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Abstract We consider the stochastic CGL equation
iw—vAu+ (i +a)|u|2u =n(t,x), dimx =n,

where v > 0 and ¢ > 0, in a cube (or in a smooth bounded domain) with Dirichlet
boundary condition. The force n is white in time, regular in x and non-degenerate.
We study this equation in the space of continuous complex functions u(x), and prove
that for any n it defines there a unique mixing Markov process. So for a large class of
functionals f(u(-)) and for any solution u (¢, x), the averaged observable E f (u(z, -))
converges to a quantity, independent from the initial data u(0, x), and equal to the
integral of f(u) against the unique stationary measure of the equation.

Keywords Complex Ginzburg-Landau equation - Random force - Mixing - Markov
process

1 Introduction
We study the stochastic CGL equation

i —vAu+ (i +a)|ulPu=n( x), dimx=n, (1.1
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where n is any, v > 0,a > 0 and the random force n is white in time and regu-
lar in x. All our results and constructions are uniform in a from bounded intervals
[0, C], C > 0. Since for a > 0 the equation possesses extra properties due to the
nonlinear dissipation (it is “stabler”), then below we restrict ourselves to the more
complicated case a = 0; see discussion in Sect. 5. This equation is the Hamiltonian
system i + i|u|?u = 0, damped by the viscous term vAu and driven by the ran-
dom force 1. So it makes a model for the stochastic Navier-Stokes system, which
may be regarded as a damped—driven Euler equation (which is a Hamiltonian system,
homogeneous of degree two). In this work we are not concerned with the interesting
turbulence-limit v — 0 (see [15,16] for some related results) and, again to simplify
notation, choose v = 1. That is, we consider the equation

i — Au+ilulPu = (@, x). (1.2)

For the space-domain we take the cube K = [0, 7]" with the Dirichlet boundary
conditions, which we regard as the odd periodic boundary conditions

u(t,....,xj,..)=u(t,...,x; +2m,..)=—ul,...,—xj,...) Vj.

Our results remain true for (1.2) in a smooth bounded domain with the Dirichlet
boundary conditions, see Sect. 5.
The force n(z, x) is a random field of the form

_ 9 = b 1.3
n(t, x) =28t x), Lt x)= Z aBa(t)pa(x). (1.3)

deNn

Here b; are real numbers such that

Bi:= Y |ba| < o0, (1.4)
deN"
Ba = ,35 + iﬂé, where ﬂf, /35 are standard independent (real-valued) Brown-

ian motions, defined on a complete probability space (€2, F,P) with a filtration
{Fi:t = 0}.) The set of real functions {@g(x),d € N"} is the L?-normalised Sys-
tem of eigenfunctions of the Laplacian,

Qa(x) = 2/m)"Psin(dix1) - ... sin(dpxn),  (—A)ga = capa, aa = |dI.

Since we impose no restriction on the dimension 7, then global solvability of Eq. (1.2)
cannot be established using the L;-Sobolev spaces. Moreover, as the best a priori
estimates, available for its solutions, turned out to be in terms of the L ,-norm, then the
methods, developed to treat stochastic PDE in reflexive Banach spaces (e.g., see [1,7])
also are not applicable to (1.2). Instead we take the approach of the work [16] which

' The filtered probability space (2, F, {F;}, P), as well as all other filtered probability spaces, used in
this work, are assumed to satisfy the usual condition, see Definition 2.29 in [12].
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exploits essentially the well known fact that the deterministic equation (1.2),—o implies
for the real function |u(z, x)| a parabolic inequality with the maximum principle.

Denote by H™ the Sobolev space of order m, formed by complex odd periodic
functions and given the norm

Il = (=AY ul], (1.5)

where || - || is the L?-norm on the cube K. In Sect. 2.1 we repeat some construction
from [16] and state its main result, which says that if

u(0, x) = up(x), (1.6)

where ug € H", m > n/2, and

By =Y bjld™" < oo, (1.7)
d

then (1.2), (1.6) has a unique strong solution u(¢) € H™. Moreover, for any 7 > 0
the random variable X7 = supy ;<744 |u(t)|2, satisfies the estimates

Exi <C, Vgq=0, (1.8)

where C, depends only on |up|e and By. Analysis of the constants C,;, made in
Sect. 2.2, implies that suitable exponential moments of the variables X7 are finite:

Ee*T < C" = C'(Bx, |uoloo), (1.9)

where ¢ > 0 depends only on Bi.

Denote by Co(K) the space of continuous complex functions on K, vanishing at
dK. In Sect. 3 we consider the initial-value problem (1.2), (1.6), assuming only that
By < oo and ug € Co(K). Approximating it by the regular problems as above and
using that the constants in (1.8), (1.9) depend only on B, and |u¢|~, We prove

Theorem 1.1 Let B, < o0 and ug € Co(K). Then the problem (1.2), (1.6)
has a unique strong solution u(t,x) which almost surely belongs to the space
C ([0, 00), Co(K)) N leoc([O, 00), H') . The solutions u define in the space Co(K) a
Fellerian Markov process.

Consider the quantities J' = fot |u(r)|§od T — Kt, where K is a suitable constant,
depending only on B,. Based on (1.9), we prove in Lemma 2.8 that the random
variable sup,., J' has exponentially bounded tails. Since the non-autonomous term
in the linearised equation (1.2) is quadratic in u, i, then the method to treat the 2d
stochastic Navier-Stokes system, based on the Foias-Prodi estimate and the Girsanov
theorem (see [14] for discussion and references to the original works) allows us to
prove in Sect. 4

(stability) There is a constant L > 1 and two sequences {7, > 0,m > 1} and
{em > 0,m > 1}, &, — 0 as m — oo, such that if for any m > 1 solutions u(¢) and
u/(t) of (1.2) satisfy
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u(0), u'(0) € G = {u € Co(K) : |lull < 1/m, |ulr, <L},

then for each t > T, we have ||D(u(t)) — D(u/(t))||*£ < &m. Here || — v||7 is the
dual-Lipschitz distance between Borelian measures x and v on the space H (see
below Notation).

We also verify in Sect. 4 that

(recurrence) For each m > 1 and for any u, u6 € Co(K), the hitting time inf{r >
0:u(t) € Gy, u'(t) € Gp}, where u(t) and u'(r) are two independent solutions of
(1.2) such that u(0) = ug and u’(0) = ué, is almost surely finite.

These two properties allow us to use Theorem 3.1.3 from [14].% That result provides
the weakest known sufficient condition to guarantee the mixing in the random system,
corresponding to a stochastic PDE. It applies to systems in Banach spaces, assuming
that the random force 7 is non degenerate (in the sense that its sufficiently many Fourier
coefficients are non-zero), and does not imply the exponential mixing. We note that
there are other theorems which, under stronger assumptions on a system, claim the
exponential mixing (see Theorem 3.1.7 in [14] and discussion in that book); some of
them apply to systems in Hilbert spaces with degenerate random forces, see [9]. The
application of Theorem 3.1.3 from [14] implies the second main result of this work:

Theorem 1.2 There is an integer N = N (By, v) > 1 such thatifby # Ofor|d| < N,
then the Markov process, constructed in Theorem 1.1, is mixing. That is, it has a unique
stationary measure |, and every solution u(t) converges to w in distribution.

This theorem implies that for any continuous functional f on Co(K) suchthat|f (u)| <
Cec"% we have the convergence

Ef (u(t)) — / F) udv) as t— oo,

where u(?) is any solution of (1.2). See Corollary 4.3.

In Sect. 5 we explain that our results also apply to equations (1.1), considered in
smooth bounded domains in R” with Dirichlet boundary conditions; that Theorem 1.1
generalises to equations

u—vAu+ (i + a)g,(|u|2)u = n(t, x), (1.10)

where g, (¢) is a smooth function, equal to ", r > 0, for #+ > 1, and Theorem 1.2
generalises to Eq. (1.10) with 0 <r < 1.

Similar results for the CGL equations (1.10), where 7 is a kick force, hold without
the restriction that the nonlinearity is cubic, see in [14]. Same is true when 7 is the
derivative of a compound Poisson process, see [20].

