
Stoch PDE: Anal Comp (2013) 1:389–423
DOI 10.1007/s40072-013-0010-6

ORIGINAL ARTICLE

Stochastic CGL equations without linear dispersion
in any space dimension

Sergei Kuksin · Vahagn Nersesyan

Received: 5 August 2012 / Published online: 17 May 2013
© Springer Science+Business Media New York 2013

Abstract We consider the stochastic CGL equation

u̇ − ν�u + (i + a)|u|2u = η(t, x), dim x = n,

where ν > 0 and a ≥ 0, in a cube (or in a smooth bounded domain) with Dirichlet
boundary condition. The force η is white in time, regular in x and non-degenerate.
We study this equation in the space of continuous complex functions u(x), and prove
that for any n it defines there a unique mixing Markov process. So for a large class of
functionals f (u(·)) and for any solution u(t, x), the averaged observable E f (u(t, ·))
converges to a quantity, independent from the initial data u(0, x), and equal to the
integral of f (u) against the unique stationary measure of the equation.

Keywords Complex Ginzburg-Landau equation · Random force ·Mixing ·Markov
process

1 Introduction

We study the stochastic CGL equation

u̇ − ν�u + (i + a)|u|2u = η(t, x), dim x = n, (1.1)
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where n is any, ν > 0, a ≥ 0 and the random force η is white in time and regu-
lar in x . All our results and constructions are uniform in a from bounded intervals
[0, C], C ≥ 0. Since for a > 0 the equation possesses extra properties due to the
nonlinear dissipation (it is “stabler”), then below we restrict ourselves to the more
complicated case a = 0; see discussion in Sect. 5. This equation is the Hamiltonian
system u̇ + i |u|2u = 0, damped by the viscous term ν�u and driven by the ran-
dom force η. So it makes a model for the stochastic Navier-Stokes system, which
may be regarded as a damped–driven Euler equation (which is a Hamiltonian system,
homogeneous of degree two). In this work we are not concerned with the interesting
turbulence-limit ν → 0 (see [15,16] for some related results) and, again to simplify
notation, choose ν = 1. That is, we consider the equation

u̇ −�u + i |u|2u = η(t, x). (1.2)

For the space-domain we take the cube K = [0, π ]n with the Dirichlet boundary
conditions, which we regard as the odd periodic boundary conditions

u(t, . . . , x j , . . .) = u(t, . . . , x j + 2π, . . .) = −u(t, . . . ,−x j , . . .) ∀ j.

Our results remain true for (1.2) in a smooth bounded domain with the Dirichlet
boundary conditions, see Sect. 5.

The force η(t, x) is a random field of the form

η(t, x) = ∂

∂t
ζ(t, x), ζ(t, x) =

∑

d∈Nn

bdβd(t)ϕd(x). (1.3)

Here bd are real numbers such that

B∗ :=
∑

d∈Nn

|bd | < ∞, (1.4)

βd = βR
d + iβ I

d , where βR
d , β I

d are standard independent (real-valued) Brown-
ian motions, defined on a complete probability space (
,F , P) with a filtration
{Ft ; t ≥ 0}.1 The set of real functions {ϕd(x), d ∈ N

n} is the L2-normalised sys-
tem of eigenfunctions of the Laplacian,

ϕd(x) = (2/π)n/2 sin(d1x1) · . . . · sin(dn xn), (−�)ϕd = αdϕd , αd = |d|2.

Since we impose no restriction on the dimension n, then global solvability of Eq. (1.2)
cannot be established using the L2-Sobolev spaces. Moreover, as the best a priori
estimates, available for its solutions, turned out to be in terms of the L∞-norm, then the
methods, developed to treat stochastic PDE in reflexive Banach spaces (e.g., see [1,7])
also are not applicable to (1.2). Instead we take the approach of the work [16] which

1 The filtered probability space (
,F , {Ft }, P), as well as all other filtered probability spaces, used in
this work, are assumed to satisfy the usual condition, see Definition 2.29 in [12].
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exploits essentially the well known fact that the deterministic equation (1.2)η=0 implies
for the real function |u(t, x)| a parabolic inequality with the maximum principle.

Denote by Hm the Sobolev space of order m, formed by complex odd periodic
functions and given the norm

‖u‖m = ‖(−�)m/2u‖, (1.5)

where ‖ · ‖ is the L2-norm on the cube K . In Sect. 2.1 we repeat some construction
from [16] and state its main result, which says that if

u(0, x) = u0(x), (1.6)

where u0 ∈ Hm, m > n/2, and

Bm :=
∑

d

b2
d |d|2m < ∞, (1.7)

then (1.2), (1.6) has a unique strong solution u(t) ∈ Hm . Moreover, for any T ≥ 0
the random variable XT = supT≤t≤T+1 |u(t)|2∞ satisfies the estimates

EXq
T ≤ Cq ∀ q ≥ 0, (1.8)

where Cq depends only on |u0|∞ and B∗. Analysis of the constants Cq , made in
Sect. 2.2, implies that suitable exponential moments of the variables XT are finite:

EecXT ≤ C ′ = C ′(B∗, |u0|∞), (1.9)

where c > 0 depends only on B∗.
Denote by C0(K ) the space of continuous complex functions on K , vanishing at

∂K . In Sect. 3 we consider the initial-value problem (1.2), (1.6), assuming only that
B∗ < ∞ and u0 ∈ C0(K ). Approximating it by the regular problems as above and
using that the constants in (1.8), (1.9) depend only on B∗ and |u0|∞, we prove

Theorem 1.1 Let B∗ < ∞ and u0 ∈ C0(K ). Then the problem (1.2), (1.6)
has a unique strong solution u(t, x) which almost surely belongs to the space
C([0,∞), C0(K )) ∩ L2

loc([0,∞), H1) . The solutions u define in the space C0(K ) a
Fellerian Markov process.

Consider the quantities J t = ∫ t
0 |u(τ )|2∞dτ − K t , where K is a suitable constant,

depending only on B∗. Based on (1.9), we prove in Lemma 2.8 that the random
variable supt≥0 J t has exponentially bounded tails. Since the non-autonomous term
in the linearised equation (1.2) is quadratic in u, ū, then the method to treat the 2d
stochastic Navier-Stokes system, based on the Foias-Prodi estimate and the Girsanov
theorem (see [14] for discussion and references to the original works) allows us to
prove in Sect. 4

(stability) There is a constant L ≥ 1 and two sequences {Tm ≥ 0, m ≥ 1} and
{εm > 0, m ≥ 1}, εm → 0 as m →∞, such that if for any m ≥ 1 solutions u(t) and
u′(t) of (1.2) satisfy
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u(0), u′(0) ∈ Gm = {u ∈ C0(K ) : ‖u‖ ≤ 1/m, |u|L∞ ≤ L},

then for each t ≥ Tm we have ‖D(u(t)) − D(u′(t))‖∗L ≤ εm . Here ‖μ − ν‖∗L is the
dual-Lipschitz distance between Borelian measures μ and ν on the space H0 (see
below Notation).

We also verify in Sect. 4 that
(recurrence) For each m ≥ 1 and for any u0, u′0 ∈ C0(K ), the hitting time inf{t ≥

0 : u(t) ∈ Gm, u′(t) ∈ Gm}, where u(t) and u′(t) are two independent solutions of
(1.2) such that u(0) = u0 and u′(0) = u′0, is almost surely finite.

These two properties allow us to use Theorem 3.1.3 from [14].2 That result provides
the weakest known sufficient condition to guarantee the mixing in the random system,
corresponding to a stochastic PDE. It applies to systems in Banach spaces, assuming
that the random force η is non degenerate (in the sense that its sufficiently many Fourier
coefficients are non-zero), and does not imply the exponential mixing. We note that
there are other theorems which, under stronger assumptions on a system, claim the
exponential mixing (see Theorem 3.1.7 in [14] and discussion in that book); some of
them apply to systems in Hilbert spaces with degenerate random forces, see [9]. The
application of Theorem 3.1.3 from [14] implies the second main result of this work:

Theorem 1.2 There is an integer N = N (B∗, ν) ≥ 1 such that if bd �= 0 for |d| ≤ N,
then the Markov process, constructed in Theorem 1.1, is mixing. That is, it has a unique
stationary measure μ, and every solution u(t) converges to μ in distribution.

This theorem implies that for any continuous functional f on C0(K ) such that | f (u)| ≤
Cec|u|2∞ we have the convergence

E f (u(t)) →
∫

f (v) μ(dv) as t →∞,

where u(t) is any solution of (1.2). See Corollary 4.3.
In Sect. 5 we explain that our results also apply to equations (1.1), considered in

smooth bounded domains in R
n with Dirichlet boundary conditions; that Theorem 1.1

generalises to equations

u̇ − ν�u + (i + a)gr (|u|2)u = η(t, x), (1.10)

where gr (t) is a smooth function, equal to tr , r ≥ 0, for t ≥ 1, and Theorem 1.2
generalises to Eq. (1.10) with 0 ≤ r ≤ 1.

Similar results for the CGL equations (1.10), where η is a kick force, hold without
the restriction that the nonlinearity is cubic, see in [14]. Same is true when η is the
derivative of a compound Poisson process, see [20].

Our technique does not apply to equations (1.10) with complex ν. To prove analogies
of Theorems 1.1, 1.2 for such equations, strong restrictions should be imposed on n
and r . See [8,21] for equations with Re ν > 0 and a > 0, and see [23] for the case

2 That result was introduced in [23], based on ideas, developed in [13] to establish mixing for the stochastic
2D NSE.
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Re ν > 0 and a = 0. We also mention the work [4] which treats interesting class
of one-dimensional equations (1.1) with complex ν such that Re ν = 0 and a = 0,
damped by the term αu in the l.h.s. of the equation.

Notation By H we denote the L2-space of odd 2π -periodic complex functions
with the scalar product 〈u, v〉 :=Re

∫
K u(x)v̄(x)dx and the norm ‖u‖2 := 〈u, u〉; by

Hm(K ), m ≥ 0— the Sobolev space of odd 2π -periodic complex functions of order
m, endowed with the homogeneous norm (1.5) (so H0(K ) = H and ‖ ·‖0 = ‖·‖). By
C0(Q) we denote the space of continuous complex functions on a closed domain Q
which vanish at the boundary ∂ Q (note that the space C0(K ) is formed by restrictions
to K of continuous odd periodic functions).

