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Abstract

In this paper, we study the problem of controllability of Schrödinger equation. We prove that the system is exactly controllable
in infinite time to any position. The proof is based on an inverse mapping theorem for multivalued functions. We show also that the
system is not exactly controllable in finite time in lower Sobolev spaces.
© 2011 Elsevier Masson SAS. All rights reserved.

Résumé

Dans cet article, on étudie le problème de contrôlabilité pour l’équation de Schrödinger. Nous montrons que le système est
exactement contrôlable en temps infini. La démonstration utilise un théorème d’inversion locale pour des multifonctions. On
montre aussi que le système n’est pas exactement contrôlable en temps fini dans les espaces de Sobolev d’ordre inférieur.
© 2011 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The paper is devoted to the study of the following controlled Schrödinger equation

iż = −�z + V (x)z + u(t)Q(x)z, (1.1)

z|∂D = 0, (1.2)

z(0, x) = z0(x). (1.3)

We assume that space variable x belongs to a rectangle D ⊂ R
d , V,Q ∈ C∞(D,R) are given functions, u is the

control, and z is the state. We prove that the linearization of this system is exactly controllable in Sobolev spaces in
infinite time. Application of this result gives global exact controllability in infinite time in H 3 for d = 1. We show
also that the system is not exactly controllable in finite time in lower Sobolev spaces.

Let us recall some previous results on the controllability problem of Schrödinger equation. In [6], Beauchard
proves an exact controllability result for the system with d = 1, D = (−1,1) and Q(x) = x in H 7-neighborhoods of
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the eigenfunctions. Beauchard and Coron [8] established later a partial global exact controllability result, showing that
the system in question is also controlled between neighborhoods of eigenfunctions. Recently, Beauchard and Laurent
[10] simplified the proof of [6] and generalized it to the case of the nonlinear equation. The proofs of [6,8,10] work
also for the neighborhoods of finite linear combinations of eigenfunctions. In the case of infinite linear combinations,
these arguments do not work, since the linearized system does not verify the property of spectral gap (even if the
problem is 1-D), hence the Ingham inequality cannot be applied.

Chambrion et al. [12], Privat and Sigalotti [26], and Mason and Sigalotti [19] prove that (1.1), (1.2) is approximately
controllable in L2 generically with respect to function Q and domain D. In [23,22], the first author of this paper proves
a stabilization result and a property of global approximate controllability to eigenstates for Schrödinger equation.
Combination of these results with the local exact controllability property obtained by Beauchard [6] gives global exact
controllability in finite time for d = 1 in the spaces H 3+ε , ε > 0. See also papers [27,30,3,2,1,9] for controllability
of finite-dimensional systems and papers [17,18,5,31,13,20,15] for controllability properties of various Schrödinger
systems.

In this article, we study the properties of control system on the time half-line R+ instead of a finite interval [0, T ],
as in all above cited papers. We study the mapping, which associates to initial condition z0 and control u the ω-limit
set of the corresponding trajectory. We consider this mapping as a multivalued function in the phase space. We show
that this multivalued function is differentiable with differential equal to the limit of the linearization of (1.1), (1.2),
when time t goes to infinity. Observing that the linearized system is controllable in infinite time at almost any point,
we conclude the controllability of the nonlinear system (in the case d = 1), using an inverse mapping theorem for
multivalued functions [21] by Nachi and Penot. Thus (1.1), (1.2) is exactly controllable near any point in the phase
space, hence globally. The controllability of the linearized system is proved for any d � 1, but this result is not directly
applicable to the study of the nonlinear system with d � 2. We have a loss of regularity: the solution of the nonlinear
problem exists for more regular controls than the ones used to control the linear problem. The multidimensional case
is treated in our forthcoming paper.

To our knowledge, the inverse mapping theorem for multivalued functions was never used before in the theory of
control of PDEs. Our proof does not rely on the particular asymptotics of the eigenvalues of Dirichlet Laplacian, so it
is likely to work in other settings. Considering the problem in infinite time enables us to prove the controllability of
the linearized system in the case of any space dimension d � 1, even when the gap condition is not verified for the
eigenvalues (which is the case for d � 3).

In the second part of the paper, we study the problem of non-controllability for (1.1), (1.2) in finite time. We prove
that the system is not exactly controllable in finite time in the spaces Hk with k ∈ (0, d). Let us recall that previously
Ball, Marsden and Slemrod [4] and Turinici [29] have shown that the problem is not controllable in the space H 2. Our
result is inspired by the paper [28] of Shirikyan, where the non-controllability of 2D Euler equation is established.
More precisely, it is proved in [28] that, if the Euler system is controlled by finite dimensional external force, then
the set of all reachable points in a given time T > 0 cannot cover a ball in the phase space. Later this result was
generalized by the second author of the present paper, in [24]: in the case of 3D Euler equation it is proved that the
union of all sets of reachable points at all times T > 0 also does not cover a ball.

Using ideas of Shirikyan, we prove that the image by the resolving operator of a ball in the space of controls has a
Kolmogorov ε-entropy strictly less than that of a ball in the phase space Hk . This implies the non-controllability.

Notation. In this paper, we use the following notation. Let

�2 :=
{

{aj } ∈ C
∞:

∥∥{aj }
∥∥2

�2 =
+∞∑
j=1

|aj |2 < +∞
}

,

�2
0 := {{aj } ∈ �2: a1 ∈ R

}
.

We denote by Hs := Hs(D) the Sobolev space of order s � 0. Consider the Schrödinger operator −� + V ,
V ∈ C∞(D,R) with D(−� + V ) := H 1

0 ∩ H 2. Let {λj,V } and {ej,V } be the sets of eigenvalues and normalized
eigenfunctions of this operator. Let 〈·,·〉 and ‖ · ‖ be the scalar product and the norm in the space L2. Define the
space Hs

(V ) := D((−�+V )
s
2 ) endowed with the norm ‖·‖s,V = ‖(λj,V )

s
2 〈·, ej,V 〉‖�2 . When D is the rectangle (0,1)d

and V (x1, . . . , xd) = V1(x1) + · · · + Vd(xd), Vk ∈ C∞([0,1],R), the eigenvalues and eigenfunctions of −� + V on
D are of the form
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λj1,...,jd ,V = λj1,V1 + · · · + λjd ,Vd
, (1.4)

ej1,...,jd ,V (x1, . . . , xd) = ej1,V1(x1) · · · · · ejd ,Vd
(xd), (x1, . . . , xd) ∈ D, (1.5)

where {λj,Vk
} and {ej,Vk

} are the eigenvalues and eigenfunctions of operator − d2

dx2 + Vk on (0,1). Define the space

V :=
{

z ∈ L2: ‖z‖2
V :=

+∞∑
j1,...,jd=1

∣∣j3
1 · · · · · j3

d 〈z, ej1,...,jd ,V 〉∣∣2 < +∞
}

. (1.6)

Notice that, in the case d = 1, the space V coincides with H 3
(V )

. The eigenvalues and eigenfunctions of Dirichlet

Laplacian on the interval (0,1) are λk,0 = k2π2 and ek,0(x) = √
2 sin(kπx), x ∈ (0,1). It is well known that for any

V ∈ L2([0,1],R)

λk,V = k2π2 +
1∫

0

V (x)dx + rk, (1.7)

‖ek,V − ek,0‖L∞ � C

k
, (1.8)∥∥∥∥dek,V

dx
− dek,0

dx

∥∥∥∥
L∞

� C, (1.9)

where
∑+∞

k=1 r2
k < +∞ (e.g., see [25]). For a Banach space X, we shall denote by BX(a, r) the open ball of radius

r > 0 centered at a ∈ X. For a set A, we write 2A for the set consisting of all subsets of A. We denote by C a constant
whose value may change from line to line.

2. Controllability of linearized system

2.1. Main result

In this section, we suppose that d = 1 and D = (0,1). For any z̃ ∈ H 3
(V ), let Ut (z̃,0) be the solution of (1.1)–(1.3)

with z0 = z̃ and u = 0. Clearly,

Ut (z̃,0) =
+∞∑
j=1

e−iλj,V t 〈z̃, ej,V 〉ej,V . (2.1)

Lemma 2.1. There is a sequence Tn → +∞ such that for any z̃ ∈ H 3
(V ) we have UTn(z̃,0) → z̃ in H 3

(V ).

Proof. The proof uses the following well-known result (e.g., see [16]).

Lemma 2.2. For any ε > 0, N � 1 and αj ∈ R, j = 1, . . . ,N , there is k ∈ N such that

N∑
j=1

∣∣eiαj k − 1
∣∣ < ε.

Applying this lemma, we see that for any ε > 0 and for sufficiently large N � 1, we have∥∥Uk(z̃,0) − z̃
∥∥2

3,V
�

∑
j�N

∣∣e−iλj,V k − 1
∣∣2∣∣λ 3

2
j,V 〈z̃, ej1,...,jd ,V 〉∣∣2

+ 2
∑
j>N

∣∣λ 3
2
j,V 〈z̃, ej1,...,jd ,V 〉∣∣2 � ε

2
+ ε

2
= ε

for an appropriate choice of k ∈ N. This proves Lemma 2.1. �
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This subsection is devoted to the study of the linearization of (1.1), (1.2) around the trajectory Ut (z̃,0):

iż = − ∂2z

∂x2
+ V (x)z + u(t)Q(x)Ut (z̃,0), (2.2)

z|∂D = 0, (2.3)

z(0, x) = z0. (2.4)

Let S be the unit sphere in L2. For y ∈ S, let Ty be the tangent space to S at y ∈ S:

Ty = {
z ∈ S: Re〈z, y〉 = 0

}
.