Our technique does not apply to equations (1.10) with complex v. To prove analogies
of Theorems 1.1, 1.2 for such equations, strong restrictions should be imposed on n
and r. See [8,21] for equations with Rev > 0 and a > 0, and see [23] for the case

2 That result was introduced in [23], based on ideas, developed in [13] to establish mixing for the stochastic
2D NSE.
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Rev > 0 and @ = 0. We also mention the work [4] which treats interesting class
of one-dimensional equations (1.1) with complex v such that Rev = 0 and a = 0,
damped by the term «u in the L.h.s. of the equation.

Notation By H we denote the L2-space of odd 2m-periodic complex functions
with the scalar product (u, v) :=Re fK u(x)0(x)dx and the norm |ju||? := (u, u); by
H"™(K), m > 0— the Sobolev space of odd 27 -periodic complex functions of order
m, endowed with the homogeneous norm (1.5) (so H(K) = H and || - |o = || - ||). By
Co(Q) we denote the space of continuous complex functions on a closed domain Q
which vanish at the boundary 0 Q (note that the space Co(K) is formed by restrictions
to K of continuous odd periodic functions).

For a Banach space X we denote:

Cp(X)—the space of real-valued bounded continuous functions on X;

L(X)—the space of bounded Lipschitz functions f on X, given the norm

Ifllz == [floo +Lip(f) < 00, Lip(f) := Sip |f@) = f@)]lu—v]~";

B(X)—the o-algebra of Borel subsets of X;
P (X)—the set of probability measures on (X, B(X));
Bx(d),d > 0—the open ball in X of radius d, centered at the origin.

For u € P(X) and f € Cp(X) we denote (f, u) = (u, f) = fX fw)p(du). If
i, 2 € P(X), we set

lwr = pallz = sup{l(f, w1) — (f )| f € LX), I flle <1},
1 — m2llvar = sup{p1 () — pa(T)] : T € B(X)}.

The arrow — indicates the weak convergence of measures in P(X). It is well known
that u, — pif and only if |4, — pl72 — 0, and that ||y — pall < 2(n1 — 2 llvar-

The distribution of a random variable £ is denoted by D(&). For complex numbers
71, 22 we denote z1 - 72 =Re z1Z2;s0 z - dBs = (Re z)dﬂf + (Imz)dﬁi. We denote
by C, C etc. unessential positive constants.

2 Stochastic CGL equation

2.1 Strong and weak solutions

Let the filtered probability space (2, F, {F;}, P) be as in Introduction. We use the
standard definitions of strong and weak solutions for stochastic PDEs (e.g., see [12]):

Definition 2.1 Let 0 < T < o00. A random process u(t) = u(t,x),t € [0,T] in
Co(K) defined on a probability space (€2, F, P) is called a strong solution of (1.2),
(1.6) if the following three conditions hold:

(i) the process u(r) is adapted to the filtration F;;
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(i) its trajectories u(t) a.s. belong to the space
H([0, T := C([0, T1, Co(K)) N L*([0, T1, H');

(iii) foreveryt € [0, T] a.s. we have

t

u(t) = uo + /(Au — iluPuyds + £ (o),
0

where both sides are regarded as elements of H~!.

If (i)—(iii) hold for every T < oo, then u(t) is called a strong solution forz € R} =
[0, 0).

A continuous adapted process u(r) € Co(K) and a Wiener process ¢'(t) € H,
defined in some filtered probability space, are called a weak solution of (1.2)if D(¢') =
D(¢) and (i), (iii) of Definition 2.1 hold with ¢ replaced by ¢’.

Recalling notation (1.7), we note that By < Bf < 00. Let us fix any

m>n/2.

Problem (1.2), (1.6) with ug € H™ and B,, < +00 was considered in [16]. Choosing
6 = 1in [16], we state Theorem 4 of that work as follows:

Theorem 2.2 Assume that ug € H™ and B, < +00. Then (1.2), (1.6) has a unique
strong solution u which is in H([0, 00)) a.s., and for any t > 0, q > 1 satisfies the
estimates

]E Sup |u(s)|g0 SC(]’
selt,t+1]

Ellu()f < Cq.m. 2.1)

where Cy is a constant depending on |ug|oo, while Cy 1 also depends on |\ug ||, and
By,

In this theorem and everywhere below the constants depend on n and B,. We do
not indicate this dependence.

Remark 2.3 It was assumed in [16] that n < 3. This assumption is not needed for
the proof. The force n (¢, x) in [16] has the form 75 (z, x)B(t), where 8 is the standard
Brownian motion and 7(t, x) is a random field, continuous and bounded uniformly
in (¢, x), smooth in x and progressively measurable. The proof without any change
applies to forces of the form (1.3).

Our next goal is to get more estimates for solutions u (¢, x). Applying It6’s formula
to ||u||2, where u(t) = > ug(t)pqa(x) is a solution constructed in Theorem 2.2, we
find that
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1 1

@I = uol? + [ (20l + 28047 +2 3" ba [ wae) - dpaco)

0 deN"

Taking the expectation, we get for any r > 0
t
Bl +28 [ u(o)lRdr = luolP + 280t 22)
0

To get more involved estimates, we first repeat a construction from [16] which evokes
the maximum principle to bound the norm |u(z, x)| of a solution u(¢, x) as in Theo-
rem 2.2 in terms of a solution of a stochastic heat equation.

Let & € C*(R) be any function such that

é(r):[o forr <
>

s

Pl— B —

r forr

Writing u in the polar form u = re'? and using the Itd formula for &£(|ul) (see [6],
Section 4.5 and [14], Section 7.7), we get

t

£(r) =0+ / [s/(rxAr — |V +% > 0 (8 e - 00)?

0 deNn

1 .
+ &)~ (lpal” = (" -w)%)]dr +Y (), 23)

where & = £(|ug|), a - b = Reab for a, b € C and Y (¢) is the real Wiener process

t

Y0 =, /5/(r)bd¢d(ei¢ -dBa). 24
deN" 0

Since |u| < & + % , then to estimate |u| it suffices to bound &. To do that we compare
it with a real solution of the stochastic heat equation

b—Av=T, v(0) =, (2.5)

where vy := |&y|. We have that v = v; + vy, where v; is a solution of (2.5) with
Y := 0, and v; is a solution of (2.5) with vy := 0. By the maximum principle

sup [v1(H)]oo =< [V0loo = [U0l0o- (2.6)
>0
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To estimate vy, we use the following lemma established in Appendix to [16] (that
proof is reproduced in Appendix below); see [10,11,19] for more general results.

Lemma 2.4 Let vy be a solution of (2.5) with T = Zd bdfd (t, x),Bd(t) and vy = 0,
where progressively measurable functions f%(t, x) and real numbers by are such that
|fd (t, x)| < L for each d and t almost surely. Then a.s. vy belongs to C(R4, Co(K)),
and for anyt > 0 and p > 1 we have

E sup [l < C*(L, T, p). @)
selt,1+T]
Moreover,
Ellva |[t,t+1]><K ||29/2,9 <C(p,0)
forany 0 < 6 < 1, where || - ||cos2.0 is the norm in the Holder space of functions on
[t,t+ 1] x K.

It is crucial for this work that the constant C*(L, T, p) in (2.7) may be specified:

Lemma 2.5 The constant C*(L, T, p) in Lemma 2.7 may be chosen equal to
(C(T)LB)* p?.

This assertion is proved in Appendix, where we follow carefully the constants in
the proof of Lemma 2.4, given in [16].

Using the definition of & we see that the noise Y defined by (2.4) verifies the
conditions of Lemma 2.6 since the eigen-functions ¢y satisfy |gg(x)| < (2/ n)% for
allx € K.

Let us denote

h(t,x) =&(r(t, x)) —v(t, x).

Since a.s. u(t, x) is uniformly continuous on sets [0, T] x K,0 < T < oo, then a.s. we
can find an open domain Q = Q® C [0, o0) x K with a piecewise smooth boundary
d Q such that

r > inQ, r< outside Q.