For a Banach space X we denote:
Cb(X)—the space of real-valued bounded continuous functions on X ;
L(X)—the space of bounded Lipschitz functions f on X , given the norm

‖ f ‖L := | f |∞ + Lip( f ) < ∞, Lip( f ) := sup
u �=v

| f (u)− f (v)| ‖u − v‖−1;

B(X)–the σ -algebra of Borel subsets of X ;
P(X)—the set of probability measures on (X,B(X));
BX (d), d > 0—the open ball in X of radius d, centered at the origin.
For μ ∈ P(X) and f ∈ Cb(X) we denote ( f, μ) = (μ, f ) = ∫

X f (u)μ(du). If
μ1, μ2 ∈ P(X), we set

‖μ1 − μ2‖∗L = sup{|( f, μ1)− ( f, μ2)| : f ∈ L(X), ‖ f ‖L ≤ 1},
‖μ1 − μ2‖var = sup{|μ1(�)− μ2(�)| : � ∈ B(X)}.

The arrow ⇀ indicates the weak convergence of measures in P(X). It is well known
that μn ⇀ μ if and only if ‖μn −μ‖∗L → 0, and that ‖μ1−μ2‖∗L ≤ 2‖μ1−μ2‖var .

The distribution of a random variable ξ is denoted by D(ξ). For complex numbers
z1, z2 we denote z1 · z2 =Re z1 z̄2; so z · dβd = (Re z)dβR

d + (Im z)dβ I
d . We denote

by C, C1 etc. unessential positive constants.

2 Stochastic CGL equation

2.1 Strong and weak solutions

Let the filtered probability space (
,F , {Ft }, P) be as in Introduction. We use the
standard definitions of strong and weak solutions for stochastic PDEs (e.g., see [12]):

Definition 2.1 Let 0 < T < ∞. A random process u(t) = u(t, x), t ∈ [0, T ] in
C0(K ) defined on a probability space (
,F , P) is called a strong solution of (1.2),
(1.6) if the following three conditions hold:

(i) the process u(t) is adapted to the filtration Ft ;
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(ii) its trajectories u(t) a.s. belong to the space

H([0, T ]) := C([0, T ], C0(K )) ∩ L2([0, T ], H1);

(iii) for every t ∈ [0, T ] a.s. we have

u(t) = u0 +
t∫

0

(�u − i |u|2u)ds + ζ(t),

where both sides are regarded as elements of H−1.

If (i)–(iii) hold for every T < ∞, then u(t) is called a strong solution for t ∈ R+ =
[0,∞).

A continuous adapted process u(t) ∈ C0(K ) and a Wiener process ζ ′(t) ∈ H ,
defined in some filtered probability space, are called a weak solution of (1.2) if D(ζ ′) =
D(ζ ) and (ii), (iii) of Definition 2.1 hold with ζ replaced by ζ ′.

Recalling notation (1.7), we note that B0 ≤ B2∗ < ∞. Let us fix any

m > n/2.

Problem (1.2), (1.6) with u0 ∈ Hm and Bm < +∞ was considered in [16]. Choosing
δ = 1 in [16], we state Theorem 4 of that work as follows:

Theorem 2.2 Assume that u0 ∈ Hm and Bm < +∞. Then (1.2), (1.6) has a unique
strong solution u which is in H([0,∞)) a.s., and for any t ≥ 0, q ≥ 1 satisfies the
estimates

E sup
s∈[t,t+1]

|u(s)|q∞ ≤ Cq ,

E‖u(t)‖q
m ≤ Cq,m, (2.1)

where Cq is a constant depending on |u0|∞, while Cq,m also depends on ‖u0‖m and
Bm.

In this theorem and everywhere below the constants depend on n and B∗. We do
not indicate this dependence.

Remark 2.3 It was assumed in [16] that n ≤ 3. This assumption is not needed for
the proof. The force η(t, x) in [16] has the form η(t, x)β̇(t), where β is the standard
Brownian motion and η(t, x) is a random field, continuous and bounded uniformly
in (t, x), smooth in x and progressively measurable. The proof without any change
applies to forces of the form (1.3).

Our next goal is to get more estimates for solutions u(t, x). Applying Itô’s formula
to ‖u‖2, where u(t) = ∑

ud(t)ϕd(x) is a solution constructed in Theorem 2.2, we
find that
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‖u(t)‖2 = ‖u0‖2 +
t∫

0

(−2‖u(τ )‖2
1 + 2B0)dτ + 2

∑

d∈Nn

bd

t∫

0

ud(τ ) · dβd(τ ).

Taking the expectation, we get for any t ≥ 0

E‖u(t)‖2 + 2E

t∫

0

‖u(τ )‖2
1dτ = ‖u0‖2 + 2B0t. (2.2)

To get more involved estimates, we first repeat a construction from [16] which evokes
the maximum principle to bound the norm |u(t, x)| of a solution u(t, x) as in Theo-
rem 2.2 in terms of a solution of a stochastic heat equation.

Let ξ ∈ C∞(R) be any function such that

ξ(r) =
{

0 for r ≤ 1
4 ,

r for r ≥ 1
2 .

Writing u in the polar form u = reiφ and using the Itô formula for ξ(|u|) (see [6],
Section 4.5 and [14], Section 7.7), we get

ξ(r) = ξ0 +
t∫

0

[
ξ ′(r)(�r − r |∇φ|2)+ 1

2

∑

d∈Nn

b2
d

(
ξ ′′(r)(eiφ · ϕd)2

+ ξ ′(r)
1

r
(|ϕd |2 − (eiφ · ϕd)2)

)]
dt +ϒ(t), (2.3)

where ξ0 = ξ(|u0|), a · b = Reab̄ for a, b ∈ C and ϒ(t) is the real Wiener process

ϒ(t) =
∑

d∈Nn

t∫

0

ξ ′(r)bdϕd(eiφ · dβd). (2.4)

Since |u| ≤ ξ + 1
2 , then to estimate |u| it suffices to bound ξ . To do that we compare

it with a real solution of the stochastic heat equation

v̇ −�v = ϒ̇, v(0) = v0, (2.5)

where v0 := |ξ0|. We have that v = v1 + v2, where v1 is a solution of (2.5) with
ϒ := 0, and v2 is a solution of (2.5) with v0 := 0. By the maximum principle

sup
t≥0

|v1(t)|∞ ≤ |v0|∞ ≤ |u0|∞. (2.6)
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To estimate v2, we use the following lemma established in Appendix to [16] (that
proof is reproduced in Appendix below); see [10,11,19] for more general results.

Lemma 2.4 Let v2 be a solution of (2.5) with ϒ̇ =∑
d bd f d(t, x)β̇d(t) and v0 = 0,

where progressively measurable functions f d(t, x) and real numbers bd are such that
| f d(t, x)| ≤ L for each d and t almost surely. Then a.s. v2 belongs to C(R+, C0(K )),
and for any t ≥ 0 and p ≥ 1 we have

E sup
s∈[t,t+T ]

|v2(s)|2p∞ ≤ C∗(L , T, p). (2.7)

Moreover,

E‖v2 |[t,t+1]×K ‖p
Cθ/2,θ ≤ C(p, θ)

for any 0 < θ < 1, where ‖ · ‖Cθ/2,θ is the norm in the Hölder space of functions on
[t, t + 1] × K .

It is crucial for this work that the constant C∗(L , T, p) in (2.7) may be specified:

Lemma 2.5 The constant C∗(L , T, p) in Lemma 2.7 may be chosen equal to
(C(T )L B∗)2p p p.

This assertion is proved in Appendix, where we follow carefully the constants in
the proof of Lemma 2.4, given in [16].

Using the definition of ξ we see that the noise ϒ defined by (2.4) verifies the
conditions of Lemma 2.6 since the eigen-functions ϕd satisfy |ϕd(x)| ≤ (2/π)

n
2 for

all x ∈ K .
Let us denote

h(t, x) = ξ(r(t, x))− v(t, x).

Since a.s. u(t, x) is uniformly continuous on sets [0, T ]×K , 0 < T < ∞, then a.s. we
can find an open domain Q = Qω ⊂ [0,∞)× K with a piecewise smooth boundary
∂ Q such that

r ≥ 1

2
in Q, r ≤ 3

4
outsideQ.

Then h(t, x) is a solution of the following problem in Q

ḣ −�h = 1

2r

∑

d∈Nn

b2
d |ϕd |2 −

(
r |∇φ|2 + 1

2r

∑

d∈Nn

b2
d(eiφ · ϕd)2

)
=: g(t, x), (2.8)

h|∂+Q = (r − v)|∂+Q =: m, (2.9)

where ∂+Q stands for the parabolic boundary, i.e., the part of the boundary of Q where
the external normal makes with the time-axis an angle ≥ π/2. Note that m(0, x) = 0.
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We write h = h1 + h2, where h1 is a solution of (2.8), (2.9) with g = 0 and h2 is
a solution of (2.8), (2.9) with m = 0. Since each |ϕd(x)| is bounded by (2π)n/2 and
r ≥ 1

2 in Q, then g(t, x) ≤ (2/π)n B0 everywhere in Q. Now applying the maximum
principle (see [17]), we obtain the inequality

sup
t≥0

|h2(t)|∞ ≤ C B0,

(cf. Lemma 6 in [16]). Therefore

|u(t)|∞ ≤ 1
2 + |ξ(r(t))|∞ ≤ 1

2 + C B0 + |v1(t)|∞ + |v2(t)|∞ + |h1(t)|∞. (2.10)

To estimate h1 we note that

h1(s, x) =
∫

∂+Q

m(ξ)G(s, x, dξ),

where G(s, x, dξ) is the Green function3 for the problem (2.8), (2.9) with g = 0,
which for any (s, x) ∈ Q is a probability measure in Q, supported by ∂+Q. Here we
need the following estimate for G, proved in [16], Lemma 7, where

Q[a,b] := Q ∩ ([a, b] × K ).