Lemma 2.3. For any z0 ∈ Tz̃ ∩H 2
(0) and u ∈ L1

loc(R+,R), problem (2.2)–(2.4) has a unique solution z ∈ C(R+,H 2
(0)).

Furthermore, if Rt(·,·) : Tz̃ ∩ H 2
(0) × L1([0, t],R) → H 2

(0), (z0, u) → z(t) is the resolving operator of the problem,
then

(i) Rt(z0, u) ∈ TUt (z̃,0) for any t � 0,
(ii) The operator Rt is linear continuous from Tz̃ ∩ H 2

(0) × L1([0, t],R) to H 2
(0).

Proof. The proof of existence and (ii) is standard (e.g., see [11]). To prove (i), notice that

d

dt
Re〈Rt, Ut 〉 = Re〈Ṙt , Ut 〉 + Re〈Rt, U̇t 〉

= Re

〈
i

(
∂2

∂x2
− V

)
Rt − iu(t)Q(x)Ut , Ut

〉
+ Re

〈
Rt , i

(
∂2

∂x2
− V

)
Ut

〉

= Re

〈
i

(
∂2

∂x2
− V

)
Rt, Ut

〉
+ Re

〈
Rt , i

(
∂2

∂x2
− V

)
Ut

〉
= 0.

Since Re〈R0, U0〉 = Re〈z0, z̃〉 = 0, we get (i). �
As (2.2)–(2.4) is a linear control problem, the controllability of system with z0 = 0 is equivalent to that with any

z0 ∈ Tz̃. Henceforth, we take z0 = 0 in (2.4). Let us rewrite this problem in the Duhamel form

z(t) = −i

t∫
0

S(t − s)u(s)Q(x)Us (z̃,0)ds, (2.5)

where S(t) = e
it ( ∂2

∂x2 −V )
is the free evolution. Using (2.1) and (2.5), we obtain

〈
z(t), em,V

〉 = −i

+∞∑
k=1

e−iλm,V t 〈z̃, ek,V 〉Qmk

t∫
0

eiωmksu(s)ds, m � 1, (2.6)

where ωmk = λm −λk and Qmk := 〈Qem,V , ek,V 〉. Let Tn → +∞ be the sequence in Lemma 2.1. Then e−iλm,V Tn → 1
as n → +∞. Let us take t = Tn in (2.6) and pass to the limit as n → +∞. For any u ∈ L1(R+,R) the right-hand side
has a limit. Equality (2.6) implies that the following limit exists in the L2-weak sense

R∞(0, u) := lim
n→+∞ z(Tn) = lim

n→+∞RTn(0, u). (2.7)

The choice of the sequence Tn implies that

〈
R∞(0, u), em,V

〉 = −i

+∞∑
k=1

〈z̃, ek,V 〉Qmk

+∞∫
eiωmksu(s)ds. (2.8)
0
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Moreover, R∞(0, u) ∈ Tz̃. Indeed, using (2.7) and the convergence UTn(z̃,0) → z̃ in H 3
(V ), we get

Re
〈
R∞(0, u), z̃

〉 = lim
n→∞ Re

〈
RTn(0, u), UTn(z̃,0)

〉 = 0,

by property (i).
For any u ∈ L1(R+,R), denote by ǔ the inverse Fourier transform of the function obtained by extending u

as zero to R
∗−:

ǔ(ω) :=
+∞∫
0

eiωsu(s)ds. (2.9)

Define the following spaces:

�̃2 :=
{

d = {dmk}: ‖d‖2
�̃2 := |d11|2 +

+∞∑
m,k=1,m �=k

|dmk|2 < +∞,

dmm = d11 and dmk = dkm for all m,k � 1

}
,

B :=
{

u ∈ L2
loc(R+,R): ‖u‖2

B :=
+∞∑
p=1

p2‖u‖2
L2([p−1,p]) < +∞

}
,

C := {
u ∈ L1(R+,R):

{
ǔ(ωmk)

} ∈ �̃2}.
The set of admissible controls is the Banach space

Θ := u ∈ B ∩ C ∩ Hs(R+,R)

endowed with the norm ‖u‖Θ := ‖u‖B + ‖u‖L1 + ‖{ǔ(ωmk)}‖�̃2 + ‖u‖Hs , where s � 1 is any fixed constant. Clearly,
the space Θ is nontrivial. The presence of the space B in the definition of Θ is motivated by the application to the
nonlinear control system that we give in Section 3 (this guarantees that the trajectories of the nonlinear system with
controls from B are bounded in the phase space). The space C in the definition of Θ ensures that the operator R∞(0, ·)
takes its values in H 3

(V ).

Lemma 2.4. For any z̃ ∈ S ∩ H 3
(V )

, R∞(0, ·) is linear continuous mapping from Θ to Tz̃ ∩ H 3
(V )

.

Proof. Step 1. Let us admit that for any m,k � 1 we have∣∣∣∣m3

k3
〈Qek,V , em,V 〉

∣∣∣∣ � C. (2.10)

Then (1.7), (2.8), (2.10) and the Schwarz inequality imply that

∥∥R∞(0, u)
∥∥2

3,V
� C

+∞∑
m=1

∣∣m3〈R∞(0, u), em,V

〉∣∣2

� C

+∞∑
m=1

∣∣∣∣∣m3〈z̃, em,V 〉〈Qem,V , em,V 〉
+∞∫
0

u(s)ds

∣∣∣∣∣
2

+ C‖z̃‖2
3,V

+∞∑
m,k=1,m �=k

∣∣∣∣∣m
3

k3
〈Qek,V , em,V 〉

+∞∫
0

eiωmksu(s)ds

∣∣∣∣∣
2

� C‖z̃‖2
3,V ‖u‖2

Θ < +∞.
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Step 2. Let us prove (2.10). Integration by parts gives

〈Qek,V , em,V 〉 = 1

λ2
m,V

〈(
− ∂2

∂x2
+ V

)
(Qek,V ),

(
− ∂2

∂x2
+ V

)
(em,V )

〉

= 1

λ2
m,V

(
−2

∂Q

∂x

∂ek,V

∂x

∂em,V

∂x

∣∣∣∣
x=1

x=0
+

〈
∂

∂x

(
− ∂2

∂x2
+ V

)
(Qek,V ),

∂em,V

∂x

〉

+
〈(

− ∂2

∂x2
+ V

)
(Qek,V ),V em,V

〉)
.

In view of (1.4)–(1.9), this implies (2.10). �
We prove the controllability of (2.2), (2.3) under below condition with d = 1.

Condition 2.5. Suppose that D is the rectangle (0,1)d , d � 1, and the functions V,Q ∈ C∞(D,R) are such that

(i) infp1,j1,...,pd ,jd�1 |(p1j1 · · · · · pdjd)3Qpj | > 0, Qpj := 〈Qep1,...,pd ,V , ej1,...,jd ,V 〉,
(ii) λi,V − λj,V �= λp,V − λq,V for all i, j,p, q � 1 such that {i, j} �= {p,q} and i �= j .

See Appendix A for the proof of genericity of this condition. Let us introduce the set

E := {
z ∈ S: ∃p,q � 1, p �= q, z = cpep,V + cqeq,V , |cp|2〈Qep,V , ep,V 〉 − |cq |2〈Qeq,V , eq,V 〉 = 0

}
.

The following result is proved in the next subsection.

Theorem 2.6. Under Condition 2.5 with d = 1, for any z̃ ∈ S ∩ H 3
(V ) \ E , the mapping R∞(0, ·) :Θ → Tz̃ ∩ H 3

(V )

admits a continuous right inverse, where the space Tz̃ ∩ H 3
(V ) is endowed with the norm of H 3

(V ). If z̃ ∈ S ∩ H 3
(V ) ∩ E ,

then R∞(0, ·) is not invertible.

Remark 2.7. The invertibility of the mapping RT (0, ·) with finite T > 0 and z̃ = e1 is studied by Beauchard et al. [7].
They prove that for space dimension d � 3 the mapping is not invertible. By Beauchard [6], RT is invertible in the
case d = 1 and z̃ = e1. The case d = 2 is open to our knowledge.

Remark 2.8. Let us emphasize that the set {ωmk} does not verify the gap condition (even in the case d = 1)

inf
(m,k) �=(m′,k′)

|ωmk − ωm′k′ | > 0.

Thus one cannot prove exact controllability in finite time near points, which are not eigenfunctions, using arguments
based on the Ingham inequality.

2.2. Proof of Theorem 2.6

The proof of the theorem is based on the following proposition, which is proved in the next subsection.

Proposition 2.9. If the sequence ωm ∈ R, m � 1, is such that ω1 = 0 and
∑∞

m=2
1

|ωm|p < +∞ for some p � 1 and

ωi �= ωj for i �= j , then there is a linear continuous operator A from �2
0 to Θ such that {Ǎ(d)(ωm)} = d for any d ∈ �2

0.