-
sl

Then h(t, x) is a solution of the following problem in Q

2 1 2 2 2 1 200 2
h—Ah= 3" bileal® ~ (r|v¢| o DB g0 ) = g0, 28)

deNn deN"
hla,0 = (r —v)lyg, 0 =1 m, (2.9)

where 0. O stands for the parabolic boundary, i.e., the part of the boundary of O where
the external normal makes with the time-axis an angle > 7 /2. Note that m(0, x) = 0.
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We write h = hy + ho, where h is a solution of (2.8), (2.9) with g = 0 and h» is
a solution of (2.8), (2.9) with m = 0. Since each |@y(x)| is bounded by (277)"/? and
r> % in Q, then g(z, x) < (2/7)" By everywhere in Q. Now applying the maximum
principle (see [17]), we obtain the inequality

sup |2(1)|oo = C Bo,

t>0
(cf. Lemma 6 in [16]). Therefore
(D)oo < 5+ EC@)]oo < 5 + CBo+ [v1(1)loo + [12(D)|oo + 111 (1) |oo- (2.10)
To estimate /1 we note that
hl(s,X)=/m(E)G(S,x,dE),
810
where G (s, x, d€) is the Green function® for the problem (2.8), (2.9) with g = 0,

which for any (s, x) € Q is a probability measure in Q, supported by 94 Q. Here we
need the following estimate for G, proved in [16], Lemma 7, where

Ola.p) = QN ([a,b] x K).

Lemma 2.6 Let 0 < s < t. Then for any x € K we have G(t,x, Qo,1—s]) =
n nﬂz
G(t,x, Q-1 N34+ 0) <27e 4"

Since |y, o < %, we have

3
Ihl(t,X)ISZJr/Ivl(S)IG(t,x,dE)+ / [v2(6)|G (1, x, d§). (2.11)

3+ Q a+ Q
Estimate (2.6) implies
/ 1 ®)IG(. x. &) < lupos. @.12)
0+ 0
Let us take a positive constant 7" and cover the segment [0, ¢] by segments /1, ..., [},

where

t
jr=|z]+1  L=u-Tii-Tj+11

31t depends on w, as well as the set Q. All estimates below are uniform in w.
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To bound the last integral in (2.11), we apply Lemma 2.6 as follows:

Jr
/|vz<s>|G(r,x,ds>sZ/ [02(6)| G, x. de)

04+0 j=lQ1j

Jr )
n nmw )
<223 e T U sup (1) |
j:1 ‘L’E[j

where v2(7) is extended by zero outside [0, ¢]. Denoting

Jr
G =swp @, Y= ey,

Tel; j=1
and using that nw?/4 > 2 we get

/ v2(6)| G (1, x,d§) < CY. (2.13)
0+ 0

So by (2.12) |h1(D)los < 3 + luolos + CY. As |v2(t,x)| < ¢ < CY, then using

(2.10) and (2.6) we get for any ug € H™ and any ¢t > 0 that the solution u(z, x) a.s.
satisfies

lu(t, )| < 2|ugloc + CBy +2+ CY. (2.14)

Let us show that there are positive constants ¢ and C, not depending on ¢ and u,
such that

Elu(t)>, < Ce™ugl%, + C forall 1 > 0. (2.15)
Indeed, since v is a solution of the free heat equation, then

[V1(H)]oo < Ce Y uglae fort > 0. (2.16)

This relation, Lemma 2.6 and (2.6) imply that

/Ivl(S)IG(I,x,dé)S / i) G, x, d§) + / i) G(r, x, d§)

3+Q 6+Q[0v%] a+Q[%_[]

< sup 01 ()]0 G (1, X, Qg 47) + SUP |1 (5) o
t

> L
5=0 s>5

n _ﬁL —cit —ct
< luoloc22e™ 42 + Ce M uploo < Ce™"uploo- (2.17)
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By Lemmas 2.4 and 2.6

2

E /vz<s)G<z,x,ds> <c
+0

for any ¢+ > 0. Combining this with (2.10), (2.11), (2.16) and (2.17), we arrive at
(2.15).

Estimates (2.14) and (2.15) are used in the next section to get bounds for exponential
moments of |u]xo.

2.2 Exponential moments of |u(#)|xo

In this section, we strengthen bounds on polynomial moments of the random vari-
ables supsep, /41 lu(s)|%,, obtained in Theorem 2.2, to bounds on their exponential

moments. As a consequence we prove that integrals fOT [u(s) |§o ds have linear growth
as functions of 7 and derive exponential estimates which characterise this growth.
These estimates are crucially used in Sects. 3—4 to prove that Eq. (1.2) defines a
mixing Markov process.

Theorem 2.7 Under the assumptions of Theorem 2.2, for any ug € H™, anyt > 0
and T > 1 the solution u(t, x) satisfies the following estimates:

(1) There are constants c+(T) > 0 and C(T) > 0, such that for any ¢ € (0, c«(T)]
we have

Eexp(c sup |u(s)|2) < C(T)exp (Scluol,). (2.18)
selt,t+T]

(ii) There are positive constants Ao, C and c; such that
t
E exp(4 / lu(s)3,ds) < Cexp (ci|uol3, + cat), (2.19)
0

for each . < Ao, where c; = Const - A.

Proof Step I (proof of (i)). Due to (2.14), to prove (2.18) we have to estimate expo-
nential moments of Y2. First let us show that for a suitable Co(T) > 0 we have

1
Eexp(c sup |v2(s)|2 )< —— foranyr >0 and ¢ < .
selt,t+T] 7T 1 —cCy(T) Cao(T)

(2.20)
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Indeed, using (2.7) and Lemma 2.5 we get

2
e supyrpry V2Ol _ ic”(caw*)?"p"

Eexp(c sup |v2(s)]3 )-EZ - o

[t,t+T] p=0 p=0

1

2\p _—
< Z(Ce(C(T)B*) )" = 1 — ce(C(T)B,)?

p=0

since p! > (p/e)?. Thus we get (2.20) with C, := e(C(T)By)%. In particular,
Bl < (1-cCuT)™ v <e 2.21)

Next we note that since

2

Jr Jr
2§C2 Zeij(efjgj) §2C22e72j{j2
j=1

j=1
by Cauchy—Schwarz (we use that 7 > 1), then
EecY: < lj—T[ eZC’CQS’j{?
< 1 s

as ¢2 > 5. Denote pj = oz2j,j > 0. Choosing @ € (1,2) in a such a way that
Z;Tzo(l /pj) = 1, using the Holder inequality with these p;’s and (2.21), we find that

1 T

Jr . 1 ; 1
Ee” <] ( zp_,-c'czsff;z) 7 <11 (Eek’c%f) 7

J=0 Jj=0
Jr 1 Jjr /
H L= Cy(T) 7 =exp |~ D p;tIn(l — Cy) | < D),

j=0
(2.22)

if2¢/C? < cand ¢ < (2C3(T))_1. In view of (2.14), this implies (2.18).

Step 2. Now we show that forany A > 1 thereisatime 7 (A) suchthatfor7 > T (A)
we have

E exp (c( sup_ lu(s)2, + A|u(T)|go)) < Cexp (6cluol) (2.23)
sell,

for any ¢ € (0, &], where C and ¢ depend on A and 7.
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Indeed, due to (2.10) and (2.16),
(T)os <24 Ce " |uglos + CBo + [v2(T) o + 171 (T)| 0.

By (2.11),(2.17) and (2.13), |71 (T)|co < % +CY+Ce T |0 |co- Therefore choosing
a suitable T = T (A) we achieve that

cAlu(T)2, < c(C1A 4+ CLAY? + |ug|%) + 2¢Alva(T)|%.

Using Holder’s inequality we see that the cube of the term in the Lh.s. of (2.23) is
bounded by

C(A)e3c|uo\§oEe3cczAY2 Ee0cAIv2(T)3 e3¢ subsero. ) (930

Taking ¢ < ¢(A) and using (2.22), (2.20) and (2.18) we estimate the product by
C(A, T)e3luolx g15¢luol%  This implies (2.23).

Step 3. (proof of (ii)). Let Tp > 1 be such that (2.23) holds with A = 6. Letc > 0
and C > 0 be the constants in (2.18), corresponding to 7 = Ty, and let A < ¢/Ty. It
suffices to prove (2.19) for t = Tok, k € N, since this result implies (2.19) with any
t > 0 if we modify the constant C. By the Markov property,

Tok To(k—1)
X;, := Ey, exp )\/|u(s)|§ods =E,, | expr / lu(s)|%,ds)
0 0
To
X Butye- vy el [ o)) |
0

and by (2.18)

To
Eou(Tyk—1) EXP x/|u(s)|§ods < Cexp (SATolu(To(k — 1)1%,).
0

Combining these two relations we get

To(k—1)
X) < CE, exp | 2 / lu(s) 2. ds + 6To|u(To(k — 1)
0
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Applying again the Markov property and using (2.23) with A = 6 and ¢ = AT we
obtain

To(k—2)
X; < CEy, | exp(r / lu(s)[Z.ds)
0

x Eu((roe—2)) exp (ATo( sup |u(s)|§o+6|u<To>|§o>))

0<s<Ty
To(k—2)
< C’E,yexp | A / lu(s) 2, ds + 6ATo|u(To(k — 2))|2,
0
Iteration gives
To(k—m)
X5 < C"Eygexp | A / lu(s) 2. ds + 6ATo|u(To(k — m))|% | .