Lemma 2.6 Let 0 ≤ s ≤ t . Then for any x ∈ K we have G(t, x, Q[0,t−s]) =
G(t, x, Q[0,t−s] ∩ ∂+Q) ≤ 2

n
2 e− nπ2

4 s .

Since r |∂+Q ≤ 3
4 , we have

|h1(t, x)| ≤ 3

4
+
∫

∂+Q

|v1(ξ)|G(t, x, dξ)+
∫

∂+Q

|v2(ξ)|G(t, x, dξ). (2.11)

Estimate (2.6) implies

∫

∂+Q

|v1(ξ)|G(t, x, dξ) ≤ |u0|∞. (2.12)

Let us take a positive constant T and cover the segment [0, t] by segments I1, . . . , I jT ,
where

jT =
[ t

T

]
+ 1, I j = [t − T j, t − T j + T ].

3 It depends on ω, as well as the set Q. All estimates below are uniform in ω.
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To bound the last integral in (2.11), we apply Lemma 2.6 as follows:

∫

∂+Q

|v2(ξ)|G(t, x, dξ) ≤
jT∑

j=1

∫

QI j

|v2(ξ)|G(t, x, dξ)

≤ 2
n
2

jT∑

j=1

e−
nπ2

4 ( j−1)T sup
τ∈I j

|v2(τ )|∞,

where v2(τ ) is extended by zero outside [0, t]. Denoting

ζ j = sup
τ∈I j

|v2(τ )|∞, Y =
jT∑

j=1

e−2 jT ζ j ,

and using that nπ2/4 > 2 we get

∫

∂+Q

|v2(ξ)|G(t, x, dξ) ≤ CY. (2.13)

So by (2.12) |h1(t)|∞ ≤ 3
4 + |u0|∞ + CY . As |v2(t, x)| ≤ ζ1 ≤ CY , then using

(2.10) and (2.6) we get for any u0 ∈ Hm and any t ≥ 0 that the solution u(t, x) a.s.
satisfies

|u(t, x)| ≤ 2|u0|∞ + C B0 + 2+ CY. (2.14)

Let us show that there are positive constants c and C , not depending on t and u0,
such that

E|u(t)|2∞ ≤ Ce−ct |u0|2∞ + C for all t ≥ 0. (2.15)

Indeed, since v1 is a solution of the free heat equation, then

|v1(t)|∞ ≤ Ce−c1t |u0|∞ for t ≥ 0. (2.16)

This relation, Lemma 2.6 and (2.6) imply that

∫

∂+Q

|v1(ξ)|G(t, x, dξ) ≤
∫

∂+Q[0, t
2 ]

|v1(ξ)|G(t, x, dξ)+
∫

∂+Q[ t
2 ,t]

|v1(ξ)|G(t, x, dξ)

≤ sup
s≥0

|v1(s)|∞G(t, x, Q[0, t
2 ])+ sup

s≥ t
2

|v1(s)|∞

≤ |u0|∞2
n
2 e−

nπ2
4

t
2 + Ce−c1t |u0|∞ ≤ Ce−ct |u0|∞. (2.17)
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By Lemmas 2.4 and 2.6

E

∣∣∣∣∣∣∣

∫

∂+Q

v2(ξ)G(t, x, dξ)

∣∣∣∣∣∣∣

2

≤ C

for any t ≥ 0. Combining this with (2.10), (2.11), (2.16) and (2.17), we arrive at
(2.15).

Estimates (2.14) and (2.15) are used in the next section to get bounds for exponential
moments of |u|∞.

2.2 Exponential moments of |u(t)|∞
In this section, we strengthen bounds on polynomial moments of the random vari-
ables sups∈[t,t+1] |u(s)|2∞, obtained in Theorem 2.2, to bounds on their exponential

moments. As a consequence we prove that integrals
∫ T

0 |u(s)|2∞ ds have linear growth
as functions of T and derive exponential estimates which characterise this growth.
These estimates are crucially used in Sects. 3–4 to prove that Eq. (1.2) defines a
mixing Markov process.

Theorem 2.7 Under the assumptions of Theorem 2.2, for any u0 ∈ Hm, any t ≥ 0
and T ≥ 1 the solution u(t, x) satisfies the following estimates:

(i) There are constants c∗(T ) > 0 and C(T ) > 0, such that for any c ∈ (0, c∗(T )]
we have

E exp(c sup
s∈[t,t+T ]

|u(s)|2∞) ≤ C(T ) exp (5c|u0|2∞). (2.18)

(ii) There are positive constants λ0, C and c2 such that

E exp(λ

t∫

0

|u(s)|2∞ds) ≤ C exp (c1|u0|2∞ + c2t), (2.19)

for each λ ≤ λ0, where c1 = Const · λ.

Proof Step 1 (proof of (i)). Due to (2.14), to prove (2.18) we have to estimate expo-
nential moments of Y 2. First let us show that for a suitable C2(T ) > 0 we have

E exp(c sup
s∈[t,t+T ]

|v2(s)|2∞) ≤ 1

1− cC2(T )
for any t ≥ 0 and c <

1

C2(T )
.

(2.20)
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Indeed, using (2.7) and Lemma 2.5 we get

E exp(c sup
[t,t+T ]

|v2(s)|2∞) = E

∞∑

p=0

cp sup[t,t+T ] |v2(s)|2p∞
p! ≤

∞∑

p=0

cp(C(T )B∗)2p p p

p!

≤
∞∑

p=0

(ce(C(T )B∗)2)p ≤ 1

1− ce(C(T )B∗)2

since p! ≥ (p/e)p. Thus we get (2.20) with C2 := e(C(T )B∗)2. In particular,

Eec′ζ 2
j ≤ (

1− c′C2(T )
)−1 ∀ c′ ≤ c. (2.21)

Next we note that since

Y 2 ≤ C2

⎛

⎝
jT∑

j=1

e− j
(

e− jζ j

)
⎞

⎠
2

≤ 2C2
jT∑

j=1

e−2 jζ 2
j

by Cauchy–Schwarz (we use that T ≥ 1), then

Eec′Y 2 ≤ E

jT∏

j=0

e2c′C25− j ζ 2
j ,

as e2 > 5. Denote p j = α2 j , j ≥ 0. Choosing α ∈ (1, 2) in a such a way that∑ jT
j=0(1/p j ) = 1, using the Hölder inequality with these p j ’s and (2.21), we find that

Eec′Y 2 ≤
jT∏

j=0

(
Ee2p j c′C25− j ζ 2

j

) 1
p j ≤

jT∏

j=0

(
Ee2c′C2ζ 2

j

) 1
p j

≤
jT∏

j=0

(
1− c′C3(T )

)− 1
p j = exp

⎛

⎝−
jT∑

j=0

p−1
j ln(1− c′C3)

⎞

⎠ ≤ ec′C4(T ),

(2.22)

if 2c′C2 ≤ c and c′ ≤ (
2C3(T )

)−1. In view of (2.14), this implies (2.18).
Step 2. Now we show that for any A ≥ 1 there is a time T (A) such that for T ≥ T (A)

we have

E exp
(

c( sup
s∈[0,T ]

|u(s)|2∞ + A|u(T )|2∞)
)
≤ C̃ exp (6c|u0|2∞) (2.23)

for any c ∈ (0, c̃], where C̃ and c̃ depend on A and T .
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Indeed, due to (2.10) and (2.16),

|u(T )|∞ ≤ 2+ Ce−cT |u0|∞ + C B0 + |v2(T )|∞ + |h1(T )|∞.

By (2.11), (2.17) and (2.13), |h1(T )|∞ ≤ 3
4+CY+Ce−c′T |u0|∞. Therefore choosing

a suitable T = T (A) we achieve that

cA|u(T )|2∞ ≤ c(C1 A + C2 AY 2 + |u0|2∞)+ 2cA|v2(T )|2∞.

Using Hölder’s inequality we see that the cube of the term in the l.h.s. of (2.23) is
bounded by

C(A)e3c|u0|2∞Ee3cC2 AY 2
Ee6cA|v2(T )|2∞ Ee3c sups∈[0,T ] |u(s)|2∞ .

Taking c ≤ c(A) and using (2.22), (2.20) and (2.18) we estimate the product by
C(A, T )e3c|u0|2∞ e15c|u0|2∞ . This implies (2.23).

Step 3. (proof of (ii)). Let T0 ≥ 1 be such that (2.23) holds with A = 6. Let c > 0
and C > 0 be the constants in (2.18), corresponding to T = T0, and let λ ≤ c/T0. It
suffices to prove (2.19) for t = T0k, k ∈ N, since this result implies (2.19) with any
t ≥ 0 if we modify the constant C . By the Markov property,

Xλ := Eu0 exp

⎛

⎝λ

T0k∫

0

|u(s)|2∞ds

⎞

⎠ = Eu0

⎛

⎝exp(λ

T0(k−1)∫

0

|u(s)|2∞ds)

× Eu(T0(k−1)) exp(λ

T0∫

0

|u(s)|2∞ds)

⎞

⎠ ,

and by (2.18)

Eu(T0(k−1)) exp

⎛

⎝λ

T0∫

0

|u(s)|2∞ds

⎞

⎠ ≤ C exp
(
5λT0|u(T0(k − 1))|2∞

)
.

Combining these two relations we get

Xλ ≤ CEu0 exp

⎛

⎝λ

T0(k−1)∫

0

|u(s)|2∞ds + 6T0|u(T0(k − 1)|2∞
⎞

⎠ .
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Applying again the Markov property and using (2.23) with A = 6 and c = λT0 we
obtain

Xλ ≤ CEu0

⎛

⎝exp(λ

T0(k−2)∫

0

|u(s)|2∞ds)

× Eu((T0(k−2)) exp
(
λT0( sup

0≤s≤T0

|u(s)|2∞ + 6|u(T0)|2∞)
)
)

≤ C2
Eu0 exp

⎛

⎝λ

T0(k−2)∫

0

|u(s)|2∞ds + 6λT0|u(T0(k − 2))|2∞
⎞

⎠ .