The idea of the proof of Theorem 2.6 is to rewrite (2.8) in the form dmk = ǔ(ωmk) with d = {dmk} ∈ �̃2 and to apply
the proposition. Notice that

∑∞
m,k=1,m �=k

1
ω4

mk

< +∞ and ωij �= ωpq for all i, j,p, q � 1 such that {i, j} �= {p,q} and

i �= j . Let us take any y ∈ Tz̃ ∩ H 3
(V ). Define

dmk := i〈y, em〉〈ek, z̃〉 − i〈ek, y〉〈z̃, em〉 + Cmk,

Qmk
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where Cmk ∈ C and ek = ek,V . The fact that z̃ ∈ S implies

−i

+∞∑
k=1

〈z̃, ek〉Qmkdmk =
+∞∑
k=1

〈y, em〉∣∣〈z̃, ek〉
∣∣2 −

+∞∑
k=1

〈ek, y〉〈z̃, em〉〈z̃, ek〉 − i

+∞∑
k=1

〈z̃, ek〉QmkCmk

= 〈y, em〉 − 〈z̃, em〉〈z̃, y〉 − i

+∞∑
k=1

〈z̃, ek〉QmkCmk.

By (2.8), we have y = R∞(0, u), when

i

+∞∑
k=1

〈z̃, ek〉QmkCmk = −〈z̃, em〉〈z̃, y〉 (2.11)

for all m � 1. Thus if we show that there are Cmk ∈ C such that (2.11) is verified and d = {dmk} ∈ �̃2, then the proof
of the theorem will be completed, in view of Proposition 2.9. Notice that, under Condition 2.5, we have

+∞∑
m,k=1,m �=k

∣∣∣∣ 〈y, em〉〈ek, z̃〉
Qmk

∣∣∣∣
2

� C‖y‖2
3,V ‖z̃‖2

3,V < +∞.

Thus {dmk} ∈ �̃2, if Cmk ∈ C are such that

dmm = i〈y, em〉〈em, z̃〉 − i〈em, y〉〈z̃, em〉
Qmm

+ Cmm = d0, (2.12)

Cmk = Ckm, (2.13)
+∞∑

m,k=1,m �=k

|Cmk|2 < +∞, (2.14)

where d0 ∈ R. Let us show that, for an appropriate choice of d0, there are Cmk satisfying (2.11)–(2.14). Since y ∈ Tz̃,
we have 〈z̃, y〉 = i Im〈z̃, y〉. We can rewrite (2.11) and (2.12) in the following form

+∞∑
k=1

〈z̃, ek〉QmkCmk = −〈z̃, em〉 Im〈z̃, y〉, (2.15)

dmm = −2 Im(〈y, em〉〈em, z̃〉)
Qmm

+ Cmm = d0. (2.16)

Case 1. Let as suppose that z̃ = cep , where c ∈ C, |c| = 1 and p � 1. Then (2.13)–(2.16) is verified for Cmk = 0, if

m �= k and Cmm defined by (2.16) with d0 = Im〈z̃,y〉
Qpp

.

Case 2. Suppose z̃ = cpep + cqeq , where cp, cq ∈ C, |cp|2 + |cq |2 = 1 and p �= q . For any m � 1, define Cmm by
(2.16). If m �= p, we set

Cmp := −cm(Im〈z̃, y〉 + QmmCmm)

cpQmp

, (2.17)

where cm = 0 for m �= q , and Cmk = 0 for any k � 1 such that k �= m,p. Then all the equations in (2.15) are verified,
excepted the case m = p. Let us show that, for an appropriate choice of d0 ∈ R, this equation is also satisfied. Eq. (2.15)
for m = p is

cpQppCpp + cqQpqCpq = −cp Im〈z̃, y〉.
Using (2.17) for m = q (taking Cpq = Cqp) and (2.16) for m = p, we get
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−cp Im〈z̃, y〉 = cpQpp

(
d0 + 2 Im(〈y, ep〉〈ep, z̃〉)

Qpp

)
+ cqQpq

(−cq(Im〈z̃, y〉 + QqqCqq)

cpQqp

)

= cpQpp

(
d0 + 2 Im(〈y, ep〉〈ep, z̃〉)

Qpp

)
+ cqQpq

(−cq Im〈z̃, y〉
cpQqp

)
+ cqQpq

(−cqQqqCqq

cpQqp

)
.

Now using (2.16) for m = q , we rewrite this equality in an equivalent form(|cp|2Qpp − |cq |2Qqq

)
d0 = A

for some constant A ∈ R. Thus if z̃ is such that |cp|2Qpp − |cq |2Qqq �= 0, then we are able to find Cmk satisfying
(2.13)–(2.16). If |cp|2Qpp − |cq |2Qqq = 0, then linear system (2.2), (2.3) is not controllable, since for any u ∈ Θ and
t � 0 we have

d

dt
Im

〈
Rt(0, u), cpe−iλpt ep − cqe−iλq t eq

〉
= Im

〈
i

(
∂2

∂x2
− V

)
Rt(0, u) − iuQ

(
cpe−iλpt ep + cqe−iλq t eq

)
, cpe−iλpt ep − cqe−iλq t eq

〉

+ Im

〈
Rt(0, u), i

(
∂2

∂x2
− V

)(
cpe−iλpt ep − cqe−iλq t eq

)〉
= Im

〈−iuQ
(
cpe−iλpt ep + cqe−iλq t eq

)
, cpe−iλpt ep − cqe−iλq t eq

〉
= −u

(|cp|2Qpp − |cq |2Qqq

) = 0.

This non-controllability property is a remark of Beauchard and Coron [8].

Case 3. Here we suppose that z̃ = ∑+∞
j=1 cj ej with cpcqcr �= 0, and p,q, r are not equal to each other. If we define

again Cmp , m �= p, by (2.17) and Cmk = 0 for any k � 1 such that k �= m,p, then the arguments of Case 2 give the
following equation for d0 (

|cp|2Qpp −
∑
m �=p

|cm|2Qmm

)
d0 = Ã

for some constant Ã ∈ R. This implies that for any z̃ such that |cp|2Qpp − ∑
m �=p |cm|2Qmm �= 0, we can find Cmk

satisfying (2.13)–(2.16). Let us suppose that

|cp|2Qpp −
∑
m �=p

|cm|2Qmm = 0. (2.18)

In this case, we define Cmp by (2.17) only for integers m � 1 such that m �= p,q, r and Cmk = 0 for any k � 1 such
that k �= m,p,q, r . Then all the equations in (2.15) are verified, except for m = p,q, r . We take any Cqp ∈ C and
choose Cqr and Crp such that

cpQrpCrp + cqQrqCrq + cpQrrCrr = −cr Im〈z̃, y〉, (2.19)

cpQqpCqp + cqQqqCqq + crQqrCqr = −cq Im〈z̃, y〉. (2.20)

Replacing the value of Cqr from (2.20) into (2.19), then the value of Cpr from (2.19) into (2.15) with m = p, and
using (2.13), we get the following equation for d0(

|cp|2Qpp + |cq |2Qqq −
∑

m �=p,q

|cm|2Qmm

)
d0 = ˜̃

A

for some constant ˜̃
A ∈ R. Equality (2.18) implies that

|cp|2Qpp + |cq |2Qqq −
∑

m �=p,q

|cm|2Qmm = 0

if and only if |cq |2Qqq = 0, which is not the case: cq �= 0,Qqq �= 0. Thus solution d0 ∈ R exists, and the sequence
Cmk is constructed for any z̃ /∈ E .
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2.3. Multidimensional case

In this section, we suppose that D is the rectangle (0,1)d , d � 1, and V (x1, . . . , xd) = V1(x1) + · · · + Vd(xd),
Vk ∈ C∞([0,1],R). This subsection is devoted to the study of the linearization of (1.1), (1.2) around the trajectory
Ut (z̃,0):

iż = −�z + V (x)z + u(t)Q(x)Ut (z̃,0), (2.21)

z|∂D = 0, (2.22)

z(0, x) = z0. (2.23)

The proof of Theorem 2.6 does not work in the multidimensional case for a general z̃. Indeed, the well-known asymp-

totic formula for eigenvalues λk,V ∼ Cdk
2
d implies that the frequencies ωmk are dense in R for space dimension

d � 3. Thus the moment problem ǔ(ωmk) = dmk cannot be solved in the space L1(R+,R) for a general dmk ∈ �̃2. The
asymptotic formula for eigenvalues implies that the moment problem cannot be solved also in this case d = 2. Clearly,
this does not imply the non-controllability of linearized system. Let us prove the controllability of (2.21), (2.22) for
z̃ = ek,V . See our forthcoming publication for the case of a general z̃ and for an application to the nonlinear control
problem.

For z̃ = ek,V the mapping R∞(0, u) is given by〈
R∞(0, u), em,V

〉 = −iQmkǔ(ωmk)

(cf. 2.8).

Lemma 2.10. The mapping R∞(0, ·) is linear continuous from Θ to Tek,V
∩ V , where V is defined by (1.6).