0

for any m < k. When m = k, this relation proves (2.19) with t = kT, C = 1,¢; =
61Ty and a suitable c;. O

In the lemma below by c1, ¢2 and A9 we denote the constants from Theorem 2.7(ii).

Lemma 2.8 Foranyug € H™ the solution u(t, x) satisfies the following estimate for
any p = 0

t
JP{ sup /|u(s)|§ods —Ki| > ,0} < C'expei|u’, — Ap), (2.24)
0

>0

where C' is an absolute constant, K = >~ (c2 + 1) and X is a suitable constant from
(0, 20l

Proof For any real number ¢ denote [¢t] = min{n € Z : n > t}. Then

t [t
/|u|§ods—Kr >ptcC /|u|§ods—1<m >p—K
0 0

So it suffices to prove (2.24) for integer ¢ since then the required inequality follows

with a modified constant C’. Accordingly below we replace sup, - by sup,,cry. By the
Chebyshev inequality and estimate (2.19) we have
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sup /lu(s)|2ds—Kn >p <ZIF’ /|u(s)|2ds>,0+Kn

neN neN 0

< Z exp(—A(p+Kn))C exp (ci |140|oo ~+ con)
neN

< Cexp(—hp+eiluols,) D exp (—n)
neN

= Cexp(ciluolZ, — Ap)

since AK —cy = 1. This proves (2.24). O

3 Markov process in Cy(K)

The goal of this section is to construct a family of Markov processes, associated with
Eq. (1.2) in the space Co(K). To this end we first prove a well-posedness result in that
space.

3.1 Existence and uniqueness of solutions

Let uo € CO(K ). Denote by I1,, : H—C™ the usual Galerkin projection and set
= I,n =: g“’” Let uy € C* be such that |ug — uglec—0 as m— oo and

|u0 |oo < |uoloo + 1 Let u™ be a solution of (1.2), (1.6) with regular right-hand side

n = n™ and regular initial condition u¢ = ug, existing by Theorem 2.2.

Fix any T > 0. For ¢ € (0, 1) and a Banach space X, let C*([0, T'], X) be the
space of all u € C([0, T], X) such that

. |u(tz) — u(ry)]
lullceqo,r1,x) = llullcqo,r,x) +  sup ———— <0
0<ti<n<T |2 — 11|

Let us define the spaces

U:=L*0,T], HHnC*(0,T], H Y,
V= L*(0,T], H'%)nC(0, T], H?),

where o € (0, %) and ¢ > 0. Then

space U is compactly embedded into V. 3.1

Indeed, by Theorem 5.2 in [18], &/ & L>([0,T], H'=¢).* On the other hand,
CY([0,T], H~") € C([0, T], H~?%), by the Arzela—Ascoli theorem.

4 One should note that if u(t) = Sugt)pg € C*([0,T1, H~1) and ”””CQ([O.T].H*I) < 1, then u

belongs to the space denoted in [18] by J#*(0, T; H™ ' H Ny = # and llull s < C(a, N) for a
suitable N, since for each d we have |lug || ge 0,77) < Cllugllceqo,r7) < C1ld| (fora@ = 0 or & = 1 this
is obvious, and for 0 < « < 1 this follows by interpolation).
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Lemma 3.1 For m > 1 let M, be the law of the solution {u™}, constructed above.
Then

(1) The sequence {M,,} is tight in V.

(ii) Any limiting measure M of M, is the law of a weak solution u(t), 0 <t < T,
of (1.2), (1.6). This solution satisfies (2.1) for 0 <t < T — 1 and (2.2), (2.18),
(2.24) for0 <t <T.

(i) If1 <t <T — 1, thenforany 0 < 6 < 1 and any g > 1 we have

Elli Iir,e+11xK G20 < C(q5 6, luoloo)- (3.2)

Proof The process u™ satisfies the following equation with probability 1
t
u™ (1) = ul + /(Au’" — iU Pu™)ds + " = VM.
0

Using (2.1) and (2.2), we get

”Wl*z([(),T],H_l) = C. (33)

It is well known that Brownian motion f; satisfies’

E|,3d|%'or([0j]) < Cq,

(e.g., see [25], Chapter X, §2). Since forany 0 < #; < t, < T we have

It — 17208 (1) — £ D12y < D11 72b7 |Balgeo.ry-
d

then for any m > 1 we get

Ellg™ < CyB%| < C, B2 (3.4)

”C"‘([O T1, 1)

Combining (3.3) and (3.4), we obtain

Ellu™ oy < 2BV

m 2
”C"‘([O,T],H‘l) + 2E”§ ”CO‘([O,T],H_') S C

”C"‘([O T1,
Jointly with (2.2) this estimate implies that [E||u™ ”Z%l < (C; for each m with a suitable
C1. Now (i) holds by (3.1) and the Prokhorov theorem.

Let us prove (ii). Suppose that M,, converges weakly to M in V. By Skorohod’s
embedding theorem, there is a probability space (<2, F,P) and V-valued random

5 By the Kolmogorov-Chentsov theorem, 8; € C¥([0, T']) a.s. So | - |ce ([0,77) is @ measurable seminorm
for the Gaussian process B, and by the Fernique theorem E exp (o |8y I%a ([O,T])) < oo for some positive
o; see [2]. This also implies the estimate.
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variables #™ and it, defined on it, such that each " is distributed as M,,, i is distributed
as M and P-a.s. we have u”—u in V.

Since V C Ly([0,T] x K) =: Ly, then u™ — u in Lj, a.s. For any R € (0, o]
and p, g € [1, oo) consider the functional f 1’; ,

Fr@) = [lul A R|LP(tt+1]><K) 7“ |u|L°°(tt+1]><K)

Since for p, R < oo it is continuous in Lj, then by (2.1) we have
E(flf(ﬁ)) = lim (f;;(flm)) < n%Cq for p, R < oc.
m-—00

Asforeachv(t, x) € L*®([t, t+1]x K) the function[1, 00l  p > [v|Lr(1,1+1]xK) €
[0, oo] is continuous and non-decreasing, then sending p and R to co and using the
monotone convergence theorem, we get Esup,c; 141 lii(s)|% < C,. Le., @i satisfies
(2.1).

By (2.2) for each m and N we have

[Ty a™ (1)) +2E/||HN~m(T)||2dT< g 1> + Bot.

Passing to the limit as m— o0 and then N— oo and using the monotone convergence
theorem, we obtain that i satisfies (2.2), where the equality sign is replace by <. We
will call this estimate (2.2)< .

By the same reason (cf. Lemma 1.2.17 in [14]) the process i (z) satisfies (2.18) and
(2.24).

Since u™ is a weak solution of the equation, then

") —ugy /(Au — Q@™ Pa™myds = ™ (3.5)

where £ is distributed as the process ¢. Using the Cauchy—Schwarz inequality and
(2.1), we get

/||Iu 2" — Iulu||ds<CE/ll(u — @) (|@"? + |al?)llds

<CE sup (|a"(®)|3 + i ()] )/II — ullds
t€l0,T]

1
2

te[0,T]

% T
<CJT (E sup (| (1)[%, + |ﬁ<t>|‘;o>) E / @™ — ii||>ds
0
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1
2

< C(T, luoloo) E/ i — s
0

Since the r.h.s. goes to zero when m — oo, then for a suitable subsequence mj— 0o
we have a.s.

t

t

H/|ﬁmk|2ﬁmkds—/|ﬁ|2ﬁdsH —0 as k—o0.

C([0.T].L%)
0 0

Therefore the Lh.s. of (3.5) converges to (ii (1) —ug — fot (At —ilii|*ii)ds) in the space
c(o, ], H~2) over the sequence {my}, a.s. So a.s. there exists a limit lim E’”k )=

{()’ and
i) — ug — /(Aa —ili|*a)ds = Z(1). (3.6)

We immediately get that Z(t) is a Wiener process in H 2, distributed as the process ¢.
Let 7, t > 0,bea sigma-algebra, generated by {u(s), 0 < s < ¢} and the zero-sets
of the measure P. From (3. 6), ¢ (1) is .7-} measurable. So ; (t) is a Wiener process on
the filtered probability space (2, F, {F;}, P), distributed as ¢.