Iteration gives

Xλ ≤ Cm
Eu0 exp

⎛

⎝λ

T0(k−m)∫

0

|u(s)|2∞ds + 6λT0|u(T0(k − m))|2∞
⎞

⎠ ,

for any m ≤ k. When m = k, this relation proves (2.19) with t = kT0, C = 1, c1 =
6λT0 and a suitable c2. ��

In the lemma below by c1, c2 and λ0 we denote the constants from Theorem 2.7(ii).

Lemma 2.8 For any u0 ∈ Hm the solution u(t, x) satisfies the following estimate for
any ρ ≥ 0

P

{
sup
t≥0

⎛

⎝
t∫

0

|u(s)|2∞ds − K t

⎞

⎠ ≥ ρ
}
≤ C ′ exp(c1|u|2∞ − λρ), (2.24)

where C ′ is an absolute constant, K = λ−1(c2 + 1) and λ is a suitable constant from
(0, λ0].

Proof For any real number t denote �t� = min{n ∈ Z : n ≥ t}. Then

⎧
⎨

⎩

⎛

⎝
t∫

0

|u|2∞ ds − K t

⎞

⎠ ≥ ρ

⎫
⎬

⎭ ⊂
⎧
⎨

⎩

⎛

⎝
�t�∫

0

|u|2∞ ds − K �t�
⎞

⎠ ≥ ρ − K

⎫
⎬

⎭ .

So it suffices to prove (2.24) for integer t since then the required inequality follows
with a modified constant C ′. Accordingly below we replace supt≥0 by supn∈N. By the
Chebyshev inequality and estimate (2.19) we have
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P

⎧
⎨

⎩sup
n∈N

⎛

⎝
n∫

0

|u(s)|2∞ds − K n

⎞

⎠ ≥ ρ

⎫
⎬

⎭ ≤
∑

n∈N

P

⎧
⎨

⎩

n∫

0

|u(s)|2∞ds ≥ ρ + K n

⎫
⎬

⎭

≤
∑

n∈N

exp(−λ(ρ+K n))C exp (c1|u0|2∞ + c2n)

≤ C exp(−λρ+c1|u0|2∞)
∑

n∈N

exp (−n)

= C ′ exp(c1|u0|2∞ − λρ)

since λK−c2 = 1. This proves (2.24). ��

3 Markov process in C0(K )

The goal of this section is to construct a family of Markov processes, associated with
Eq. (1.2) in the space C0(K ). To this end we first prove a well-posedness result in that
space.

3.1 Existence and uniqueness of solutions

Let u0 ∈ C0(K ). Denote by �m : H→C
m the usual Galerkin projection and set

ηm := �mη =: ∂
∂t ζ

m . Let um
0 ∈ C∞ be such that |um

0 − u0|∞→0 as m→∞ and
|um

0 |∞ ≤ |u0|∞ + 1. Let um be a solution of (1.2), (1.6) with regular right-hand side
η = ηm and regular initial condition u0 = um

0 , existing by Theorem 2.2.
Fix any T > 0. For α ∈ (0, 1) and a Banach space X , let Cα([0, T ], X) be the

space of all u ∈ C([0, T ], X) such that

‖u‖Cα([0,T ],X) := ‖u‖C([0,T ],X) + sup
0≤t1<t2≤T

|u(t2)− u(t1)|
|t2 − t1|α < ∞.

Let us define the spaces

U := L2([0, T ], H1) ∩ Cα([0, T ], H−1),

V := L2([0, T ], H1−ε) ∩ C([0, T ], H−2),

where α ∈ (0, 1
2 ) and ε > 0. Then

space U is compactly embedded into V. (3.1)

Indeed, by Theorem 5.2 in [18], U � L2([0, T ], H1−ε).4 On the other hand,
Cα([0, T ], H−1) � C([0, T ], H−2), by the Arzelà–Ascoli theorem.

4 One should note that if u(t) = ∑
ud (t)ϕd ∈ Cα([0, T ], H−1) and ‖u‖Cα([0,T ],H−1) ≤ 1, then u

belongs to the space denoted in [18] by H α(0, T ; H−1, H−N ) =: H and ‖u‖H ≤ C(α, N ) for a
suitable N , since for each d we have ‖ud‖Hα([0,T ]) ≤ C‖ud‖Cα([0,T ]) ≤ C1|d| (for α = 0 or α = 1 this
is obvious, and for 0 < α < 1 this follows by interpolation).
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Lemma 3.1 For m ≥ 1 let Mm be the law of the solution {um}, constructed above.
Then

(i) The sequence {Mm} is tight in V .
(ii) Any limiting measure M of Mm is the law of a weak solution ũ(t), 0 ≤ t ≤ T ,

of (1.2), (1.6). This solution satisfies (2.1) for 0 ≤ t ≤ T − 1 and (2.2), (2.18),
(2.24) for 0 ≤ t ≤ T .

(iii) If 1 ≤ t ≤ T − 1, then for any 0 < θ < 1 and any q ≥ 1 we have

E‖ũ |[t,t+1]×K ‖q
Cθ/2,θ ≤ C(q, θ, |u0|∞). (3.2)

Proof The process um satisfies the following equation with probability 1

um(t) = um
0 +

t∫

0

(�um − i |um |2um)ds + ζm =: V m + ζm .

Using (2.1) and (2.2), we get

E‖V m‖2
W 1,2([0,T ],H−1)

≤ C. (3.3)

It is well known that Brownian motion βd satisfies5

E|βd |2Cα([0,T ]) ≤ Cα,

(e.g., see [25], Chapter X, § 2). Since for any 0 ≤ t1 < t2 ≤ T we have

|t2 − t1|−2α‖ζm(t2)− ζm(t1)‖2−1 ≤
∑

d

|d|−2b2
d |βd |2Cα([0,T ]),

then for any m ≥ 1 we get

E‖ζm‖2
Cα([0,T ],H−1)

≤ Cα B2−1 ≤ Cα B2∗ . (3.4)

Combining (3.3) and (3.4), we obtain

E‖um‖2
Cα([0,T ],H−1)

≤ 2E‖V m‖2
Cα([0,T ],H−1)

+ 2E‖ζm‖2
Cα([0,T ],H−1)

≤ C.

Jointly with (2.2) this estimate implies that E‖um‖2
U ≤ C1 for each m with a suitable

C1. Now (i) holds by (3.1) and the Prokhorov theorem.
Let us prove (ii). Suppose that Mm converges weakly to M in V . By Skorohod’s

embedding theorem, there is a probability space (
̃, F̃ , P̃) and V-valued random

5 By the Kolmogorov-Chentsov theorem, βd ∈ Cα([0, T ]) a.s. So | · |Cα([0,T ]) is a measurable seminorm

for the Gaussian process βd , and by the Fernique theorem E exp (σ |βd |2Cα([0,T ])) < ∞ for some positive
σ ; see [2]. This also implies the estimate.
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variables ũm and ũ, defined on it, such that each ũm is distributed as Mm, ũ is distributed
as M and P-a.s. we have ũm→ũ in V .

Since V ⊂ L2([0, T ] × K ) =: L2, then ũm → ũ in L2, a.s. For any R ∈ (0,∞]
and p, q ∈ [1,∞) consider the functional f p

R ,

f p
R (u) = ∣∣|u|q ∧ R

∣∣
L p([t,t+1]×K )

≤ π
n
p |u|qL∞([t,t+1]×K ).

Since for p, R < ∞ it is continuous in L2, then by (2.1) we have

E( f p
R (ũ)) = lim

m→∞( f p
R (ũm)) ≤ π

n
p Cq for p, R < ∞.

As for eachv(t, x) ∈ L∞([t, t+1]×K ) the function [1,∞] � p �→ |v|L p([t,t+1]×K ) ∈
[0,∞] is continuous and non-decreasing, then sending p and R to ∞ and using the
monotone convergence theorem, we get E sups∈[t,t+1] |ũ(s)|q∞ ≤ Cq . I.e., ũ satisfies
(2.1).

By (2.2) for each m and N we have

E‖�N ũm(t)‖2 + 2E

t∫

0

‖�N ũm(τ )‖2
1dτ ≤ ‖um

0 ‖2 + B0t.

Passing to the limit as m→∞ and then N→∞ and using the monotone convergence
theorem, we obtain that ũ satisfies (2.2), where the equality sign is replace by ≤ . We
will call this estimate (2.2)≤ .

By the same reason (cf. Lemma 1.2.17 in [14]) the process ũ(t) satisfies (2.18) and
(2.24).

Since ũm is a weak solution of the equation, then

ũm(t)− um
0 −

t∫

0

(�ũm − i |ũm |2ũm)ds = ζ̃m, (3.5)

where ζ̃m is distributed as the process ζ . Using the Cauchy–Schwarz inequality and
(2.1), we get

E

T∫

0

∥∥|ũm |2ũm − |ũ|2ũ
∥∥ds ≤ C E

T∫

0

‖(ũm − ũ)(|ũm |2 + |ũ|2)‖ds

≤ C E sup
t∈[0,T ]

(|ũm(t)|2∞ + |ũ(t)|2∞)

T∫

0

‖ũm − ũ‖ds

≤ C
√

T

(
E sup

t∈[0,T ]
(|ũm(t)|4∞ + |ũ(t)|4∞)

) 1
2
⎛

⎝E

T∫

0

‖ũm − ũ‖2ds

⎞

⎠

1
2
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≤ C(T, |u0|∞)

⎛

⎝E

T∫

0

‖ũm − ũ‖2ds

⎞

⎠

1
2

.

Since the r.h.s. goes to zero when m →∞, then for a suitable subsequence mk→∞
we have a.s.

∥∥∥
t∫

0

|ũmk |2ũmk ds −
t∫

0

|ũ|2ũds
∥∥∥

C([0,T ],L2)
→0 as k→∞.