Proof. Step 1. Let us admit that for any mj , kj � 1, j = 1, . . . , d we have∣∣∣∣ (m1 · · · · · md)3

(k1 · · · · · kd)3
〈Qek1,...,kd ,V , em1,...,md ,V 〉

∣∣∣∣ � C. (2.24)

Then (2.8), (2.24) and the Schwarz inequality imply that

∥∥R∞(0, u)
∥∥2

V =
+∞∑

m1,...,md=1

∣∣m3
1 · · · · · m3

d

〈
R∞(0, u), em1,...,md ,V

〉∣∣2

� C

+∞∑
m=1

∣∣∣∣∣m3
1 · · · · · m3

d〈z̃, em1,...,md ,V 〉〈Qem,V , em,V 〉
+∞∫
0

u(s)ds

∣∣∣∣∣
2

+ C‖z̃‖2
V

+∞∑
m,k=1,m �=k

∣∣∣∣∣ (m1 · · · · · md)3

(k1 · · · · · kd)3
〈Qek1,...,kd ,V , em1,...,md ,V 〉

+∞∫
0

eiωmksu(s)ds

∣∣∣∣∣
2

� C‖z̃‖2
V ‖u‖2

Θ < +∞.

Step 2. Let us prove (2.24). To simplify notation, let us suppose that d = 2; the proof of the general case is similar.
Let V (x1, x2) = V1(x1) + V2(x2). Integration by parts gives

〈Qek1,k2,V , em1,m2,V 〉 = 1

λ2
m1,V1

〈(
− ∂2

∂x2
1

+ V1

)
(Qek1,k2,V ),

(
− ∂2

∂x2
1

+ V1

)
(em1,m2,V )

〉

= 1

λ2
m1,V1

( 1∫
−2

∂Q

∂x1

∂ek1,k2,V

∂x1

∂em1,m2,V

∂x1

∣∣∣∣
x1=1

x1=0
dx2
0
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+
〈

∂

∂x1

(
− ∂2

∂x2
1

+ V1

)
(Qek1,k2,V ),

∂em1,m2,V

∂x1

〉

+
〈(

− ∂2

∂x2
1

+ V1

)
(Qek1,k2,V ),V1em1,m2,V

〉)

=: I1 + I2 + I3.

Again integrating by parts, we get

I1 = −2

λ2
m1,V1

λ2
m2,V2

1∫
0

(
− ∂2

∂x2
2

+ V2

)(
∂Q

∂x1

∂ek1,k2,V

∂x1

)(
− ∂2

∂x2
2

+ V2

)
∂em1,m2,V

∂x1

∣∣∣∣
x1=1

x1=0
dx2

= −2

λ2
m1,V1

λ2
m2,V2

(
−2

∂2Q

∂x1∂x2

∂2ek1,k2,V

∂x1∂x2

∂2em1,m2,V

∂x1∂x2

∣∣∣∣
x1=1

x1=0

∣∣∣∣
x2=1

x2=0

+
1∫

0

∂

∂x2

(
− ∂2

∂x2
2

+ V2

)(
∂Q

∂x1

∂ek1,k2,V

∂x1

)
∂2em1,m2,V

∂x1∂x2

∣∣∣∣
x1=1

x1=0
dx2

+
1∫

0

(
− ∂2

∂x2
2

+ V2

)(
∂Q

∂x1

∂ek1,k2,V

∂x1

)
V2

∂em1,m2,V

∂x1

∣∣∣∣
x1=1

x1=0
dx2

)
.

In view of (1.4)–(1.9), this implies that ∣∣∣∣ (m1 · · · · · md)3

(k1 · · · · · kd)3
I1

∣∣∣∣ � C.

The terms I2, I3 are treated in the same way. We omit the details. �
We rewrite (2.8) in the form

ǔ(ωmk) = dm, (2.25)

where dm = 〈R∞(0,u),em,V 〉
−iQmk

. We have
∑∞

m=1,m �=k
1

|ωmk |d < +∞ for fixed k � 1. Under Condition 2.5(i), dm ∈ �2
0.

Applying Proposition 2.9, we obtain the following theorem:

Theorem 2.11. Under Condition 2.5, the mapping R∞(0, ·) :Θ → Tek,V
∩ V admits a continuous right inverse, where

the space Tek,V
∩ V is endowed with the norm of V .

2.4. Proof of Proposition 2.9

The construction of the operator A is based on the following lemma.

Lemma 2.12. Under the conditions of Proposition 2.9, for any d ∈ �2
0 and ε > 0, there is u ∈ BΘ(0, ε) such that

{ǔ(ωm)} = d .

Proof of Proposition 2.9. Let dn be any orthonormal basis in �2
0. Applying Lemma 2.12, we find a sequence

un ∈ BΘ(0, 1
n
) such that {ǔn(ωm)} = dn. For any d ∈ �2

0, there is c ∈ �2 such that d = ∑+∞
n=1 cnd

n. Let us define
A in the following way

A(d) =
+∞∑
n=1

cnun.

As un ∈ BΘ(0, 1 ), this sum converges in Θ :

n
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∥∥A(d)
∥∥

Θ
�

+∞∑
n=1

|cn|‖un‖Θ �
(+∞∑

n=1

|cn|2
) 1

2
(+∞∑

n=1

‖un‖2
Θ

) 1
2

� C‖d‖�2
0
.

Thus A :�2
0 → Θ is linear continuous and {Ǎ(d)(ωm)} = d , by construction. �

Proof of Lemma 2.12. Let us take any d ∈ �2
0 and ε > 0 and introduce the functional

H(u) := ∥∥{ǔ(ωm)
}− d

∥∥2
�2

0
=

+∞∑
m=1

∣∣ǔ(ωm) − dm

∣∣2
defined on the space Θ .

Step 1. First, let us show that there is u0 ∈ BΘ(0, ε) such that

H(u0) = inf
u∈BΘ(0,ε)

H(u). (2.26)

To this end, let un ∈ BΘ(0, ε) be an arbitrary minimizing sequence. Since B ∩ Hs(R+,R) is reflexive, without loss
of generality, we can assume that there is u0 ∈ BB∩Hs(R+,R)(0, ε) such that un ⇀ u0 in B ∩ Hs(R+,R). Using the
compactness of the injection Hs([0,N]) → C([0,N]) for any N > 0 and a diagonal extraction, we can assume that
un(t) → u0(t) uniformly for t ∈ [0,N]. The Fatou lemma implies that

+∞∫
0

∣∣u0(s)
∣∣ds � lim inf

n→∞

+∞∫
0

∣∣un(s)
∣∣ds � ε.

Again extracting a subsequence, if it is necessary, one gets {ǔn(ωm)} ⇀ {ǔ0(ωm)} in �2
0 as n → +∞. Indeed, the tails

on [T ,+∞), T � 1, of the integrals (2.9) are small uniformly in n (this comes from the boundedness of un in B), and
on the finite interval [0, T ] the convergence is uniform.

This implies that u0 ∈ Θ and

H(u0) � inf
u∈BΘ(0,ε)

H(u).

The fact that u0 ∈ BΘ(0, ε) follows from the Fatou lemma and lower weak semicontinuity of norms. Thus we
have (2.26).

Step 2. To complete the proof, we need to show that H(u0) = 0. Suppose, by contradiction, that H(u0) > 0. As we
shall see below, this implies that there is v ∈ BΘ(0, ε) such that

d

dt
H
(
(1 − t)u0 + tv

)∣∣∣∣
t=0

< 0. (2.27)

Since (1 − t)u0 + tv ∈ BΘ(0, ε) for all t ∈ [0,1], (2.27) is a contradiction to (2.26).
To construct such a function v, notice that the derivative is given explicitly by

d

dt
H
(
(1 − t)u0 + tv

)∣∣∣∣
t=0

= 2
+∞∑
m=1

Re
[(

v̌(ωm) − ǔ0(ωm)
)(

ǔ0(ωm) − dm

)]
.

In view of this equality, the existence of v follows immediately from the following lemma:

Lemma 2.13. Under the conditions of Proposition 2.9, the set

U := {{
ǔ(ωm)

}
: u ∈ BΘ(0, ε)

}
is dense in �2.
0
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Proof. Suppose that h ∈ �2
0 is orthogonal to U . Then for any u ∈ BΘ(0, ε) ∩ C∞

0 ((0,+∞)) we have

+∞∑
m=1

ǔ(ωm)hm = 0. (2.28)

Replacing in this equality ǔ(ωm) by its integral representation, we get integrating by parts

0 =
+∞∑
m=1

+∞∫
0

eiωmsu(s)ds hm =
+∞∫
0

Pp(s)u(p)(s)ds h1 +
+∞∑
m=2

+∞∫
0

eiωms

(−iωm)p
u(p)(s)ds hm

=
+∞∫
0

u(p)(s)

(
Pp(s)h1 +

+∞∑
m=2

eiωms

(−iωm)p
hm

)
ds = 0,

where Pp is a polynomial of degree p � 1. Since this equality holds for any u ∈ BΘ(0, ε) ∩ C∞
0 ((0,+∞)), there is a

polynomial P̃p−1(s) of degree p − 1 such that for any s � 0

Pp(s)h1 +
+∞∑
m=2

eiωms

(−iωm)p
hm = P̃p−1(s).