Since u(t, x) satisfies (3.6), we can write # = u +uy +u3, where u; satisfies (2.5)
with Y = 0, vg = uo; u» satisfies (2.5) with Y = —i|i|%i, vy = 0 and u3 satisfies
(2.5) with Y = ¢, vg = 0. Now Lemma 2.4 and the parabolic regularity imply that
e C(0,T]; Co(K)),a.s. As i satisfies (2.2)< , then &t € H([0, T']) a.s. Since clearly
i(0) = ug a.s., then u is a weak solution of (1.2), (1.6).

Regarding ii(¢) as an Ito process in the space H, using (2.1) and applying to || (1)
the Ito formula in the form, given in [14], we see that |i(¢) ||2 satisfies the relation,
given by the displayed formula above (2.2). Taking the expectation we recover for i
the equality (2.2).

It remains to prove (iii). Functions #; and u#3 meet (3.2) by Lemma 2.4 and the
parabolic regularity. Consider u,. Since up = u — uy — u3, then u, satisfies (2.1).
Consider restriction of u» to the cylinder [r — 1, # + 1] x K. Since u satisfies the heat
equation, where the r.h.s. and the Cauchy data at (r — 1) x K are bounded functions,
then by the parabolic regularity restriction of u3 to [z, f + 1] x K also meets (3.2). O

The pathwise uniqueness property holds for the constructed solutions:

Lemma 3.2 Let u(t) and v(t),t € [0, T), be processes in the space Cy(K), defined
on some probability space, and let {(t) be a Wiener process, defined on the same

space and distributed as ¢ in (1.3). Assume that a.s. trajectories of u and v belong to
H([0, T)and satisfy (1.2), (1.6). Then u(t) = v(t) a.s.
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Proof For any R > 0 let us introduce the stopping time

g =inf{r € [0, T]: |u(t)|eo V |v(t)|eo > R}. (3.7)
The difference w := u — v satisfies

w— Aw ~+i(julfu — [v]*v) =0, w(0) =0.

Taking the scalar product in H of this equation with w when ¢t < tg and applying the
Gronwall inequality, we get that w(¢) = O for t < tg. Since u, v € H([0, T]), then
tg — T, as. as R—o0. Therefore w(t) = 0 for all ¢ € [0, T'], a.s. This completes
the proof. O

By the Yamada—Watanabe arguments (e.g., see [12]), existence of a weak solution
plus pathwise uniqueness implies the existence of a unique strong solution u(t), 0 <
t < T. Since T is any positive number, we get

Theorem 3.3 Letug € Co(K). Then problem (1.2), (1.6) has a unique strong solution
u(t), t > 0. This solutions satisfies relations (2.1), (2.2), (2.18) and (2.24); fort > 1
it also satisfies (3.2).

3.2 Markov process

Let us denote by u(t) = u(t, up) the unique solution of (1.2), corresponding to an
initial condition ug € Cop(K). Equation (1.2) defines a family of Markov process in
the space Co(K), parametrized by ug. For any u € Co(K) and I' € B(Cop(K)), we
set P;(u, I') = P{u(t, u) € I'}. The Markov operators, corresponding to the process
u(t), have the form

Pifw) = / Pi(u,dv) f(v), Pru@) = / P (u, T)p(du),

Co(K) Co(K)
where f € Cp(Co(K)) and u € P(Co(K)).
Lemma 3.4 The Markov process associated with (1.2) is Feller.

Proof Weneed to prove that’3; f € Cp(Co(K)) forany f € Cp(Co(K))andz > 0.To
this end, let us take any uq, vo € Co(K), and let # and v be the corresponding solutions
of (1.2) given by Theorem 3.3. Let us take any R > Rp := |ug|o V |V0|co- Let Tg be
the stopping time defined by (3.7), and let ug(¢) := u(t A tg) and vg(t) := v(t A TR)
be the stopped solutions. Then

IB: f(uo) — B f (o)l <E|f() — fup)l+E|f(v) — f(vp)l
+E[f(ur) — fop)| = L1 + I + I5.
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By (2.1) and the Chebyshev inequality, we have

max{/y, o} < 2| flecP{t > 1r} = 2| floP{U (1) V V(1) > R}

< % |floo sup EU@#)—0 as R—oo,
[oloo<Ro

where U (f) = sup¢(o [4(s)|oc and V (¢) is defined similarly. To estimate /3, notice
that w = u — v is a solution of

w— Aw ~+i(jul*u — [v]*v) =0, w(0) = ug — vy =: wo.

We rewrite this in the Duhamel form

t
w=ewy—i / eTOA(u)Pu — Jv*v)ds.

0

Since, by the maximum principle, |¢/7z|00 < |Z|oo, then

IATR
2 2
[w A TR0 < lwoloo + / [lulu — [v|"v]cods < |woloo
0
IATR
3 2 2 d
+ (lulz + 1vls) [wloods.
0

By the Gronwall inequality, /3 < E|w(f A TR)|oo < |Wolooe’X—0 as |wo|eo—>0.

Therefore the function B; f (u) is continuous in u € Co(K), as stated. O

A measure i € P(Co(K)) is said to be stationary for Eq. (1.2) if 7 = p for
every t > 0. The following theorem is proved in the standard way by applying the
Bogolyubov—Krylov argument (e.g. see in [14]).

Theorem 3.5 Equation (1.2) has at least one stationary measure [, Satisfying
Jon 1wl p(du) = % By and Jeoy el p(du) < oo for any ¢ < cx, where ¢ > 0
is the constant in assertion (i) of Theorem 2.7.

3.3 Estimates for some hitting times

For any r, L, R > 0 we introduce the following hitting times for a solution u(t) of
(1.2):

T = 1nf{r > 0 lu@)ll < r, Ju(®)]ee < L},
T g :=1inf{t > 0 : |u(t)|ec < R}.
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Lemma 3.6 There is a constant L > 0 such that for any r > 0 we have
Ee? ™t < C(1+ [u(0)[2,). (3.8)

where y and C are suitable positive constants, depending on r and L.

It is well known that inequality (3.8) follows from the two statements below (see
Proposition 2.3 in [22] or Section 3.3.2 in [14]).

Lemma 3.7 There are positive constants §, R and C such that
Ee®™2k < C(1 4 |u(0)|%,). (3.9)

Lemma 3.8 Forany R > Qandr > 0 there is anon-random time T > 0 and positive
constants p and L such that

P{u(T, up) € Bu(r) N Beyk)(L)} = p forany ug € Beyk)(R).

Proof of Lemma 3.7 Let us consider the function F(u) = max(|u|go, 1). We claim
that this is a Lyapunov function for Eq. (1.2). That is,

EFu(T,u)) <aF(u) for|u|e > R, (3.10)

for suitable a € (0,1),T > 0 and R’ > 0. Indeed, let |u|ooc > R’ and T > 1. Since
F(u) < 1+ |u|%, then

EFu(T,u)) <1+Eu(T, u)’, <1+ Ce T|u® +C,

where we used (2.15).

This implies (3.10). Since due to (2.15) for |u|ooc < R’ and any T > 1 we have
EF (u(T, u)) < C’then (3.9) follows by a standard argument with Lyapunov function
(e.g., see Section 3.1 in [24]). O

Proof of Lemma 3.8 Step 1. Let us write u(t) = v(t) + z(¢), where z is a solution of
(2.5) withvg = 0, i.e.,

t

2= D [ " %bapadpy.
deN" 0

Then
b—Av+ilv+zPw+2)=0, v(0) = uo. (3.11)

Clearly forany § € (0, 1] and T > 0 we have

0<t<T

PQs >0, where Qs = { sup |z(H) |0 < 8} .
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Step 2. Due to (3.11),
b—Av+il/fv=Ls, (1,x)€Qr=1[0,T]x K, (3.12)
where L3 is a cubic polynomial in v, v, z, Z such that every its monomial contains z

or Z. Consider the function r = |v(t, x)|. Due to (3.12), for w € Q5 and outside the
zero-set X = {r = 0} C Q7 the function r satisfies the parabolic inequality

F—Ar < C(S(r2 + 1), r0,x) =|v(0,x)| < R+ 1. (3.13)
Define 7 = inf{r € [0, T] : |r(#)|co = R + 2}, where 7 = T if the set is empty. Then

7> 0andfor0 <t < 7 therh.s. in (4.12)is < CS((R +2)2 4+ 1) = 8C(R). Now
consider the function

F(t,x)=r — (R+ 1) — t8C|(R).

