose, by contradiction, that there is k € (0, d), an initial point zo € S and a ball B C H(kv) such that

BNS c A(zo), (4.6)
where A is the set of attainability of system (1.1), (1.2) from the initial point z¢ defined by (4.1). Let us set
Bm = [0, m] X BWIJ([O,m],]R) (0, m),
U(By) = {Uy (z0, u): forall (t,u) € By }.
We have

loc

o0
R x Woo Ry, R) = | B,
m=1

AGzo) = [J UBw). 4.7

m=1
Combining (4.6), (4.7) and the Baire lemma, we see that there is a ball Q C H(]‘V) and an integer m > 1 such that
U(By,) is dense in Q N S with respect to H k_norm.

Step 1. Let us define the set
By = {(t,u) € Byy: such thatU; (zo, u) € Q}.

Here we prove that Bm is compact in [0, m] x L! ([0, m], R). Indeed, take any sequence (¢, u,) € Em. As (t,,u,) € By,
and By, is compact in [0, m] x LY([0, m], R), there is a sequence ny — oo and (%o, ug) € By, such that

|tny, — 10l + llun, — uoll 1o, mr) = 0. k — 0.

We need to show that (g, ug) € By,. As Z/{,nk (zo, un,) € Q, there is z € Q such that L{,nk (2o, Un,) = z in H* (again
extracting a subsequence, if necessary). On the other hand, Lemma 4.1 implies that Z/l,nk (20, Un,) — Uy (20, up) in L?.
Thus Uy, (zo, uo) = z and (1o, up) € B,y Thus B,, is compact in [0, m] x L'([0, m], R).

In particular, this implies that 2/ (B,,) is compact in L?, as an image of a compact set by a continuous mapping.
On the other hand, U/ (B,,) is dense in the compact set QN Sin L2. Thus QN S = U(By).

Step 2. Using standard arguments, one can show that we have
|ths (z0, w) = Uy (z0, ") | S C (|1 = '] + lu = o’ “Ll([O,m],R))
for any (¢, u), (', u’) € B,,, where C > 0 is a constant not depending on (¢, «) and (', u’). Combining this with the
interpolation inequality
[ =
Izllie—1 < Clizll*lizll*

we get

1 1
”Z/lt(zo, u) —U[/(Zo, ”/) ”k—l < C(|t - t/ik + ||u - ”/“21([0”],1@))

for any (¢, u), (t',u’) € I§~m. Here we used the fact that U, (zo, u), Uy (20, u’) € Q. Applying Lemmas 4.3 and 4.4 and
the fact that Q NS C U(B,,), we obtain

H,(QNS, H ) < H,(U(Bw), H* ') < CHy(Byu, [0, m] x L' ([0, m], R))
c. 1
< CHy (B, [0,m] x L' ([0, m], R)) < I

This estimate contradicts Lemma 4.5 and proves the theorem.
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Remark 4.6. The same proof works also in the case of Schrodinger equation with any finite number of controls:

iZ=—=Az4+VX)z+ui)01(x)z+ - +u, () Qn(x)z,

where n > 1 is any integer, Q; € C>®(D,R) are arbitrary functions and u ; are the controls j =1,...,n.
Acknowledgements
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Appendix A
A.l. Genericity of Condition 2.5

Let us assume that D = (0, l)d and introduce the space
G:={VeC®D,R): V(x1,...,xq) = Vi(x1) + - + Va(xq) for some Vy € C*([0, 11, R), k=1,....d}.

Then G, endowed with the metric of C%° (D, R), is a closed subspace in C®(D,R). By Lemma 3.12 in [22], the set
A of all functions V € G such that property (ii) in Condition 2.5 is verified is G set (i.e., countable intersection of
dense open sets). First let us prove genericity of property (i) in the case d = 1.

Lemma A.1. For any V € C*°([0, 1], R), the set of functions Q € C*([0, 1], R) such that
inf |p*j*(Qepv,ejv)|>0 (A1)
p.j=1
is dense in C*°([0, 1], R).

Proof. If V =0, then a straightforward calculation gives

—_1)Ptigpj . .
o P #

2 1

(*ep.0.ej0) = L
37T 2 if p=j,

which implies (A.1) for Q = x? and V = 0. In the general case, taking any p # j, we integrate by parts (we write

&z dz

. . " /3 . . -— 1
Aj,ejand z”, 7" instead of A v, e; v and ol dxe respectively)

1 d2 1 " !/
(Qep,ej) = /\—j<<—dx—2 + v>(Qe,,),e,-> = T((—Q ep.ej)+(—0 e,,,ej)+x,](Qe,,,ej>).