By Lemma 2.14, we have hm = 0 for any m � 2. Equality (2.28) implies that h1 = 0. This proves that U is dense. �
The following lemma is a generalization of Lemma 3.10 in [22].

Lemma 2.14. Suppose that rj ∈ R
∗ and rk �= rj for k �= j and Pp is a polynomial of degree p � 1. If

∞∑
j=1

cj e
irj s = Pp(s) (2.29)

for any s � 0 and for some sequence cj ∈ C such that
∑∞

j=1 |cj | < ∞, then cj = 0 for all j � 1 and Pp ≡ 0.

Proof. Since the sum in the left-hand side of (2.29) is bounded in s, the polynomial Pp(s) is constant. The case of
constant right-hand side follows from Lemma 3.10 in [22]. �
3. Controllability of nonlinear system

3.1. Well-posedness of Schrödinger equation

In this section, we suppose that d = 1, D = (0,1). We consider the following Schrödinger equation

iż = − ∂2z

∂x2
+ V (x)z + u(t)Q(x)z + v(t)Q(x)y, (3.1)

z|∂D = 0, (3.2)

z(0, x) = z0(x). (3.3)

See Proposition 2 in [10] for the proof of well-posedness of this system with V = 0. Here we prove well-posedness
in the case of V �= 0 and we give an estimate for the solution which is important for the study of the controllability
property.

Proposition 3.1. For any z0 ∈ H 3
(V )

, u,v ∈ L1(R+,R) ∩ B and y ∈ C(R+,H 3
(V )

), problem (3.1)–(3.3) has a unique

solution z ∈ C(R+,H 3 ). Furthermore, there is a constant C > 0 such that
(V )
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sup
t∈R+

∥∥z(t)
∥∥

3,V
� C

(
‖z0‖3,V + sup

t∈R+

∥∥y(t)
∥∥

3,V

(‖v‖L1(R+) + ‖v‖B
))

× exp
(
C
(‖u‖L1(R+) + 1

)
exp

(‖u‖2
B
))

. (3.4)

If v = 0, then for all t � 0 we have ∥∥z(t)
∥∥ = ‖z0‖. (3.5)

Proof. The proof follows the ideas of Proposition 2 in [10]. We give all the details for the sake of completeness.
Let us rewrite (3.1)–(3.3) in the Duhamel form

z(t) = S(t)z0 − i

t∫
0

S(t − s)
[
u(s)Qz(s) + v(s)Qy(s)

]
ds. (3.6)

For any u ∈ L1(R+,R) ∩ B and z ∈ C(R+,H 3
(V )), we estimate the function

Gt(z) :=
t∫

0

S(−s)
(
u(s)Qz(s)

)
ds.

Integration by parts gives (we write λj , ej instead of λj,V , ej,V )

〈
Qz(s), ej

〉 = 1

λj

〈(
− ∂2

∂x2
+ V

)
(Qz), ej

〉

= 1

λ2
j

〈(
− ∂2

∂x2
+ V

)
(Qz),

(
− ∂2

∂x2
+ V

)
ej

〉

= 1

λ2
j

∂2

∂x2
(Qz)

∂

∂x
ej

∣∣∣∣
x=1

x=0
+ 1

λ2
j

(〈
V

(
− ∂2

∂x2
+ V

)
(Qz), ej

〉
+

〈
∂

∂x

(
− ∂2

∂x2
+ V

)
(Qz),

∂

∂x
ej

〉)

=: Ij + Jj .

Thus

∥∥Gt(z)
∥∥2

3,V
=

+∞∑
j=1

(
j3

t∫
0

eiλj su(s)
〈
Qz(s), ej

〉
ds

)2

=
+∞∑
j=1

(
j3

t∫
0

eiλj su(s)(Ij + Jj )ds

)2

. (3.7)

Using (1.9), we get〈
∂

∂x

(
− ∂2

∂x2
+ V

)
Qz,

∂

∂x
ej

〉
= jπ

〈
∂

∂x

(
− ∂2

∂x2
+ V

)
Qz,

√
2 cos(jπx)

〉
+ sj (z),

where |sj (z)| � C‖z‖3,V for all j � 1. The definition of Jj , the fact that {√2 cos(jπx)} is an orthonormal system in
L2, (1.7) and the Minkowski inequality yield

+∞∑
j=1

(
j3

t∫
0

eiλj su(s)Jj ds

)2

� C

( t∫
0

∣∣u(s)
∣∣∥∥z(s)

∥∥
3,V

ds

)2

. (3.8)

On the other hand, (1.9) implies that

∂2

∂x2
(Qz)

∂

∂x
ej

∣∣∣∣
x=1

x=0
= jπ

∂2

∂x2
(Qz)

√
2 cos(jπx)

∣∣∣∣
x=1

x=0
+ s̃j (z) =: jcj (z) + s̃j (z),

where |s̃j | � C‖z‖3,V for all j � 1. Again applying the Minkowski inequality, we obtain
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+∞∑
j=1

(
j3

λ2
j

t∫
0

eiλj su(s)s̃j (z)ds

)2

� C

( t∫
0

∣∣u(s)
∣∣∥∥z(s)

∥∥
3,V

ds

)2

. (3.9)

Since cj (z) depends on the parity of j , without loss of generality, we can assume that c(z) := cj (z) does not depend
on j . Thus we cannot conclude as in the case of Jj . Here we use the fact that u ∈ B. Let P � 1 be an integer such that
P � t < P + 1. Using the Cauchy–Schwarz and the Ingham inequalities, we obtain

+∞∑
j=1

( t∫
0

eiλj su(s)c(z)ds

)2

=
+∞∑
j=1

(( t∫
P

+
P∑

p=1

p∫
p−1

)
eiλj su(s)c(z)ds

)2

� 2
+∞∑
j=1

( t∫
P

eiλj su(s)c(z)ds

)2

+ 2
+∞∑
j=1

(
P∑

p=1

1

p2

)(
P∑

p=1

p2

( p∫
p−1

eiλj su(s)c(z)ds

)2)

� C
∥∥u(s)c(z)

∥∥2
L2([P,t]) + C

P∑
p=1

p2
+∞∑
j=1

( p∫
p−1

eiλj su(s)c(z)ds

)2

� C
∥∥u(s)c(z)

∥∥2
L2([P,t]) + C

P∑
p=1

p2
∥∥u(s)c(z)

∥∥2
L2([p−1,p])

� C

t∫
0

w(s)
∥∥z(s)

∥∥2
3,V

ds,

where w(s) = |u(s)|2χ[P,t](s) +∑P
p=1 p2|u(s)|2χ[p−1,p](s). Notice that

t∫
0

w(s)ds � ‖u‖2
B for all t � 0. (3.10)

Combining (3.7)–(3.10), we get

∥∥Gt(z)
∥∥

3,V
� C

( t∫
0

w(s)
∥∥z(s)

∥∥2
3,V

ds

) 1
2

+ C

t∫
0

∣∣u(s)
∣∣∥∥z(s)

∥∥
3,V

ds. (3.11)

The quantity

G̃t (f ) :=
t∫

0

S(−s)
(
v(s)Qy(s)

)
ds

is estimated in a similar way

‖G̃t‖3,V � C

( t∫
0

w̃(s)
∥∥y(s)

∥∥2
3,V

ds

) 1
2

+ C

t∫
0

∣∣v(s)
∣∣∥∥y(s)

∥∥
3,V

ds

� C sup
s∈[0,T ]

∥∥y(s)
∥∥

3,V

(‖v‖L1(R+) + ‖v‖B
)
, (3.12)

where w̃(s) = |v(s)|2χ[P,t](s) +∑P
p=1 p2|v(s)|2χ[p−1,p](s).
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Existence of a solution is obtained easily from (3.11) and (3.12), by a fixed point theorem (cf. Proposition 2 in [10]).
Uniqueness follows from (3.4).

Let us prove (3.4). From (3.6) and (3.11) we have∥∥z(t)
∥∥2

3,V
� C

(‖z0‖2
3,V + ‖G̃t‖2

3,V + ‖Gt‖2
3,V

)

� C

(
‖z0‖2

3,V + ‖G̃t‖2
3,V +

t∫
0

w(s)
∥∥z(s)

∥∥2
3,V

ds +
( t∫

0

∣∣u(s)
∣∣∥∥z(s)

∥∥
3,V

ds

)2)
.

The Gronwall inequality implies

∥∥z(t)
∥∥2

3,V
� C

(
‖z0‖2

3,V + ‖G̃t‖2
3,V +

( t∫
0

∣∣u(s)
∣∣∥∥z(s)

∥∥
3,V

ds

)2)
exp

(
C

t∫
0

w(s)ds

)
.

Taking the square root of this inequality, using (3.10) and the Gronwall inequality, we obtain

∥∥z(t)
∥∥

3,V
� C

(‖z0‖3,V + ‖G̃t‖3,V

)
exp

(
C

( t∫
0

w(s)ds +
t∫

0

∣∣u(s)
∣∣ds exp

( t∫
0

w(s)ds

)))

� C
(‖z0‖3,V + ‖G̃t‖3,V

)
exp

(
C
(‖u‖L1(R+) + 1

)
exp

(‖u‖2
B
))

.