Then 7 < 0 for t = 0 and for (¢, x) € 3(Q7 \ K). Due to (4.12) and the definition of
7, for (¢, x) € O, \ X this function satisfies

F— AF < C8(r* +1) = 8C1(R) < 0.
Applying the maximum principle [17], we see that 7 < 0in Q; \ K. Sofors < t

we have r(t,x) < (R + 1) + t8C{(R). Choose § so small that T6C;(R) < 1. Then
r(t,x) < R+2fort <7t.So71 =T and we have proved that

V)] = [F()]oc < R+2 YO<t<T if § <8(T,R), we Qs. (3.14)

Step 3. It remains to estimate ||v(?)|. To do this we first define v (¢, x) as a solution
of Eq. (1.2) with n = 0 and v1(0) = ug. Then

lor @ < e luoll, vl < luoloo < R, (3.15)

since outside its zero-set the function |v (¢, x)| satisfies a parabolic inequality with
the maximum principle (namely, Eq. (4.12) with § = 0).
Step 4. Now we estimate w = v — vj. This function solves the following equation:

w—Aw+i(jv+zP@+2) —vlfv) =0,  w(0) =0.
Denoting X = w+z (sothatv+z =X +_v1), we see that the term in the brackets is

a cubic polynor_nial P5 of the variables X, X, v and vy, such that every its monomial
contains X or X. Taking the H-scalar product of the w-equation with w we get that

1d 2 5
—— +IVw|? = —(i =0.
¥ lwl* + IVwl| (iPs,w), w0 =0
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By (3.15), for w € Q5 ther.h.s.is bounded by C’(R, T)(82+|w]||*+ ||w||*). Therefore
lw(T)|? < 2" RT)s2 (3.16)

everywhere in Qs, if § is small.
Step 5. Since u = w + v + z, then by (3.15), (3.14) and (3.16), forevery 6, T > 0
and for each w € Q5 we have

lu(T)| <8 +e OTR 4" RDTg — .

Since u = v + z, then |u(T)|so < 6 + R + 2. Choosing first T > T (R, r) and next
8 < 8(R,r, T) we achieve k < r. This proves the lemma with L = R + 3. O

4 Ergodicity

In this section, we analyse behaviour of the process u(¢) with respect to the norms
llu|| and |u|~ and next use an abstract theorem from [14] to prove that the process is
mixing.

4.1 Uniqueness of stationary measure and mixing

First we recall the abstract theorem from [14] in the context of the CGL equation (1.2).
Let us, as before, denote by P, (u, I') and B} the transition function and the family of
Markov operators, associated with Eq. (1.2) in the space of Borel measures in Co(K).
Let u(t) be a trajectory of (1.2), starting from a point u € Co(K). Let u'(¢) be an
independent copy of the process u(t), starting from another point «’, and defined on
a probability space €' which is a copy of €. For a closed subset G C Co(K) we set
G2 =G x G C Cy(K) x Co(K) and define the hitting time

T(G?) = inf{t > 0:u(t) € G,u'(t) € G}, 4.1

which is a random variable on € x ’. The following result is an immediate conse-
quence of Theorem 3.1.3 in [14].

Proposition 4.1 Let us assume that for any integer m > 1 there is a closed subset
G, C Co(K) and constants &,, > 0, T,, > 0 such that 5,,—0 as m— oo, and the
following two properties hold:

(1) (recurrence) For any u,u’ € Co(K), t(an) < o0 almost surely.
(i) (stability) For any u,u’ € G,,

sup || P (u, ) — P (u/a .)ll*ﬁ(Co(K)) <dm. 4.2)

t>Tp

Then the stationary measure | of Eq. (1.2), constructed in Theorem 3.5, is unique and
forany & € P(Co(K)) we have P;1 — p as t—o00.
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We will derive from this that the Markov process, defined by Eq. (1.2) in Cp(K), is
mixing:

Theorem 4.2 There is an integer N = N(By) > 1 such that if by # 0 for |d| < N,
then there is a unique stationary measure i € P(Co(K)) for (1.2), and for any
measure X € P(Co(K)) we have LA — p ast—00.

The theorem is proved in the next section. Now we derive from it a corollary:

Corollary 4.3 Let f(u) be a continuous functional on Co(K) such that | f(u)| <

Cfec|”|<2>o foru € Co(K), where ¢ < ¢4 (cx > 0 is the constant in assertion (i) of
Theorem 2.7). Then for any solution u(t) of (1.2) such that u(0) € Co(K) is non-
random, we have

Ef(u@) — (u, f) as t — oo.
Proof For any N > 1 consider a smooth function gy (r),0 < ¢n < 1, such that

ony = 1 for |r| < N and gy = 0 for [r| > N + 1. Denote fn(u) = on(u]oo) f ().
Then fy € Cp(Co(K)), so by Theorem 4.2 we have

[Efn@ (@) — (u, fn)l < (N, 1),
where k — 0 as t — oo, for any N. Denote v (dr) = D(|u(t)|so),t > 0. Due to
(2.18),

IE(fn (@) = fu@®)] < Cy /(1 — N (e V! (dr)
0

00
2 2
< Cfe(C—C*)N /ec*r v’(dr) < Cle(c—c*)N
0

(note that the r.h.s. goes to 0 when N grows to infinity). Similar, using Theorem 3.5
we find that |(u, fn) — (1, f)| = 0as N — oo. The established relations imply the
claimed convergence. O

4.2 Proof of Theorem 4.2

It remains to check that eq. (1.2) satisfies properties (i) and (ii) in Proposition 4.1 for
suitable sets G,,. Form € N and L > 0 we define

1
Gm.r = {u € Co(K): flull = —. Juloo = L}

(these are closed subsets of Cy(K)). For ug, u6 € G, 1 consider solutions

u=ult,up), ' =ultup,
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defined on two independent copies 2, ' of the probability space €2, and consider the
first hitting time (G}, ;) of the set G, ; by the pair (u(z), u’(t)) (this is a random
variable on Q x ', see (4.1)). The proof of the following lemma is identical to that
of Lemma 3.6.

Lemma 4.4 There is a constant L' > 0 such that for any m € N we have

2
Ee” ™ “ni) < C(1 + |ugl%, + lup|%) for all up, uy € Co(K),

where y and C are suitable positive constants.

Let us choose L = L' in the definition of the sets G, . in Proposition 4.1. Then
the property (i) holds and it remains to establish (ii), where P;(ug, -) = D(u(t)) and
Py (ug, -) = D(@u'(1)). From now on we assume that the solutions « and u are defined
on the same probability space. It turns out that it suffices to prove (4.2) with the norm
Il - ||*£ (Co(K)) replaced by || - ”*L( Y- To show this we first estimate the distance between

D(u(t)) and D(u’(¢)) in the Kantorovich metrics
ID () — D' O)llk @y = supl{|(f, D (1)) — (f, D' (1)))| : Lip(f) < 1}
in terms of
d = D) — D' () 1)-

where ¢ > 0 is any fixed number. Without loss of generality, we can assume that the
supremum in the definition of the Kantorovich distance is taken over f € L(H) such
that Lip(f) < 1 and f(0) = 0. By (2.18),

E(ecl\u(l)\l + et‘llu/(t)l\) <Cy. 4.3)

Setting fgr(u) = min{f(u), R} and using (4.3), the Cauchy—Schwarz and Chebyshev
inequalities, we get

Elf () = fr@@)] < EQu®)] = R) = < Cre” X,
A similar inequality holds for u’(r). Since || frll£(ay) < R + 1, then
Elf () — f' )] <2CLe™ R + (R + 1)d.
Optimising this relation in R, we find that E| f (u(¢)) — f (' (£))| < CZ Vd. Thus
1D (1)) = D' @)k a1y < CLVd,

By (3.2), the functions u(¢) and u'(¢) belong to C?(K) for any 0 € (0,1). The
following interpolation inequality is proved at the end of this section.
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Lemma 4.5 Foranyu € C?(K) we have

20 _n__
ltloo < C,pllull 72 |u] 157 . 4.4

By the celebrated Kantorovich theorem (e.g. see in [5]), we can find random vari-
ables & and &’ such that D(§) = D(u(t)), D) = D(u/(t)) and

Ell —&'|| = |D(u(t)) — D' ()l kwy < C)Vd.