Therefore the l.h.s. of (3.5) converges to
(
ũ(t)−u0−

∫ t
0 (�ũ− i |ũ|2ũ)ds

)
in the space

C([0, T ], H−2) over the sequence {mk}, a.s. So a.s. there exists a limit lim ζ̃mk (·) =
ζ̃ (·), and

ũ(t)− u0 −
t∫

0

(�ũ − i |ũ|2ũ)ds = ζ̃ (t). (3.6)

We immediately get that ζ̃ (t) is a Wiener process in H−2, distributed as the process ζ .
Let F̃t , t ≥ 0, be a sigma-algebra, generated by {ũ(s), 0 ≤ s ≤ t} and the zero-sets
of the measure P̃. From (3.6), ζ̃ (t) is F̃t -measurable. So ζ̃ (t) is a Wiener process on
the filtered probability space (
̃, F̃ , {F̃t }, P̃), distributed as ζ .

Since ũ(t, x) satisfies (3.6), we can write ũ = u1+u2+u3, where u1 satisfies (2.5)
with ϒ̇ = 0, v0 = u0; u2 satisfies (2.5) with ϒ̇ = −i |ũ|2ũ, v0 = 0 and u3 satisfies
(2.5) with ϒ = ζ̃ , v0 = 0. Now Lemma 2.4 and the parabolic regularity imply that
ũ ∈ C([0, T ];C0(K )), a.s. As ũ satisfies (2.2)≤ , then ũ ∈ H([0, T ]) a.s. Since clearly
ũ(0) = u0 a.s., then ũ is a weak solution of (1.2), (1.6).

Regarding ũ(t) as an Ito process in the space H , using (2.1) and applying to ‖ũ(t)‖2

the Ito formula in the form, given in [14], we see that ‖ũ(t)‖2 satisfies the relation,
given by the displayed formula above (2.2). Taking the expectation we recover for ũ
the equality (2.2).

It remains to prove (iii). Functions u1 and u3 meet (3.2) by Lemma 2.4 and the
parabolic regularity. Consider u2. Since u2 = ũ − u1 − u3, then u2 satisfies (2.1).
Consider restriction of u2 to the cylinder [t − 1, t + 1]× K . Since u2 satisfies the heat
equation, where the r.h.s. and the Cauchy data at (t − 1)× K are bounded functions,
then by the parabolic regularity restriction of u2 to [t, t + 1]× K also meets (3.2). ��

The pathwise uniqueness property holds for the constructed solutions:

Lemma 3.2 Let u(t) and v(t), t ∈ [0, T ], be processes in the space C0(K ), defined
on some probability space, and let ζ(t) be a Wiener process, defined on the same
space and distributed as ζ in (1.3). Assume that a.s. trajectories of u and v belong to
H([0, T ])and satisfy (1.2), (1.6). Then u(t) ≡ v(t) a.s.
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Proof For any R > 0 let us introduce the stopping time

τR = inf{t ∈ [0, T ] : |u(t)|∞ ∨ |v(t)|∞ ≥ R}. (3.7)

The difference w := u − v satisfies

ẇ −�w + i(|u|2u − |v|2v) = 0, w(0) = 0.

Taking the scalar product in H of this equation with w when t ≤ τR and applying the
Gronwall inequality, we get that w(t) ≡ 0 for t ≤ τR . Since u, v ∈ H([0, T ]), then
τR → T , a.s. as R→∞. Therefore w(t) ≡ 0 for all t ∈ [0, T ], a.s. This completes
the proof. ��

By the Yamada–Watanabe arguments (e.g., see [12]), existence of a weak solution
plus pathwise uniqueness implies the existence of a unique strong solution u(t), 0 ≤
t ≤ T . Since T is any positive number, we get

Theorem 3.3 Let u0 ∈ C0(K ). Then problem (1.2), (1.6) has a unique strong solution
u(t), t ≥ 0. This solutions satisfies relations (2.1), (2.2), (2.18) and (2.24); for t ≥ 1
it also satisfies (3.2).

3.2 Markov process

Let us denote by u(t) = u(t, u0) the unique solution of (1.2), corresponding to an
initial condition u0 ∈ C0(K ). Equation (1.2) defines a family of Markov process in
the space C0(K ), parametrized by u0. For any u ∈ C0(K ) and � ∈ B(C0(K )), we
set Pt (u, �) = P{u(t, u) ∈ �}. The Markov operators, corresponding to the process
u(t), have the form

Pt f (u) =
∫

C0(K )

Pt (u, dv) f (v), P∗
t μ(�) =

∫

C0(K )

Pt (u, �)μ(du),

where f ∈ Cb(C0(K )) and μ ∈ P(C0(K )).

Lemma 3.4 The Markov process associated with (1.2) is Feller.

Proof We need to prove that Pt f ∈ Cb(C0(K )) for any f ∈ Cb(C0(K )) and t > 0. To
this end, let us take any u0, v0 ∈ C0(K ), and let u and v be the corresponding solutions
of (1.2) given by Theorem 3.3. Let us take any R > R0 := |u0|∞ ∨ |v0|∞. Let τR be
the stopping time defined by (3.7), and let u R(t) := u(t ∧ τR) and vR(t) := v(t ∧ τR)

be the stopped solutions. Then

|Pt f (u0)−Pt f (v0)| ≤ E| f (u)− f (u R)| + E| f (v)− f (vR)|
+ E| f (u R)− f (vR)| =: I1 + I2 + I3.
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By (2.1) and the Chebyshev inequality, we have

max{I1, I2} ≤ 2| f |∞P{t > τR} ≤ 2| f |∞P{U (t) ∨ V (t) > R}
≤ 4

R | f |∞ sup
|u0|∞≤R0

E U (t)→0 as R→∞,

where U (t) = sups∈[0,t] |u(s)|∞ and V (t) is defined similarly. To estimate I3, notice
that w = u − v is a solution of

ẇ −�w + i(|u|2u − |v|2v) = 0, w(0) = u0 − v0 =: w0.

We rewrite this in the Duhamel form

w = et�w0 − i

t∫

0

e(t−s)�(|u|2u − |v|2v)ds.

Since, by the maximum principle, |et�z|∞ ≤ |z|∞, then

|w(t ∧ τR)|∞ ≤ |w0|∞ +
t∧τR∫

0

||u|2u − |v|2v|∞ds ≤ |w0|∞

+ 3

t∧τR∫

0

(|u|2∞ + |v|2∞)|w|∞ds.

By the Gronwall inequality, I3 ≤ E|w(t ∧ τR)|∞ ≤ |w0|∞etCR→0 as |w0|∞→0.
Therefore the function Pt f (u) is continuous in u ∈ C0(K ), as stated. ��

A measure μ ∈ P(C0(K )) is said to be stationary for Eq. (1.2) if P∗
t μ = μ for

every t ≥ 0. The following theorem is proved in the standard way by applying the
Bogolyubov–Krylov argument (e.g. see in [14]).

Theorem 3.5 Equation (1.2) has at least one stationary measure μ, satisfying∫
H1 ‖u‖2

1μ(du) = 1
2 B0 and

∫
C0(K )

ec|u|2∞ μ(du) < ∞ for any c < c∗, where c∗ > 0
is the constant in assertion (i) of Theorem 2.7.

3.3 Estimates for some hitting times

For any r, L , R > 0 we introduce the following hitting times for a solution u(t) of
(1.2):

τ1,r,L := inf{t ≥ 0 : ‖u(t)‖ ≤ r, |u(t)|∞ ≤ L},
τ2,R := inf{t ≥ 0 : |u(t)|∞ ≤ R}.
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Lemma 3.6 There is a constant L > 0 such that for any r > 0 we have

Eeγ τ1,r,L ≤ C(1+ |u(0)|2∞), (3.8)

where γ and C are suitable positive constants, depending on r and L.

It is well known that inequality (3.8) follows from the two statements below (see
Proposition 2.3 in [22] or Section 3.3.2 in [14]).

Lemma 3.7 There are positive constants δ, R and C such that

Eeδτ2,R ≤ C(1+ |u(0)|2∞). (3.9)

Lemma 3.8 For any R > 0 and r > 0 there is a non-random time T > 0 and positive
constants p and L such that

P{u(T, u0) ∈ BH (r) ∩ BC0(K )(L)} ≥ p for any u0 ∈ BC0(K )(R).

Proof of Lemma 3.7 Let us consider the function F(u) = max(|u|2∞, 1). We claim
that this is a Lyapunov function for Eq. (1.2). That is,

EF(u(T, u)) ≤ aF(u) for |u|∞ ≥ R′, (3.10)

for suitable a ∈ (0, 1), T > 0 and R′ > 0. Indeed, let |u|∞ ≥ R′ and T > 1. Since
F(u) ≤ 1+ |u|2∞, then

EF(u(T, u)) ≤ 1+ E|u(T, u)|2∞ ≤ 1+ Ce−cT |u|2∞ + C,

where we used (2.15).
This implies (3.10). Since due to (2.15) for |u|∞ < R′ and any T > 1 we have

EF(u(T, u)) ≤ C ′ then (3.9) follows by a standard argument with Lyapunov function
(e.g., see Section 3.1 in [24]). ��
Proof of Lemma 3.8 Step 1. Let us write u(t) = v(t)+ z(t), where z is a solution of
(2.5) with v0 = 0, i.e.,

z =
∑

d∈Nn

t∫

0

e(t−τ)�bdϕddβω
d .

Then

v̇ −�v + i |v + z|2(v + z) = 0, v(0) = u0. (3.11)

Clearly for any δ ∈ (0, 1] and T > 0 we have

P
δ > 0 , where 
δ =
{

sup
0≤t≤T

|z(t)|∞ < δ

}
.
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Step 2. Due to (3.11),

v̇ −�v + i |v|2v = L3, (t, x) ∈ QT = [0, T ] × K , (3.12)

where L3 is a cubic polynomial in v, v̄, z, z̄ such that every its monomial contains z
or z̄. Consider the function r = |v(t, x)|. Due to (3.12), for ω ∈ 
δ and outside the
zero-set X = {r = 0} ⊂ QT the function r satisfies the parabolic inequality

ṙ −�r ≤ Cδ(r2 + 1), r(0, x) = |v(0, x)| ≤ R + 1. (3.13)

Define τ = inf{t ∈ [0, T ] : |r(t)|∞ ≥ R + 2}, where τ = T if the set is empty. Then
τ > 0 and for 0 ≤ t ≤ τ the r.h.s. in (4.12) is ≤ Cδ((R + 2)2 + 1) = δC1(R). Now
consider the function

r̃(t, x) = r − (R + 1)− tδC1(R).