In view of (3.12), this completes the proof of the proposition. �
Remark 3.2. Let us notice that, one should not expect to have a well-posedness property in any Sobolev space Hk

with controls in L1. Indeed, exact controllability property in H 3, proved by Beauchard and Laurent [10] in the case
d = 1, implies that the problem is not well posed in spaces H 3+σ for any σ > 0 (a point z1 ∈ H 3 \ H 3+σ would not
be accessible from a point z0 ∈ H 3+σ ). Schrödinger equation is well-posed in higher Sobolev spaces, when control u

is more regular.

Corollary 3.3. Denote by Ut (·,·) :H 3
(V ) × L1(R+,R) ∩ B → H 3

(V ) the resolving operator of (1.1), (1.2). Then Ut (·,·)
is locally Lipschitz continuous, i.e., for any δ > 0 there is C > 0 such that

sup
t∈R+

∥∥Ut (z0, u) − Ut

(
z′

0, u
′)∥∥

3,V
� C

∥∥(z0, u) − (
z′

0, u
′)∥∥

H 3
(V )

×L1(R+,R)∩B (3.13)

for all (z0, u), (z′
0, u

′) ∈ BH 3
(V )

×L1(R+,R)∩B(0, δ), where L1(R+,R) ∩ B is endowed with the norm ‖ · ‖L1(R+,R)∩B :=
‖ · ‖L1 + ‖ · ‖B .

Proof. Notice that z(t) := Ut (z0, u) − Ut (z
′
0, u

′) is a solution of problem

iż = − ∂2z

∂2x
+ u(t)Q(x)z + (

u(t) − u′(t)
)
Q(x)Ut

(
z′

0, u
′),

z|∂D = 0,

z(0, x) = z0(x) − z′
0(x).

Applying Proposition 3.1, we get (3.13). �
3.2. Exact controllability in infinite time

For any control u ∈ Θ , problem (3.1), (3.2) is well-posed in Sobolev space H 3
(V ). Equality (3.5) implies that it

suffices to consider the controllability properties of (3.1), (3.2) on the unit sphere S in L2. Let U∞(z0, u) be the
H 3

(V )-weak ω-limit set of the trajectory corresponding to control u ∈ Θ and initial condition z0 ∈ H 3
(V ):

U∞(z0, u) := {
z ∈ H 3

(V ) : Utn (z0, u) ⇀ z in H 3
(V ) for some tn → +∞}

. (3.14)

By (3.4), Ut (z0, u) is bounded in H 3 , thus U∞(z0, u) is non-empty.
(V )
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Definition 3.4. We say that (3.1), (3.2) is exactly controllable in infinite time in subset H ⊂ S, if for any z0, z1 ∈ H

there is a control u ∈ Θ such that z1 ∈ U∞(z0, u).

Below theorem is one of the main results of this paper.

Theorem 3.5. Under Condition 2.5, for any z̃ ∈ S ∩ H 3
(V ) there is δ > 0 such that problem (3.1), (3.2) is exactly

controllable in infinite time in S ∩ BH 3
(V )

(z̃, δ).

See Section 3.3 for the proof.

Remark 3.6. Let us emphasize that the novelty of Theorem 3.5 with respect to the previous result proved for (3.1),
(3.2) in [23] (see Theorem 3.1) is that the controllability here is realized with controls which have small norms.

Working in higher Sobolev spaces, one can prove similar exact controllability results with more regular controls.
For example:

Theorem 3.7. Under Condition 2.5, for any z̃ ∈ S ∩ H 3+σ
(V ) , σ ∈ (0,2] there is δ > 0 such that problem (3.1), (3.2) is

exactly controllable in infinite time in S ∩ B
H 3+σ

(V )
(z̃, δ) with controls u ∈ W 1,1(R+,R) ∩ Hs(R+,R) for any s � 1.

These local exact controllability properties imply the following global exact controllability result.

Theorem 3.8. Under Condition 2.5, problem (3.1), (3.2) is exactly controllable in infinite time in S ∩ H 3
(V )

in the

following sense: for any z0 ∈ S ∩ H 3+σ
(V ) , σ ∈ (0,2], and z1 ∈ S ∩ H 3

(V ) there is a control u ∈ L1(R+,R) such that
z1 ∈ U∞(z0, u).

Proof. Let γ : [0,1] → S ∩ H 3
(V ) be any continuous function such that γ (0) = z0, γ (1) = z1 and γ (s) ∈ H 3+σ

(V ) for
any s ∈ [0,1). Using the compactness of the curve γ and Theorem 3.7, we prove that there is a control v and time
T > 0 such that UT (z0, v) ∈ BH 3

(V )
(z1, δz1), where δz1 > 0 is the constant in Theorem 3.5 corresponding to z1. This

completes the proof. �
Remark 3.9. We do not know if problem (1.1)–(1.3) is well posed in the space V for d � 2 with Θ-controls.
Well-posedness in V with u ∈ Θ would imply the controllability of the multidimensional problem. The nonlinear
problem’s solution is in V for more regular controls.

3.3. Proof of Theorem 3.5

The proof is based on an inverse mapping theorem for multivalued functions. We apply the inverse mapping
theorem established by Nachi and Penot [21], which suits well to the setting of Schrödinger equation. For the reader’s
convenience, we recall the statement of their result in Appendix A (see Theorem A.3).

Let us first slightly modify the definition (3.14) of the set U∞(z0, u). Let Tn → +∞ be the sequence defined in
Section 2.1. Define

U∞(z0, u) := {
z ∈ H 3

(V ) : UTnk
(z0, u) ⇀ z in H 3 for some nk → +∞}

. (3.15)

Consider the multivalued function

U∞(·,·) :S ∩ H 3
(V ) × Θ → 2S∩H 3

(V ) ,

(z0, u) → U∞(z0, u).

Since the result of Nachi and Penot is stated in the case of Banach spaces, we cannot apply it directly to U∞. Following
Beauchard and Laurent [10], we project the system onto the tangent space Tz̃. We apply Theorem A.3 to the following
multivalued function
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Ũ∞(·,·) :Tz̃ ∩ H 3
(V ) × Θ → 2Tz̃∩H 3

(V ) ,

(z0, u) → P U∞
(
P −1z0, u

)
,

where P is the orthogonal projection in L2 onto Tz̃, i.e., Pz = z − Re〈z, z̃〉z̃, z ∈ L2. Notice that P −1 :BTz̃
(0, δ) → S

is well defined for sufficiently small δ > 0. By the definition of Tn, we have limn→+∞ UTn(z̃,0) = z̃. Hence
(3.15) implies that U∞(z̃,0) = z̃ and Ũ∞(0,0) = {0}. If we show that Ũ∞ is strictly differentiable at (x0, y0) with
x0 = (0,0) ∈ Tz̃ ∩ H 3

(V ) × Θ and y0 = 0 ∈ Tz̃ ∩ H 3
(V ) (see Definition A.2), and the derivative admits a right inverse,

then Theorem 3.5 will be proved as a consequence of Theorem A.3.

Proposition 3.10. The multifunction Ũ∞ is strictly differentiable at (0,0) ∈ Tz̃ ∩ H 3
(V ) × Θ in the sense of

Definition A.2. Moreover, the differential is the mapping

R∞(·,·) :Tz̃ ∩ H 3
(V ) × Θ → Tz̃ ∩ H 3

(V ),

(z0, u) → R∞(z0, u),

where R∞ is defined in Section 2.1.

Proof of Theorem 3.5. Case 1. Let us suppose that z̃ ∈ S ∩ H 3
(V ) \ E . For any (z0, u) ∈ BTz̃∩H 3

(V )
×Θ(0, δ), the

set Ũ∞(z0, u) is closed and non-empty, if δ > 0 is sufficiently small. The mapping R∞ is invertible in view of
Theorem 2.6. Thus Theorem A.3 completes the proof.

Remark 3.11. Let us point out that in Case 1 the controls u can be chosen such that u(0) = · · · = u(s−1)(0) = 0.

Case 2. In the case z̃ ∈ S ∩ H 3
(V ) ∩ E , the linearized system (2.2), (2.3) is not controllable, and R∞ is not invertible.

Controllability in finite time near z̃ is obtained combining the results of [8] and [10]: there is a constant δ > 0 and a
time T > 0 such that for any z0, z1 ∈ S ∩BH 3

(V )
(z̃, δ) there is a control v ∈ L2([0, T ],R) verifying UT (z0, v) = z1. Let

us prove that the problem is exactly controllable in infinite time in S ∩ BH 3
(V )

(z̃, δ). Take any z1 ∈ S ∩ BH 3
(V )

(z̃, δ) and

let us show that there is a control u ∈ Θ such that z1 ∈ U∞(z̃, u). Let us suppose first that z1 /∈ E . Then, by Case 1,
there is δz1 > 0 such that exact controllability in infinite time holds in S ∩ BH 3

(V )
(z1, δz1). By exact controllability

property in finite time and by an approximation argument, one can find a control u1 ∈ C∞
0 ((0, T ),R) such that

UT (z̃, u1) ∈ BH 3
(V )

(z1, δz1). Thus the existence of u1 follows from Case 1 and Remark 3.11.