Using (4.4), (3.2), this estimate and the Holder inequality, we find that

El§ — &'loo < CEIl§ —&'|75771§ — /|17 < (Cj~d)7i2 /"% = Cpdmim.

Therefore, for any f such that || f || c(c,x)) < 1 we have

|(f. D@(t)) — (f. D@ O)| = [Ef€) — £ <ElE — €'|oo < Crdim,

which implies that
. =y
ID@®) = DU Oz cyx0y = Cr (IP@®) = DU ONGr) ™ - @5)
Thus we have proved

Lemma 4.6 Assume that

sup [Py (0. ) — Pyt )iy < O (4.6)

t>Ty

for all uo,u6 € Gpy.1, where 8, — 0. Then (4.2) holds for G,, = Gp, 1 with
_0_
8 = Crén™.
So to prove Theorem 4.2 it remains to verify (4.6).

Proof of (4.6) In view of the triangle inequality we may assume that in (4.6) u;, = 0.

Step 1. In this step we prove that it suffices to establish (4.6) for solutions of
an equation, obtained by truncating the nonlinearity in (1.2). For any p > 0 and
any continuous process {z(#) : t > 0} with range in Co(K) we define the stopping
time

t
% = inf zzO:/|z(r)|§odr—Ktzp ,
0

where K is the constant in Lemma 2.8 (as usual, inf J = 00). We set QF, = {t* < oo}
and ¢ = ]P’(Qf)). Then
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Tt < Ce 7, 7' < Ce VP 4.7

for suitable C, y > 0 and for any p > 0. Consider the following auxiliary equation:
b — Av+i|v*v + APy (v — u) = n(t, x), v(0) = 0. 4.8)

Consider 7" and define €2} and 7" as above. Define the stopping time

T = min{t", t”/, '} < o0,
and define the continuous processes (), u'(¢) and v(¢) as follows: for ¢ < 7 they
coincide with the processes u, u’ and v respectively, while for z > 7 they satisfy the
heat equation

z—Az=n.

Due to (4.7)

D) =D@E)IE+IDW (1)) = D@ () < 4P{r < oo} < 8Ce 7" +4x".
(4.9)

So to estimate the distance between D(u(t)) and D(u’(¢)) it suffices to estimate 7
and the distance between D(ii(¢)) and D(it' (¢)).

Step 2. Let us first estimate the distance between D(#(r)) and D(0(¢)). Equations
(1.2) and (4.8) imply that for ¢ < 7 the difference w = ¥ — & satisfies

W — Aw +i (|90 — [a]*a) + APyw =0,  w(0) = —uo,

where [(|9]20 — |a|%d, w)| < C(|i|% +19|%,) |wl|? . Taking the H-scalar product of
the w-equation with 2w, we get that

d 2 12 Vw|? + 20| Pyw]|? < C(li)? 2 2 < 4.10
EIIwII +2|Vw|” + 2A| Pyw|” < C(lil5 + v lwl®,  t<7. (4.10)

Since |[Vw|? > an||Onyw|?, where Qn = id — Py, then
2| Vwl* + 24 Pyw]* = 2a1[lw®, A1 == minfay, A}.
Choosing A and N so large that A1 — CK > 1 and applying to (4.10) the Gronwall

inequality, we obtain that

t
lwll® < lluoll® exp [ 2117 + C/(m%o + 1012, ds
0

A

1 1
— exp(—2(a1 — CK)1 +2Cp) < —5 exp (=2t +2Cp),
m m
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for t < . Clearly for t > t we have (d/dt)||w||> < —2||w]||>. Therefore
2 1
lw|* < —5exp(—2t+2Cp)  Vi=0 as. (4.11)
m

So forany f € L(H) such that || f||z < 1 we get

: ; 1_ 1o
ECF @) = fG@N < (Blwl?)” <~ =i dm, p.1).
Thus
ID@®) = DO py < dm, p, 1. *.12)

Step 3. To estimate the distance between D(0(¢)) and D (i’ (¢)) notice that, without
loss of generality, we can assume that the underlying probability space (2, F, P) is
of the particular form: €2 is the space of functions u € C(R4, Co(K)) that vanish
att = 0, P is the law of ¢ defined by (1.3), and F is the completion of the Borel
o -algebra of © with respect to IP. For any w. € €2, define the mapping ® : 2— Q by

t

D (w), = w; — )»/ngrPN (ﬁ(s) - L?(s))ds.
0

Clearly, a.s. we have
W@y = 5°@) forallt > 0. (4.13)

Note that the transformation & is finite dimensional: it changes only the first N com-
ponents of a trajectory ;. Due to (4.11), almost surely

o
1
2 2C,
/”PNw(S)” ds < We P,
0

This relation, the hypothesis that b; # 0 for any |d| < N, and the argument in
Section 3.3.3 of [14], based on the Girsanov theorem, show that

1 0P = Plluay < <2 —: d(m, p). (4.14)
m

Using (4.13), we get D(0(¢)) = ¥ oP = i1} o (P o P), where ¥ stands for the random
variable w— 0% (t). Therefore,

ID@ ) — D@ )y < 2DE@) — D@ @) lvar
<2|® o P —P|lygr < 2d(m, p). (4.15)

@ Springer



Stoch PDE: Anal Comp (2013) 1:389-423 417

Step 4. Now let us prove (4.6). We get from (4.7) and (4.14) that
7’ =PQY =P~ Q) = (@ o P)Q! < PQE +d(m, p) < Ce™" +d(m, p).
Due to (4.9), (4.12), (4.15) and the last inequality we have

ID@@) = D' )|} < 12Ce™"" +d(m, p. 1) + 6d(m, p)

IA

1 6
12Ce™ 7 + Zecf’" + —C(p) =: Dy (1).

Let us choose p = p(m), where p(m) — oo in such a way that %C(p(m)) — 0, and
next take 7, = Cp(m). Then for t > T,, we have D,,(t) < ,, — 0. This completes
the proof.

Proof of Lemma 4.5 Let us take any u € C?, u # 0 and set M := |u|oo, U := [u|co.
Take any x, € K such that |u(x,)| = M. To simplify the notation, we suppose that
xx = 0. Regarding u as an odd periodic function on R" we have

lu@x) >M—|x|°U  Vax.
The Lh.s of this inequality vanishes at |x| = (M/U)"/? =: r, < 1. Integrating the

squared relation we get

Fx
ul> > C/(M — U2 lar

*

0
I
— CUz/(r20rn—l _ 2rfrl’l+0—l 4 rn+29—l)dr
0

= CU? % (l _ 2 !

n nt0 +29) = UPrem, 0 = 0.

Replacing in this inequality r, by its value we get (4.4). O

5 Some generalisations

(1) Our proof, as well as that of [16], applies practically without any change to
equations (1.1), where v > 0 and @ > 0. Indeed, scaling the time and u we
achieve v = 1 (the random force scales to another force of the same type). Now
consider Eq. (1.1) with v = 1 and @ > 0, and write the equation for &£(r(t, x)).
The integrand in the r.h.s. of Eq. (2.3) gets the extra term —&’(r)ar?. Accordingly,
the r.h.s. part g (¢, x) of Eq. (2.8) gets the non-positive term —ar?. Since the proof
in Sect. 2 only uses that g < 217 > bﬁ |a|?, it does not change. In Sects. 3—4, as
well as in [16], we only use results of Sect. 2 and the fact that the nonlinearity in
the equation, as well as its derivatives up to order m, admit polynomial bounds.
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For the argument in Sect. 4 it is important that the nonlinearity’s derivative grows
no faster than C|u|?.

(2) The proof of Theorem 2.2, given in [16], applies with minimal changes if the
Sobolev space H"(K) with m > n/2 (a Hilbert algebra) is replaced by the
Sobolev space W7 (K) with p > n (a Banach algebra). It implies the assertions
of the theorem with the norm || - ||,, replaced by the norm | - |y1.», under the
condition that By < oo. The argument in Sects. 2.1-3.2 remains true in this setup
since it does not use the H™-norm. So to establish results of Sect. 3 one can use
the W1-P-solutions instead of H™-solutions.