J
This implies that
1
Aj—=hp

(Q"ep,ej) (0, €))). (A2)

(Qep,ej) =—

Again integrating by parts, we get

. ! d2 7
+E<<—@+V>(Q ep)’€j>' (A3)

x=0

(Q'¢), ej)= %<Q’e;, <_d(i_22 + V)ej> = —% Q'e,e
J J
Notice that
(-5 + V)@ es) =V Qi) -0 )+ -0 s] 2010 1)~ [0 Ve )
Replacing this into (A.3), we get
1
Aj=hp

x=1

(—Q/e;,e;. xzo+(VQ’e;,,e,-)+(—Q”’e;,ej)Jr(—Q”e;;,ej)—(Q’(Ve,,)/,e,-)). (A4)

(Qe, ej)=



316 V. Nersesyan, H. Nersisyan / J. Math. Pures Appl. 97 (2012) 295-317

Using (A.2) and (A.4) and the fact that

(=Q"ep.ej)=—(Q"Vep. e} +2p(Q"¢p ),

we obtain
(Qep,ej) = ! (Q//epvej> — ol <Q//ep»e/) ! . ( Q/e/ e x_l (VQ/e/ 7ej>
’ )\.j_)\.p ’ ()Lj—)»p)2 ’ ()\j—)\,p)z P~ lx=0 P

+(=0Q"e) e;) = (Q"Vep,e)) = (Q' (Ve ej))
=L+ 5.

Let Q be such that A := Q'(x) cos(pmx)cos(jmx) |ﬁzé # 0. Clearly, this is verified for almost any Q, since A depends
only on the parity of p and j. Let us choose Q such that (Qe, e;) # 0 for all p, j > 1; the set of such functions Q is
G5, by Section 3.4 in [22]. Using the estimates (1.7)—(1.9), it is easy to see that inf, j>1, p#j |p3j312| > 0. Iterating
the same arguments for /1, we see that inf, j>1 p=; |p3j3(er,V, e;j v)| > 0 for almost any polynomial Q.

If p = j, using (1.8), we get

(Qep, ep) =2(Q, sin*(prx)) + s,
where s, — 0. Thus

1
(Qep,ep) =(0,1—cos2pmx)+s,= / Qdx —(Q,cos2pmx) +sp.
0

Taking Q such that fol Q dx # 0, we complete the proof of the lemma. O

Take any functions Q € C®°([0,1],R), k = 1,...,d, in the dense set of Lemma A.l corresponding to
Vi e C®°([0,1],R), k=1,...,d. Then Q(xi,...,xq) ;= Q1(x1) - --- - Qu(xg) satisfies (i) with V(xy,...,xq) :=
VitxD) + -+ Va(xa).

A.2. Inverse mapping theorem for multifunctions

In this section, we recall the statement of the inverse mapping theorem for multivalued functions or multifunctions.
We refer the reader to the paper [21] by Nachi and Penot for details and for a review of the literature on this subject.
Let X and Y be Banach spaces. For any non-empty sets C, D C X, define the Hausdorff distance

d(x, D)= inf |lx — yllx,
yeD

e(C, D) =supd(x, D).
xeC

We call a multifunction from X to ¥ any mapping F from X to 2.

Definition A.2. A multifunction F from an open set X C X to Y is said to be strictly differentiable at (xq, yo) if there
exists some continuous linear map A : X — Y such that for any ¢ > 0 there exist 8, § > 0 for which

e(F(x) N By(yo, B) — A(x), F(x') = A(x")) <elx — x|,
whenever x, x’ € B(xg, §). The map A is called a derivative of F at (xq, yo).
The following theorem is a generalization of the classical inverse function theorem to the case of multifunctions.
Theorem A.3. Let F' be a multifunction from an open set Xo C X to Y with closed non-empty values. Suppose F is
strictly differentiable at (xo, yo) € Gr(F), and some derivative A of F at (xo, yo) has a right inverse. Then for any

neighborhood U of xq there exists a neighborhood V of yo such that V C F(U).

See Theorem 22 in [21] for the proof.
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