Now let us suppose that z1 ∈ E . Since E ⊂ ⋂∞
k=1 Hk

(V ), by [8] and [10], there is a control u1 ∈ Cs([0, T ],R) such

that UT (z̃, u1) = z1 and u(0) = · · · = u(s)(0) = u(T ) = · · · = u(s)(T ) = 0. Extending u1 by 0 on [T ,+∞), we obtain
z1 ∈ U∞(z̃, u1). �
Proof of Proposition 3.10. It suffices to show that for any ε > 0 there exists δ > 0 for which

e
(

Ũ∞(z0, u) − R∞(z0, u), Ũ∞
(
z′

0, u
′)− R∞

(
z′

0, u
′)) � ε

∥∥(z0, u) − (
z′

0, u
′)∥∥

Tz̃∩H 3
(V )

×Θ
, (3.16)

whenever (z0, u), (z′
0, u

′) ∈ BTz̃∩H 3
(V )

×Θ((0,0), δ). Here e(·,·) stands for the Hausdorff distance (see Appendix A for

the definition). It is clear from the definition of e(·,·), that (3.16) follows from the following stronger estimate

sup
t∈R+

∥∥Ut

(
P −1z0, u

)− Rt(z0, u) − Ut

(
P −1z′

0, u
′)+ Rt

(
z′

0, u
′)∥∥

Tz̃∩H 3
(V )

� ε
∥∥(z0, u) − (

z′
0, u

′)∥∥
Tz̃∩H 3

(V )
×Θ

.

To prove this estimate, notice that the function

y(t) := Ut

(
P −1z0, u

)− Rt(z0, u) − Ut

(
P −1z′

0, u
′)+ Rt

(
z′

0, u
′)

is a solution of the problem



312 V. Nersesyan, H. Nersisyan / J. Math. Pures Appl. 97 (2012) 295–317
iẏ = −d2y

dx2
+ (

u − u′)Q(
Ut

(
P −1z0, u

)− Ut (z̃,0)
)+ u′Q

(
Ut

(
P −1z0, u

)− Ut

(
P −1z′

0, u
))

,

y|∂D = 0,

y(0, x) = P −1z0 − z0 − P −1z′
0 + z′

0.

We have ∥∥y(0)
∥∥

3,V
� ε‖z0 − z′

0‖3,V (3.17)

for any z0, z
′
0 ∈ BTz̃∩H 3

(V )
(0, δ) and for sufficiently small δ > 0. Using (3.4) (we use the version of the inequality with

v1f1 + v2f2 instead of vf ), Corollary 3.3 and (3.17), we get

sup
t∈R+

∥∥y(t)
∥∥

3,V
� C

(∥∥y(0)
∥∥

3,V
+ sup

t∈R+

∥∥Ut

(
P −1z0, u

)− Ut (z̃,0)
∥∥

3,V

∥∥u − u′∥∥
Θ

+ sup
t∈R+

∥∥Ut

(
P −1z0, u

)− Ut

(
P −1z′

0, u
)∥∥

3,V

∥∥u′∥∥
Θ

)
� C

(∥∥y(0)
∥∥

3,V
+ (‖z0‖3,V + ‖u‖Θ

)∥∥u − u′∥∥
Θ

+ ∥∥z0 − z′
0

∥∥
3,V

∥∥u′∥∥
Θ

)
� ε

∥∥(z0, u) − (
z′

0, u
′)∥∥

Tz̃∩H 3
(V )

×Θ

for sufficiently small δ. This proves the proposition. �
4. Non-controllability result

4.1. Main result

In this section, we study the problem of non-controllability of Schrödinger system (1.1)–(1.3), where D ⊂ R
d is

a bounded domain with smooth boundary, V,Q ∈ C∞(D,R) are arbitrary given functions. The following lemma
establishes the well-posedness of system (1.1)–(1.3) in the space L2.

Lemma 4.1. For any z0 ∈ L2 and for any u ∈ L1
loc(R+,R), problem (1.1)–(1.3) has a unique solution z ∈ C(R+,L2).

Furthermore, the resolving operator Ut (·, u) :L2 → L2 taking z0 to z(t) satisfies the relation∥∥Ut (z0, u)
∥∥ = ‖z0‖, t � 0.

See [11] for the proof. Let us define the set of attainability of system (1.1), (1.2) from an initial point z0 ∈ S:

A(z0) := {
Ut (z0, u): for all u ∈ W

1,1
loc (R+,R) and t � 0

}
. (4.1)

The following theorem is the main result of this section.

Theorem 4.2. For any constant k ∈ (0, d), any initial condition z0 ∈ S and any ball B ⊂ Hk
(V ), we have

Ac(z0) ∩ B ∩ S �= ∅.

Let us emphasize that this theorem does not exclude exact controllability in Hk
(V ) with controls form a larger space

than W
1,1
loc (R+,R).

The proof of this theorem is an adaptation of ideas of Shirikyan [28] to the case of Schrödinger equation. Using a
Hölder type estimate for the solution of the equation, we show that the image by the resolving operator U of a ball in
the space of controls has a Kolmogorov ε-entropy strictly less than that of a ball B in the phase space Hk

(V ). As we
show, this implies the non-controllability.
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4.2. Some ε-entropy estimates

Let X be a Banach space. For any compact set K ⊂ X and ε > 0, we denote by Nε(K,X) the minimal
number of sets of diameters � 2ε that are needed to cover K . The Kolmogorov ε-entropy of K is defined as
Hε(K,X) = lnNε(K,X).

Let Y be another Banach space and let f :K → Y be a Hölder continuous function:∥∥f (u1) − f (u2)
∥∥

Y
� L‖u1 − u2‖θ

X (4.2)

for any u1, u2 ∈ K and for some constants L > 0 and θ ∈ (0,1). The following lemma follows immediately from the
definition of ε-entropy (cf. Lemma 2.1 in [28]).

Lemma 4.3. For any compact set K ⊂ X and any function f :K → Y satisfying inequality (4.2), we have

Hε

(
f (K),Y

)
� H

( ε
L

)
1
θ
(K,X) for all ε > 0.

We also need the following two lemmas.

Lemma 4.4. For any T > 0 and for any closed ball B ⊂ W 1,1([0, T ],R), there is a constant C > 0 such that

Hε

(
B,L1([0, T ],R

))
� C

ε
ln

1

ε
.

This is Proposition 2.3 in [28].

Lemma 4.5. For any k > 0 and any closed ball B := BHk
(V )

(z0, r) such that BHk
(V )

(z0, r) ∩ S �= ∅ there is a constant

C > 0 such that

Hε

(
B ∩ S,Hk−1) � C

(
1

ε

)d

. (4.3)

Proof. It is well known that

C1

(
1

ε

)d

� Hε

(
B,Hk−1) � C2

(
1

ε

)d

(4.4)

for some constants C1,C2 > 0 (e.g., see [14]). Consider the mapping

f :

[
1

2
,

3

2

]
× B ∩ S → Hk−1,

(s, z) → sz.

The set f ([ 1
2 , 3

2 ] × B ∩ S) has a non-empty interior, so there is a ball B̃ in Hk such that

B̃ ⊂ f

([
1

2
,

3

2

]
× B ∩ S

)
. (4.5)

Clearly, ∥∥f (s1, z1) − f (s2, z2)
∥∥

k−1 � C
(|s1 − s2| + ‖z1 − z2‖k−1

)
.

Using (4.5) and Lemma 4.3, we get

Hε

(
B̃,Hk−1) � Hε

(
f

([
1

2
,

3

2

]
× B ∩ S

)
,Hk−1

)
� H ε

C

([
1

2
,

3

2

]
× B ∩ S,R × Hk−1

)

� H ε
C

([
1

2
,

3

2

]
,R

)
+ H ε

C

(
B ∩ S,Hk−1) � C

(
ln

1

ε
+ Hε

(
B ∩ S,Hk−1)).

Combining this with (4.4) for B̃ , we obtain (4.3). �
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4.3. Proof of Theorem 4.2

Let us suppose, by contradiction, that there is k ∈ (0, d), an initial point z0 ∈ S and a ball B ⊂ Hk
(V ) such that

B ∩ S ⊂ A(z0), (4.6)

where A is the set of attainability of system (1.1), (1.2) from the initial point z0 defined by (4.1). Let us set

Bm := [0,m] × BW 1,1([0,m],R)(0,m),

U (Bm) := {
Ut (z0, u): for all (t, u) ∈ Bm

}
.

We have

R × W
1,1
loc (R+,R) =

∞⋃
m=1

Bm,

A(z0) =
∞⋃

m=1

U (Bm). (4.7)

Combining (4.6), (4.7) and the Baire lemma, we see that there is a ball Q ⊂ Hk
(V ) and an integer m � 1 such that

U (Bm) is dense in Q ∩ S with respect to Hk-norm.

Step 1. Let us define the set

B̃m = {
(t, u) ∈ Bm: such that Ut (z0, u) ∈ Q

}
.

Here we prove that B̃m is compact in [0,m]×L1([0,m],R). Indeed, take any sequence (tn, un) ∈ B̃m. As (tn, un) ∈ Bm

and Bm is compact in [0,m] × L1([0,m],R), there is a sequence nk → ∞ and (t0, u0) ∈ Bm such that

|tnk
− t0| + ‖unk

− u0‖L1([0,m],R) → 0, k → ∞.