Then r̃ ≤ 0 for t = 0 and for (t, x) ∈ ∂(QT \ K ). Due to (4.12) and the definition of
τ , for (t, x) ∈ Qτ \ X this function satisfies

˙̃r −�r̃ ≤ Cδ(r2 + 1)− δC1(R) ≤ 0.

Applying the maximum principle [17], we see that r̃ ≤ 0 in Qτ \ K . So for t ≤ τ

we have r(t, x) ≤ (R + 1) + tδC1(R). Choose δ so small that T δC1(R) < 1. Then
r(t, x) < R + 2 for t ≤ τ . So τ = T and we have proved that

|v(t)|∞ = |r(t)|∞ ≤ R + 2 ∀ 0 ≤ t ≤ T if δ ≤ δ(T, R), ω ∈ 
δ. (3.14)

Step 3. It remains to estimate ‖v(t)‖. To do this we first define v1(t, x) as a solution
of Eq. (1.2) with η = 0 and v1(0) = u0. Then

‖v1(t)‖ ≤ e−α1t‖u0‖, |v1(t)|∞ ≤ |u0|∞ ≤ R, (3.15)

since outside its zero-set the function |v1(t, x)| satisfies a parabolic inequality with
the maximum principle (namely, Eq. (4.12) with δ = 0).

Step 4. Now we estimate w = v− v1. This function solves the following equation:

ẇ −�w + i
(|v + z|2(v + z)− |v1|2v1

) = 0, w(0) = 0.

Denoting X = w+ z (so that v+ z = X + v1), we see that the term in the brackets is
a cubic polynomial P3 of the variables X, X̄ , v1 and v̄1, such that every its monomial
contains X or X̄ . Taking the H -scalar product of the w-equation with w we get that

1

2

d

dt
‖w‖2 + ‖∇w‖2 = −〈i P3, w〉, w(0) = 0.
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By (3.15), for ω ∈ 
δ the r.h.s. is bounded by C ′(R, T )(δ2+‖w‖2+‖w‖4). Therefore

‖w(T )‖2 ≤ e2C ′′(R,T )δ2 (3.16)

everywhere in 
δ , if δ is small.
Step 5. Since u = w+ v1 + z, then by (3.15), (3.14) and (3.16), for every δ, T > 0

and for each ω ∈ 
δ we have

‖u(T )‖ ≤ δ + e−α1T R + eC ′′(R,T )T δ =: κ.

Since u = v + z, then |u(T )|∞ ≤ δ + R + 2. Choosing first T ≥ T (R, r) and next
δ ≤ δ(R, r, T ) we achieve κ ≤ r . This proves the lemma with L = R + 3. ��

4 Ergodicity

In this section, we analyse behaviour of the process u(t) with respect to the norms
‖u‖ and |u|∞ and next use an abstract theorem from [14] to prove that the process is
mixing.

4.1 Uniqueness of stationary measure and mixing

First we recall the abstract theorem from [14] in the context of the CGL equation (1.2).
Let us, as before, denote by Pt (u, �) and P∗

t the transition function and the family of
Markov operators, associated with Eq. (1.2) in the space of Borel measures in C0(K ).
Let u(t) be a trajectory of (1.2), starting from a point u ∈ C0(K ). Let u′(t) be an
independent copy of the process u(t), starting from another point u′, and defined on
a probability space 
′ which is a copy of 
. For a closed subset G ⊂ C0(K ) we set
G2 = G × G ⊂ C0(K )× C0(K ) and define the hitting time

τ (G2) := inf{t ≥ 0 : u(t) ∈ G, u′(t) ∈ G}, (4.1)

which is a random variable on 
 × 
′. The following result is an immediate conse-
quence of Theorem 3.1.3 in [14].

Proposition 4.1 Let us assume that for any integer m ≥ 1 there is a closed subset
Gm ⊂ C0(K ) and constants δm > 0, Tm ≥ 0 such that δm→0 as m→∞, and the
following two properties hold:

(i) (recurrence) For any u, u′ ∈ C0(K ), τ (G2
m) < ∞ almost surely.

(ii) (stability) For any u, u′ ∈ Gm

sup
t≥Tm

‖Pt (u, ·)− Pt (u
′, ·)‖∗L(C0(K )) ≤ δm . (4.2)

Then the stationary measure μ of Eq. (1.2), constructed in Theorem 3.5, is unique and
for any λ ∈ P(C0(K )) we have P∗

t λ ⇀ μ as t→∞.
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We will derive from this that the Markov process, defined by Eq. (1.2) in C0(K ), is
mixing:

Theorem 4.2 There is an integer N = N (B∗) ≥ 1 such that if bd �= 0 for |d| ≤ N,
then there is a unique stationary measure μ ∈ P(C0(K )) for (1.2), and for any
measure λ ∈ P(C0(K )) we have P∗

t λ ⇀ μ as t→∞.

The theorem is proved in the next section. Now we derive from it a corollary:

Corollary 4.3 Let f (u) be a continuous functional on C0(K ) such that | f (u)| ≤
C f ec|u|2∞ for u ∈ C0(K ), where c < c∗ (c∗ > 0 is the constant in assertion (i) of
Theorem 2.7). Then for any solution u(t) of (1.2) such that u(0) ∈ C0(K ) is non-
random, we have

E f (u(t)) → (μ, f ) as t →∞.

Proof For any N ≥ 1 consider a smooth function ϕN (r), 0 ≤ ϕN ≤ 1, such that
ϕN = 1 for |r | ≤ N and ϕN = 0 for |r | ≥ N + 1. Denote fN (u) = ϕN (|u|∞) f (u).
Then fN ∈ Cb(C0(K )), so by Theorem 4.2 we have

|E fN (u(t))− (μ, fN )| ≤ κ(N , t),

where κ → 0 as t → ∞, for any N . Denote νt (dr) = D(|u(t)|∞), t ≥ 0. Due to
(2.18),

|E( fN (u(t))− f (u(t))| ≤ C f

∞∫

0

(1− ϕN (r))ecr2
νt (dr)

≤ C f e(c−c∗)N 2

∞∫

0

ec∗r2
νt (dr) ≤ C1e(c−c∗)N

(note that the r.h.s. goes to 0 when N grows to infinity). Similar, using Theorem 3.5
we find that |(μ, fN )− (μ, f )| → 0 as N →∞. The established relations imply the
claimed convergence. ��

4.2 Proof of Theorem 4.2

It remains to check that eq. (1.2) satisfies properties (i) and (ii) in Proposition 4.1 for
suitable sets Gm . For m ∈ N and L > 0 we define

Gm,L := {u ∈ C0(K ) : ‖u‖ ≤ 1

m
, |u|∞ ≤ L}

(these are closed subsets of C0(K )). For u0, u′0 ∈ Gm,L consider solutions

u = u(t, u0), u′ = u(t, u′0),
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defined on two independent copies 
,
′ of the probability space 
, and consider the
first hitting time τ (G2

m,L) of the set G2
m,L by the pair (u(t), u′(t)) (this is a random

variable on 
 × 
′, see (4.1)). The proof of the following lemma is identical to that
of Lemma 3.6.

Lemma 4.4 There is a constant L ′ > 0 such that for any m ∈ N we have

Ee
γ τ (G2

m,L′ ) ≤ C(1+ |u0|2∞ + |u′0|2∞) for all u0, u′0 ∈ C0(K ),

where γ and C are suitable positive constants.

Let us choose L = L ′ in the definition of the sets Gm,L in Proposition 4.1. Then
the property (i) holds and it remains to establish (ii), where Pt (u0, ·) = D(u(t)) and
Pt (u′0, ·) = D(u′(t)). From now on we assume that the solutions u and u′ are defined
on the same probability space. It turns out that it suffices to prove (4.2) with the norm
‖ · ‖∗L(C0(K ))

replaced by ‖ · ‖∗L(H)
. To show this we first estimate the distance between

D(u(t)) and D(u′(t)) in the Kantorovich metrics

‖D(u(t))−D(u′(t))‖K (H) = sup{|( f,D(u(t)))− ( f,D(u′(t)))| : Lip( f ) ≤ 1}

in terms of

d = ‖D(u(t))−D(u′(t))‖∗L(H),

where t ≥ 0 is any fixed number. Without loss of generality, we can assume that the
supremum in the definition of the Kantorovich distance is taken over f ∈ L(H) such
that Lip( f ) ≤ 1 and f (0) = 0. By (2.18),

E(ec‖u(t)‖ + ec‖u′(t)‖) ≤ CL . (4.3)

Setting fR(u) = min{ f (u), R} and using (4.3), the Cauchy–Schwarz and Chebyshev
inequalities, we get

E| f (u(t))− fR(u(t))| ≤ E(‖u(t)‖ − R)I‖u(t)‖≥R ≤ C ′
Le−

c
2 R .

A similar inequality holds for u′(t). Since ‖ fR‖L(H) ≤ R + 1, then

E| f (u(t))− f (u′(t))| ≤ 2C ′
Le−

c
2 R + (R + 1)d.

Optimising this relation in R, we find that E| f (u(t))− f (u′(t))| ≤ C ′′
L

√
d. Thus

‖D(u(t))−D(u′(t))‖K (H) ≤ C ′′
L

√
d,

By (3.2), the functions u(t) and u′(t) belong to Cθ (K ) for any θ ∈ (0, 1). The
following interpolation inequality is proved at the end of this section.
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Lemma 4.5 For any u ∈ Cθ (K ) we have

|u|∞ ≤ Cn,θ‖u‖ 2θ
n+2θ |u|

n
n+2θ

Cθ . (4.4)

By the celebrated Kantorovich theorem (e.g. see in [5]), we can find random vari-
ables ξ and ξ ′ such that D(ξ) = D(u(t)),D(ξ ′) = D(u′(t)) and

E‖ξ − ξ ′‖ = ‖D(u(t))−D(u′(t))‖K (H) ≤ C ′′
L

√
d.