(3) Similar to (1) results of Sects. 2.1-3.2 remain true for Eq. (1.10).

(4) Consider Eq. (1.2) in a smooth bounded domain O C R” with Dirichlet boundary
conditions:

u lgo=0. (5.1
Denote by {¢;, j > 1} the eigenbasis of —A,
—Apj=xjpj, j=z1

and define the random field ¢(z, x) as in Sect. 1, i.e. ¢ = Z/’ biBj(®)p;(x).
Denote '

By = bjlgjlec.  Bi= > bIVel}.
J J

The Wl’/’-argument as in (2) applies to Eq. (1.2), (5.1) and proves an analogy
of Theorem 2.2 with the || - ||,,-norm replaced by the | - |y1,,-norm, under the
assumption that B,, By < oo. The only difference is that now the assertion of
Lemma 2.4 follows not from [16], but from the result of [10] (also see [11,19]).
After that the proof goes without any changes compare to Sects. 1-4 and estab-
lishes for Egs. (1.2), (5.1) analogies of the main results of this work (with the
space Co(K) replaced by Co(©) and H'—by HO1 O)):

Theorem 5.1 Assume that B, < oo. Then

(1) for any ug € Co(O) problem (1.2), (1.6), (5.1) has a unique strong solution u
such that u € H(0, 00) a.s. This solution defines in the space Co(O) a Fellerian
Markov process.

(ii) This process is mixing.

The first assertion remains true if in Eq. (1.2) we replace the nonlinearity by
igr(lul>)u,0 < r < oo. If r < 1, then the second assertion is also true. It is
unknown if the systems, corresponding to equations with » > 1, are mixing (this
is a well known difficulty: it is unknown how to prove mixing for SPDEs without
non-linear dissipation and with a conservative nonlinearity which grows at infinity
faster then in the cubic way).
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(5) Lemmas 2.8, 4.4 and estimate (4.5) allow to apply to Eq. (1.2) the methods, devel-
oped recently to prove exponential mixing for the stochastic 2d Navier-Stokes
system (see in [14] Theorems 3.1.7, 3.4.1 as well as discussion of this result). It
implies that the Markov process, defined by Eq. (1.2), is exponentially mixing,
i.e.in Theorem 4.2 the distance ||PBFA — u||> converges to zero exponentially fast.
See Sect. 4 of [14] for consequences of this result. Proof of this generalization is
less straightforward than those in (1-4) and will be presented elsewhere.

6 Appendix. Proof of Lemma 2.5

Let v be a solution of the stochastic heat equation

D= Av="T= D baf*(t.x)a®). v(0)=0, 6.1)
deN"

where f9(t, x) are progressively measurable functions such that | f¢(z, x)| < L for
eachd, t and x almost surely, b, are real numbers satisfying (1.4), and B, are standard
independent real-valued Brownian motions. By Lemma 2.4, we know that v belongs
to C(Ry, Co(K)) a.s.,and forany > Oand p > 1 estimate (2.7) holds. In this section
we specify (2.7) and show that there is a constant C(7") > 0 such that

E sup |U(T)|§g < (C(T)LB.)*! p?, (6.2)
relt,t+T1

for all # > 0. To do this we reproduce the proof of Lemma 2.4, given in the Appendix
to [16], tracing explicitly the values of the constants, involved in the estimates.

Step 1. Clearly it suffices to prove (6.2) for T = 1. Moreover, it suffice to do this in
the case when only one of the constants b, is non-zero. Indeed, let v, be the solution
of (6.1) with T = f4(z, x)Bd (1), and assume that we have

E sup |vg(0)2l < (CL)*Pp? V. 6.3)
Telt,t+1]

Then v = " ;. bava, and the Minkovski inequality gives

1/2p 1/2p
2p 2p
E sip @) =(E(X b swp ul)
et t+1] P et t+1]

<> by(E sup [vg??)"*" < B.CL/p.
J Telt,t+1]

so we get (6.2).

Step 2 (estimates for increments). Let us write v, f, B instead of vy, f d Ba. At this
step we show that for any 6 € (0, 1/2) there is a constant C(6) > 0 such that for any
t1,1p € Rand x1, xo € R" with |t; — | < 1 and |x; — x| < 1 we have
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ya
Elv(ty, x1) — v(t2, x2)|” < CO) p2 LP(It) — 12| + |x1 — x2])%P, (6.4)

forany p > 1. Let us denote g(z, 7) := e""D2(f(r, x1) — f(1, x2)) and

t

U:=v(t,x1) —v(t,xp) = /g(t, 7)dB (7).

0

The quadratic variation of U is given by X (¢) := fot g(t, 7)%dr. Using the estimate

e ullcoxy < CO 5 e Juloo,
valid for any 6 € (0, 1) with suitable ¢ > 0 and C(0) (e.g., see Lemma Al in [16]),
we get that

t
X(t) < C(O)L*x) — x2|¥ / %7 %Tdr < C1(0)|x1 — x2|*7 L2
0

Applying the Burkholder—Davis—Gundy (BDG) inequality (see [3]), we get
EUI < P ptEXE < COPL phixi —xl”. 65)

Now let us prove similar estimate for the time-increments. For any § > 0 write
8-time increment as

t46

u(x,t+8) —u(x,t) = /e(t+5_T)Af(r, x)dB(7)

t

t
+/(e(’+5—T)Af(r, x) — e(’_f)Af(r, x))dB (1)
0

t+6 t
=: / hi(t, T)dB(t) +/h2(t, r)dp(r) = I + L.
t 0
If we show that
E|L|? < C(O)PLP p5s5,  E|L|P < CO)PLP p*s°P, (6.6)

for any 6 € (0, 1), then combining (6.5) with (6.6) we will get (6.4). But since the
quadratic variations of /1 and /; satisfy
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t+6
/h%(r, 7)dr < L?S,

13
13 t

/h%(r, t)dr < C(H)L*s% / te™%dr < C1(0)L?6%,
0 0

then the BDG inequality implies (6.6) in the same way as above.

Step 3 (the Kolmogorov argument). Now we prove (6.3). To simplify calculations
we scale K to the unit cube, K := [0, 1]”, and assume that = O (if not, we consider
the function v'(¢’, x) = v(t + ¢/, x)). We specify 6 = 1/3, denote Q = [0, 1] x K =
[0, 17" and define the sets

Ky=1{kezZV*' k27N € 0}, N>1.

Forany e = (e1, ..., e,41) € Z"! such that |e| = maxi<j<uy1lej| = 1, we set
g% = |u((k +e)2=N) — v(k2~N)|. By Step 2 we have

ElgY|P < CPprLra PN, ©.7)
for every p > 1. For ¢, R > 0 let us introduce the events
Al =lwe: g = RV}, AN =Uix <U|g‘:1A£{;) :
From (6.7) and the Chebyshev inequality we get
PlAYy) < RTPq7PVEIGY < crRoPqTIN B LP2T PN,

For each N the total number of events .A,]X;; is not greater than C’ 20+DN ' = C'(n).
Thus

LAY} = C'CPR™Pq PN s LrotDN=0NS = cler R ph Lral,

where o = q‘p2("+l)_p/3.Letus chooseg = 2-1/6 and p > 6(n+2). Theno < 1/2,
and for the event A4 := Uy> 1Aflv we have

P{A} < C'CPR PpILP. (6.8)
Any point x € Q = [0, 17"*! can be represented in the form x = >0 e(j)27,
where e(j) € Z", |e(j)] < 1. Letus set x(0) = 0 and x(m) = X7 e(j)27/ if

m > 1. Then v(¢, x(0)) = 0 for all # > 0, and for any w ¢ A

lv(t, x(m)) — v(r, x(m + 1))| < Rg™ = R27™/°,
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Therefore,

o0
(. x)| < R Y270 = R2VO21/0 1),

m=1

Combining this with (6.8), we get

—_ P
P{|[v]l~) > R} < C{(R+ 1) PpILP

forany R > O and p > 6(n + 2). Thus for any p like that we have

e¢]

o0
Blvlfxig) = [+ aB(Ivline =3 = (b= 1) [ 27 Bllvlimg) = 2l
0

0
0
< C{’ngP/xP*Z(x +1)Pdx < CPpoLP,
0

which implies (6.3) with a suitable C.
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