We need to show that (t0, u0) ∈ B̃m. As Utnk
(z0, unk

) ∈ Q, there is z ∈ Q such that Utnk
(z0, unk

) ⇀ z in Hk (again

extracting a subsequence, if necessary). On the other hand, Lemma 4.1 implies that Utnk
(z0, unk

) → Ut0(z0, u0) in L2.

Thus Ut0(z0, u0) = z and (t0, u0) ∈ B̃m. Thus B̃m is compact in [0,m] × L1([0,m],R).
In particular, this implies that U (B̃m) is compact in L2, as an image of a compact set by a continuous mapping.

On the other hand, U (B̃m) is dense in the compact set Q ∩ S in L2. Thus Q ∩ S = U (B̃m).

Step 2. Using standard arguments, one can show that we have∥∥Ut (z0, u) − Ut ′
(
z0, u

′)∥∥ � C
(∣∣t − t ′

∣∣+ ∥∥u − u′∥∥
L1([0,m],R)

)
for any (t, u), (t ′, u′) ∈ B̃m, where C > 0 is a constant not depending on (t, u) and (t ′, u′). Combining this with the
interpolation inequality

‖z‖k−1 � C‖z‖ 1
k ‖z‖

k−1
k

k ,

we get ∥∥Ut (z0, u) − Ut ′
(
z0, u

′)∥∥
k−1 � C

(∣∣t − t ′
∣∣ 1

k + ∥∥u − u′∥∥ 1
k

L1([0,m],R)

)
for any (t, u), (t ′, u′) ∈ B̃m. Here we used the fact that Ut (z0, u), Ut ′(z0, u

′) ∈ Q. Applying Lemmas 4.3 and 4.4 and
the fact that Q ∩ S ⊂ U (B̃m), we obtain

Hε

(
Q ∩ S,Hk−1) � Hε

(
U (B̃m),Hk−1) � CHεk

(
B̃m, [0,m] × L1([0,m],R

))
� CHεk

(
Bm, [0,m] × L1([0,m],R

))
� C

εk
ln

1

εk
.

This estimate contradicts Lemma 4.5 and proves the theorem.
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Remark 4.6. The same proof works also in the case of Schrödinger equation with any finite number of controls:

iż = −�z + V (x)z + u1(t)Q1(x)z + · · · + un(t)Qn(x)z,

where n � 1 is any integer, Qj ∈ C∞(D,R) are arbitrary functions and uj are the controls j = 1, . . . , n.
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Appendix A

A.1. Genericity of Condition 2.5

Let us assume that D = (0,1)d and introduce the space

G := {
V ∈ C∞(D,R): V (x1, . . . , xd) = V1(x1) + · · · + Vd(xd) for some Vk ∈ C∞([0,1],R

)
, k = 1, . . . , d

}
.

Then G , endowed with the metric of C∞(D,R), is a closed subspace in C∞(D,R). By Lemma 3.12 in [22], the set
A of all functions V ∈ G such that property (ii) in Condition 2.5 is verified is Gδ set (i.e., countable intersection of
dense open sets). First let us prove genericity of property (i) in the case d = 1.

Lemma A.1. For any V ∈ C∞([0,1],R), the set of functions Q ∈ C∞([0,1],R) such that

inf
p,j�1

∣∣p3j3〈Qep,V , ej,V 〉∣∣ > 0 (A.1)

is dense in C∞([0,1],R).

Proof. If V = 0, then a straightforward calculation gives

〈
x2ep,0, ej,0

〉 =
⎧⎨
⎩

(−1)p+j 8pj

π2(p2−j2)2 , if p �= j,

2
3 − 1

p2π2 , if p = j,

which implies (A.1) for Q = x2 and V = 0. In the general case, taking any p �= j , we integrate by parts (we write

λj , ej and z′′, z′ instead of λj,V , ej,V and d2z

dx2 , dz
dx

, respectively)

〈Qep, ej 〉 = 1

λj

〈(
− d2

dx2
+ V

)
(Qep), ej

〉
= 1

λj

(〈−Q′′ep, ej

〉+ 〈−Q′e′
p, ej

〉+ λp〈Qep, ej 〉
)
.

This implies that

〈Qep, ej 〉 = − 1

λj − λp

(〈
Q′′ep, ej

〉+ 〈
Q′e′

p, ej

〉)
. (A.2)

Again integrating by parts, we get

〈
Q′e′

p, ej

〉 = 1

λj

〈
Q′e′

p,

(
− d2

dx2
+ V

)
ej

〉
= − 1

λj

Q′e′
pe′

j

∣∣∣∣
x=1

x=0
+ 1

λj

〈(
− d2

dx2
+ V

)(
Q′e′

p

)
, ej

〉
. (A.3)

Notice that〈(
− d2

dx2
+ V

)(
Q′e′

p

)
, ej

〉
= 〈

V Q′e′
p, ej

〉+ 〈−Q′′′e′
p, ej

〉+ 〈−Q′′e′′
p, ej

〉+ λp

〈
Q′e′

p, ej

〉− 〈
Q′(V ep)′, ej

〉
.

Replacing this into (A.3), we get

〈
Q′e′

p, ej

〉 = 1

λ − λ

(−Q′e′
pe′

j

∣∣x=1
x=0 + 〈

V Q′e′
p, ej

〉+ 〈−Q′′′e′
p, ej

〉+ 〈−Q′′e′′
p, ej

〉− 〈
Q′(V ep)′, ej

〉)
. (A.4)
j p
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Using (A.2) and (A.4) and the fact that〈−Q′′e′′
p, ej

〉 = −〈
Q′′V ep, ej

〉+ λp

〈
Q′′ep, ej

〉
,

we obtain

〈Qep, ej 〉 =
(

− 1

λj − λp

〈
Q′′ep, ej

〉− λp

(λj − λp)2

〈
Q′′ep, ej

〉)− 1

(λj − λp)2

(−Q′e′
pe′

j

∣∣x=1
x=0 + 〈

V Q′e′
p, ej

〉
+ 〈−Q′′′e′

p, ej

〉− 〈
Q′′V ep, ej

〉− 〈
Q′(V ep,)

′, ej

〉)
=: I1 + I2.

Let Q be such that A := Q′(x) cos(pπx) cos(jπx)|x=1
x=0 �= 0. Clearly, this is verified for almost any Q, since A depends

only on the parity of p and j . Let us choose Q such that 〈Qep, ej 〉 �= 0 for all p, j � 1; the set of such functions Q is
Gδ , by Section 3.4 in [22]. Using the estimates (1.7)–(1.9), it is easy to see that infp,j�1,p �=j |p3j3I2| > 0. Iterating
the same arguments for I1, we see that infp,j�1,p �=j |p3j3〈Qep,V , ej,V 〉| > 0 for almost any polynomial Q.

If p = j , using (1.8), we get

〈Qep, ep〉 = 2
〈
Q, sin2(pπx)

〉+ sp,

where sp → 0. Thus

〈Qep, ep〉 = 〈Q,1 − cos 2pπx〉 + sp =
1∫

0

Qdx − 〈Q, cos 2pπx〉 + sp.

Taking Q such that
∫ 1

0 Qdx �= 0, we complete the proof of the lemma. �
Take any functions Qk ∈ C∞([0,1],R), k = 1, . . . , d , in the dense set of Lemma A.1 corresponding to

Vk ∈ C∞([0,1],R), k = 1, . . . , d . Then Q(x1, . . . , xd) := Q1(x1) · · · · · Qd(xd) satisfies (i) with V (x1, . . . , xd) :=
V1(x1) + · · · + Vd(xd).

A.2. Inverse mapping theorem for multifunctions

In this section, we recall the statement of the inverse mapping theorem for multivalued functions or multifunctions.
We refer the reader to the paper [21] by Nachi and Penot for details and for a review of the literature on this subject.

Let X and Y be Banach spaces. For any non-empty sets C,D ⊂ X, define the Hausdorff distance

d(x,D) = inf
y∈D

‖x − y‖X,

e(C,D) = sup
x∈C

d(x,D).

We call a multifunction from X to Y any mapping F from X to 2Y .

Definition A.2. A multifunction F from an open set X0 ⊂ X to Y is said to be strictly differentiable at (x0, y0) if there
exists some continuous linear map A :X → Y such that for any ε > 0 there exist β, δ > 0 for which

e
(
F(x) ∩ BY (y0, β) − A(x),F

(
x′)− A

(
x′)) � ε

∥∥x − x′∥∥
X
,

whenever x, x′ ∈ B(x0, δ). The map A is called a derivative of F at (x0, y0).

The following theorem is a generalization of the classical inverse function theorem to the case of multifunctions.

Theorem A.3. Let F be a multifunction from an open set X0 ⊂ X to Y with closed non-empty values. Suppose F is
strictly differentiable at (x0, y0) ∈ Gr(F ), and some derivative A of F at (x0, y0) has a right inverse. Then for any
neighborhood U of x0 there exists a neighborhood V of y0 such that V ⊂ F(U).

See Theorem 22 in [21] for the proof.
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