Using (4.4), (3.2), this estimate and the Hölder inequality, we find that

E|ξ − ξ ′|∞ ≤ CE‖ξ − ξ ′‖ 2θ
n+2θ |ξ − ξ ′|

n
n+2θ

Cθ ≤ (C ′′
L

√
d)

2θ
n+2θ C ′′′

L

n
n+2θ = C̃Ld

θ
n+2θ .

Therefore, for any f such that ‖ f ‖L(C0(K )) ≤ 1 we have

|( f,D(u(t)))− ( f,D(u′(t)))| = |E f (ξ)− f (ξ ′)| ≤ E|ξ − ξ ′|∞ ≤ C̃Ld
θ

n+2θ ,

which implies that

‖D(u(t))−D(u′(t))‖∗L(C0(K )) ≤ C̃L

(
‖D(u(t))−D(u′(t))‖∗L(H)

) θ
n+2θ

. (4.5)

Thus we have proved

Lemma 4.6 Assume that

sup
t≥Tm

‖Pt (u0, ·)− Pt (u
′
0, ·)‖∗L(H) ≤ δm (4.6)

for all u0, u′0 ∈ Gm,L , where δm → 0. Then (4.2) holds for Gm = Gm,L with

δ′m = CLδ
θ

n+2θ
m .

So to prove Theorem 4.2 it remains to verify (4.6).

Proof of (4.6) In view of the triangle inequality we may assume that in (4.6) u′0 = 0.
Step 1. In this step we prove that it suffices to establish (4.6) for solutions of

an equation, obtained by truncating the nonlinearity in (1.2). For any ρ ≥ 0 and
any continuous process {z(t) : t ≥ 0} with range in C0(K ) we define the stopping
time

τ z = inf

⎧
⎨

⎩t ≥ 0 :
t∫

0

|z(τ )|2∞dτ − K t ≥ ρ

⎫
⎬

⎭ ,

where K is the constant in Lemma 2.8 (as usual, inf ∅ = ∞). We set 
z
ρ = {τ z < ∞}

and π z = P(
z
ρ). Then
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πu ≤ Ce−γρ, πu′ ≤ Ce−γρ (4.7)

for suitable C, γ > 0 and for any ρ > 0. Consider the following auxiliary equation:

v̇ −�v + i |v|2v + λPN (v − u) = η(t, x), v(0) = 0. (4.8)

Consider τv and define 
v
ρ and πv as above. Define the stopping time

τ = min{τ u, τ u′ , τ v} ≤ ∞,

and define the continuous processes û(t), û′(t) and v̂(t) as follows: for t ≤ τ they
coincide with the processes u, u′ and v respectively, while for t ≥ τ they satisfy the
heat equation

ż −�z = η.

Due to (4.7)

‖D(u(t))−D(û(t))‖∗L+‖D(u′(t))−D(û′(t))‖∗L ≤ 4P{τ < ∞} ≤ 8Ce−γρ + 4πv.

(4.9)

So to estimate the distance between D(u(t)) and D(u′(t)) it suffices to estimate πv

and the distance between D(û(t)) and D(û′(t)).
Step 2. Let us first estimate the distance between D(û(t)) and D(v̂(t)). Equations

(1.2) and (4.8) imply that for t ≤ τ the difference w = v̂ − û satisfies

ẇ −�w + i
(|v̂|2v̂ − |û|2û

)+ λPN w = 0, w(0) = −u0,

where |〈|v̂|2v̂− |û|2û, w〉| ≤ C(|û|2∞+ |v̂|2∞)‖w‖2 . Taking the H -scalar product of
the w-equation with 2w, we get that

d

dt
‖w‖2 + 2‖∇w‖2 + 2λ‖PN w‖2 ≤ C(|û|2∞ + |v|2∞)‖w‖2, t ≤ τ. (4.10)

Since ‖∇w‖2 ≥ αN‖QN w‖2, where QN = id − PN, then

2‖∇w‖2 + 2λ‖PN w‖2 ≥ 2λ1‖w‖2, λ1 := min{αN , λ}.

Choosing λ and N so large that λ1 − C K ≥ 1 and applying to (4.10) the Gronwall
inequality, we obtain that

‖w‖2 ≤ ‖u0‖2 exp

⎛

⎝−2λ1t + C

t∫

0

(|û|2∞ + |v̂|2∞)ds

⎞

⎠

≤ 1

m2 exp (−2(λ1 − C K )t + 2Cρ) ≤ 1

m2 exp (−2t + 2Cρ) ,
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for t ≤ τ . Clearly for t ≥ τ we have (d/dt)‖w‖2 ≤ −2‖w‖2. Therefore

‖w‖2 ≤ 1

m2 exp (−2t + 2Cρ) ∀ t ≥ 0 a.s. (4.11)

So for any f ∈ L(H) such that ‖ f ‖L ≤ 1 we get

|E( f (û(t))− f (v̂(t)))| ≤
(
E‖w‖2

) 1
2 ≤ 1

m
eCρ−t =: d(m, ρ, t).

Thus

‖D(û(t))−D(v̂(t))‖∗L(H) ≤ d(m, ρ, t). (4.12)

Step 3. To estimate the distance between D(v̂(t)) and D(û′(t)) notice that, without
loss of generality, we can assume that the underlying probability space (
,F , P) is
of the particular form: 
 is the space of functions u ∈ C(R+, C0(K )) that vanish
at t = 0, P is the law of ζ defined by (1.3), and F is the completion of the Borel
σ -algebra of 
 with respect to P. For any ω· ∈ 
, define the mapping � : 
→
 by

�(ω)t = ωt − λ

t∫

0

χs≤τ PN
(
v̂(s)− û(s)

)
ds.

Clearly, a.s. we have

û′�(ω)(t) = v̂ω(t) for all t ≥ 0. (4.13)

Note that the transformation � is finite dimensional: it changes only the first N com-
ponents of a trajectory ωt . Due to (4.11), almost surely

∞∫

0

‖PN w(s)‖2 ds ≤ 1

2m2 e2Cρ.

This relation, the hypothesis that bd �= 0 for any |d| ≤ N , and the argument in
Section 3.3.3 of [14], based on the Girsanov theorem, show that

‖� ◦ P− P‖var ≤ C(ρ)

m
=: d̃(m, ρ). (4.14)

Using (4.13), we get D(v̂(t)) = v̂t ◦P = û′t ◦ (� ◦P), where v̂t stands for the random
variable ω→v̂ω(t). Therefore,

‖D(v̂(t))−D(û′(t))‖∗L(H) ≤ 2‖D(v̂(t))−D(û′(t))‖var

≤ 2‖� ◦ P− P‖var ≤ 2d̃(m, ρ). (4.15)
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Step 4. Now let us prove (4.6). We get from (4.7) and (4.14) that

πv = P
v
ρ = P�−1(
û

ρ) = (� ◦ P)
û
ρ ≤ P
û

ρ + d̃(m, ρ) ≤ Ce−γρ + d̃(m, ρ).

Due to (4.9), (4.12), (4.15) and the last inequality we have

‖D(u(t))−D(u′(t))‖∗L ≤ 12Ce−γρ + d(m, ρ, t)+ 6d̃(m, ρ)

≤ 12Ce−γρ + 1

m
eCρ−t + 6

m
C(ρ) =: Dm(t).

Let us choose ρ = ρ(m), where ρ(m) →∞ in such a way that 6
m C(ρ(m)) → 0, and

next take Tm = Cρ(m). Then for t ≥ Tm we have Dm(t) ≤ δm → 0. This completes
the proof.

Proof of Lemma 4.5 Let us take any u ∈ Cθ , u �≡ 0 and set M := |u|∞, U := |u|Cθ .
Take any x∗ ∈ K such that |u(x∗)| = M . To simplify the notation, we suppose that
x∗ = 0. Regarding u as an odd periodic function on R

n we have

|u(x)| ≥ M − |x |θU ∀ x .

The l.h.s of this inequality vanishes at |x | = (M/U )1/θ =: r∗ ≤ 1. Integrating the
squared relation we get

‖u‖2 ≥ C

r∗∫

0

(M − r θU )2rn−1dr

= CU 2

r∗∫

0

(r2θ∗ rn−1 − 2r θ∗ rn+θ−1 + rn+2θ−1)dr

= CU 2rn+2θ∗
(

1

n
− 2

n + θ
+ 1

n + 2θ

)
= U 2rn+2θ∗ C(n, θ) > 0.

Replacing in this inequality r∗ by its value we get (4.4). ��

5 Some generalisations

(1) Our proof, as well as that of [16], applies practically without any change to
equations (1.1), where ν > 0 and a ≥ 0. Indeed, scaling the time and u we
achieve ν = 1 (the random force scales to another force of the same type). Now
consider Eq. (1.1) with ν = 1 and a ≥ 0, and write the equation for ξ(r(t, x)).
The integrand in the r.h.s. of Eq. (2.3) gets the extra term−ξ ′(r)ar2. Accordingly,
the r.h.s. part g(t, x) of Eq. (2.8) gets the non-positive term−ar2. Since the proof
in Sect. 2 only uses that g ≤ 1

2r

∑
b2

d |ϕd |2, it does not change. In Sects. 3–4, as
well as in [16], we only use results of Sect. 2 and the fact that the nonlinearity in
the equation, as well as its derivatives up to order m, admit polynomial bounds.
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For the argument in Sect. 4 it is important that the nonlinearity’s derivative grows
no faster than C |u|2.

(2) The proof of Theorem 2.2, given in [16], applies with minimal changes if the
Sobolev space Hm(K ) with m > n/2 (a Hilbert algebra) is replaced by the
Sobolev space W 1,p(K ) with p > n (a Banach algebra). It implies the assertions
of the theorem with the norm ‖ · ‖m replaced by the norm | · |W 1,p , under the
condition that B1 < ∞. The argument in Sects. 2.1–3.2 remains true in this setup
since it does not use the Hm-norm. So to establish results of Sect. 3 one can use
the W 1,p-solutions instead of Hm-solutions.

(3) Similar to (1) results of Sects. 2.1–3.2 remain true for Eq. (1.10).
(4) Consider Eq. (1.2) in a smooth bounded domain O ⊂ R

n with Dirichlet boundary
conditions:

u |∂O= 0. (5.1)

Denote by {ϕ j , j ≥ 1} the eigenbasis of −�,

−�ϕ j = λ jϕ j , j ≥ 1

and define the random field ζ(t, x) as in Sect. 1, i.e. ζ = ∑
j b jβ j (t)ϕ j (x).

Denote

B∗ =
∑

j

b j |ϕ j |∞, B1 =
∑

j

b2
j |∇ϕ|2p .

The W 1,p-argument as in (2) applies to Eq. (1.2), (5.1) and proves an analogy
of Theorem 2.2 with the ‖ · ‖m-norm replaced by the | · |W 1,p -norm, under the
assumption that B∗, B1 < ∞. The only difference is that now the assertion of
Lemma 2.4 follows not from [16], but from the result of [10] (also see [11,19]).
After that the proof goes without any changes compare to Sects. 1–4 and estab-
lishes for Eqs. (1.2), (5.1) analogies of the main results of this work (with the
space C0(K ) replaced by C0(O) and H1—by H1

0 (O)):

Theorem 5.1 Assume that B∗ < ∞. Then

(i) for any u0 ∈ C0(O) problem (1.2), (1.6), (5.1) has a unique strong solution u
such that u ∈ H(0,∞) a.s. This solution defines in the space C0(O) a Fellerian
Markov process.

(ii) This process is mixing.

The first assertion remains true if in Eq. (1.2) we replace the nonlinearity by
igr (|u|2)u, 0 < r < ∞. If r ≤ 1, then the second assertion is also true. It is
unknown if the systems, corresponding to equations with r > 1, are mixing (this
is a well known difficulty: it is unknown how to prove mixing for SPDEs without
non-linear dissipation and with a conservative nonlinearity which grows at infinity
faster then in the cubic way).
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(5) Lemmas 2.8, 4.4 and estimate (4.5) allow to apply to Eq. (1.2) the methods, devel-
oped recently to prove exponential mixing for the stochastic 2d Navier-Stokes
system (see in [14] Theorems 3.1.7, 3.4.1 as well as discussion of this result). It
implies that the Markov process, defined by Eq. (1.2), is exponentially mixing,
i.e. in Theorem 4.2 the distance ‖P∗

t λ−μ‖∗L converges to zero exponentially fast.
See Sect. 4 of [14] for consequences of this result. Proof of this generalization is
less straightforward than those in (1–4) and will be presented elsewhere.

6 Appendix. Proof of Lemma 2.5

Let v be a solution of the stochastic heat equation

v̇ −�v = ϒ̇ =
∑

d∈Nn

bd f d(t, x)β̇d(t), v(0) = 0, (6.1)

where f d(t, x) are progressively measurable functions such that | f d(t, x)| ≤ L for
each d, t and x almost surely, bd are real numbers satisfying (1.4), and βd are standard
independent real-valued Brownian motions. By Lemma 2.4, we know that v belongs
to C(R+, C0(K )) a.s., and for any t ≥ 0 and p ≥ 1 estimate (2.7) holds. In this section
we specify (2.7) and show that there is a constant C(T ) > 0 such that

E sup
τ∈[t,t+T ]

|v(τ)|2p∞ ≤ (C(T )L B∗)2p p p, (6.2)

for all t ≥ 0. To do this we reproduce the proof of Lemma 2.4, given in the Appendix
to [16], tracing explicitly the values of the constants, involved in the estimates.

Step 1. Clearly it suffices to prove (6.2) for T = 1. Moreover, it suffice to do this in
the case when only one of the constants bd is non-zero. Indeed, let vd be the solution
of (6.1) with ϒ̇ = f d(t, x)β̇d(t), and assume that we have

E sup
τ∈[t,t+1]

|vd(τ )|2p∞ ≤ (C L)2p p p ∀ d. (6.3)

Then v =∑
d∈Nn bdvd , and the Minkovski inequality gives

(
E sup

τ∈[t,t+1]
|v(τ)|2p∞

)1/2p

≤
(

E

(∑

d

bd sup
τ∈[t,t+1]

|vd |
)2p

)1/2p

≤
∑

d

bd
(
E sup

τ∈[t,t+1]
|vd |2p)1/2p ≤ B∗C L

√
p,

so we get (6.2).
Step 2 (estimates for increments). Let us write v, f, β instead of vd , f d , βd . At this

step we show that for any θ ∈ (0, 1/2) there is a constant C(θ) > 0 such that for any
t1, t2 ∈ R and x1, x2 ∈ R

n with |t1 − t2| ≤ 1 and |x1 − x2| ≤ 1 we have
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E|v(t1, x1)− v(t2, x2)|p ≤ C(θ)p p
p
2 L p(|t1 − t2| + |x1 − x2|)θp, (6.4)

for any p > 1. Let us denote g(t, τ ) := e(t−τ)�( f (τ, x1)− f (τ, x2)) and

U := v(t, x1)− v(t, x2) =
t∫

0

g(t, τ )dβ(τ).

The quadratic variation of U is given by X (t) := ∫ t
0 g(t, τ )2dτ . Using the estimate

‖et�u‖Cθ (K ) ≤ C(θ)t−
θ
2 e−ct |u|∞,

valid for any θ ∈ (0, 1) with suitable c > 0 and C(θ) (e.g., see Lemma A1 in [16]),
we get that

X (t) ≤ C(θ)L2|x1 − x2|2θ

t∫

0

τ−θ e−2cτ dτ ≤ C1(θ)|x1 − x2|2θ L2.

Applying the Burkholder–Davis–Gundy (BDG) inequality (see [3]), we get

E|U |p ≤ C p p
p
2 EX

p
2 ≤ C(θ)p L p p

p
2 |x1 − x2|pθ . (6.5)

Now let us prove similar estimate for the time-increments. For any δ > 0 write
δ-time increment as

u(x, t + δ)− u(x, t) =
t+δ∫

t

e(t+δ−τ)� f (τ, x)dβ(τ)

+
t∫

0

(e(t+δ−τ)� f (τ, x)− e(t−τ)� f (τ, x))dβ(τ)

=:
t+δ∫

t

h1(t, τ )dβ(τ)+
t∫

0

h2(t, τ )dβ(τ) =: I1 + I2.

If we show that

E|I1|p ≤ C(θ)p L p p
p
2 δ

p
2 , E|I2|p ≤ C(θ)p L p p

p
2 δθp, (6.6)

for any θ ∈ (0, 1), then combining (6.5) with (6.6) we will get (6.4). But since the
quadratic variations of I1 and I1 satisfy
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t+δ∫

t

h2
1(t, τ )dτ ≤ L2δ,

t∫

0

h2
2(t, τ )dτ ≤ C(θ)L2δ2θ

t∫

0

τ−2θ e−cτ dτ ≤ C1(θ)L2δ2θ ,

then the BDG inequality implies (6.6) in the same way as above.
Step 3 (the Kolmogorov argument). Now we prove (6.3). To simplify calculations

we scale K to the unit cube, K := [0, 1]n , and assume that t = 0 (if not, we consider
the function v′(t ′, x) = v(t + t ′, x)). We specify θ = 1/3, denote Q = [0, 1] × K =
[0, 1]n+1 and define the sets

KN = {k ∈ Z
N+1 : k2−N ∈ Q}, N ≥ 1.

For any e = (e1, . . . , en+1) ∈ Z
n+1 such that |e| = max1≤ j≤n+1 |e j | = 1, we set

ζ
N ,e
k = |v((k + e)2−N )− v(k2−N )|. By Step 2 we have

E|ζ N ,e
k |p ≤ C p p

p
2 L p2−pN/3, (6.7)

for every p > 1. For q, R > 0 let us introduce the events

AN ,e
k,q = {ω ∈ 
 : ζ N ,e

k ≥ Rq N }, AN
q = ∪k∈K

(
∪|e|=1AN ,e

k,q

)
.

From (6.7) and the Chebyshev inequality we get

P

{
AN ,e

k,q

}
≤ R−pq−pN

E|ζ N ,e
k |p ≤ C p R−pq−pN p

p
2 L p2−pN/3.

For each N the total number of events AN ,e
k,q is not greater than C ′2(n+1)N , C ′ = C ′(n).

Thus

P{AN
q } ≤ C ′C p R−pq−pN p

p
2 L p2(n+1)N−pN/3 = C ′C p R−p p

p
2 L pαN ,

where α = q−p2(n+1)−p/3. Let us choose q = 2−1/6 and p ≥ 6(n+2). Then α ≤ 1/2,
and for the event A := ∪N≥1AN

q we have

P{A} ≤ C ′C p R−p p
p
2 L p. (6.8)

Any point x ∈ Q = [0, 1]n+1 can be represented in the form x =∑∞
j=1 e( j)2− j ,

where e( j) ∈ Z
n+1, |e( j)| ≤ 1. Let us set x(0) = 0 and x(m) = ∑m

j=1 e( j)2− j if
m ≥ 1. Then v(t, x(0)) = 0 for all t ≥ 0, and for any ω /∈ A

|v(t, x(m))− v(t, x(m + 1))| ≤ Rqm = R2−m/6.
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Therefore,

|v(t, x)| ≤ R
∞∑

m=1

2−m/6 = R21/6(21/6 − 1).

Combining this with (6.8), we get

P{‖v‖L∞(Q) ≥ R} ≤ C p
1 (R + 1)−p p

p
2 L p

for any R > 0 and p ≥ 6(n + 2). Thus for any p like that we have

E‖v‖p−1
L∞(Q) =

∞∫

0

x p−1dP{‖v‖L∞(Q) ≤ x} = (p − 1)

∞∫

0

x p−2
P{‖v‖L∞(Q) ≥ x}dx

≤ C p
1 p

p
2 L p

∞∫

0

x p−2(x + 1)−pdx ≤ C p
2 p

p
2 L p,

which implies (6.3) with a suitable C .
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