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Abstract

We approach the design of anti-discriminatory labor market regulation as a dele-
gation problem. A private firm (the agent) is repeatedly faced with the opportunity
of hiring one among several applicants to fill its vacancies. The firm is biased against
applicants from some demographic group, and it is neutral towards applicants from
some other group. Applicants differ not only with respect to their demographic
characteristics, but also with respect to the idiosyncratic quality of their match
with firm. A benevolent and unbiased labor market authority (the principal) enacts
a hiring regulation (a direct-revelation mechanism without transfers) in order to
reduce the impact of the firm’s bias on its hiring behavior. The hiring regulation
is constrained by the fact that the quality of the match between any particular ap-
plicant and the firm is privately observed by the firm. We characterize the optimal
mechanism.
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1 Introduction

Labor market legislation typically forbids firms from explicitly discriminating applicants
from different demographic groups by offering wages that depend on an applicant’s demo-
graphic characteristics. Firms, indeed, are not allowed to post a job opening that offers
50,000$ a year to a man, and 40,000$ a year to a woman. Such legislation, however, is
unlikely to be effective at curbing discrimination, as long as firms are free to choose which
applicants to hire and which applicants to ignore. For instance, a firm that posts a job
opening offering 50,000$ a year to any applicant could still act on its gender bias by setting
different standards for hiring men or women. A successful anti-discrimination legislation
needs to include some restriction on the firms’hiring behavior. Obviously, the extent of
hiring restrictions is limited by the fact that a firm has private information about how
suitable different applicants are to fill its job openings.

In this paper, we approach the design of anti-discriminatory hiring regulation as an
optimal delegation problem between a principal (a labor market authority) and an agent (a
private firm) that is biased against applicants from a particular demographic group. The
strength of the hiring regulation is limited by the fact that the firm has private information
about the quality of its match with different job candidates. As in the delegation literature,
we restrict attention to regulations that do not involve direct monetary transfers between
the labor market authority and the firm. We show that the optimal regulation is dynamic,
in the sense that its prescriptions depend on the firm’s history of hiring. After any history,
the optimal regulation either specifies that the firm is free to hire whichever candidate
it sees fit (delegation state) or that the hiring process is directly controlled by the labor
market authority (control state). In the delegation state, the firm is rewarded for hiring
applicants from the discriminated group, and it is punished for passing on the opportunity
to hire applicants from the discriminated group. The rewards and punishments give the
firm an incentive to act less biased when making its hiring decision. The reward is
delivered as an extension in the expected time until the hiring process is taken away from
the firm, as well as a weakening of the incentives to hire discriminated applicants—which
allows the firm to lean into its bias. Conversely, the punishment is delivered as a reduction
in the expected time until the hiring process is taken away from the firm, as well as a
strengthening of the incentives to hire discriminated applicants—which forces the firm to
hire in a less biased way. In the control state, the labor market authority hires only
applicants from the discriminated group. The control state is reached with probability 1
and it is absorbing.

In Section 2, we consider a basic version of the delegation problem described above. In
every period, the agent has the option to hire an applicant from a particular demographic
group. If the applicant is hired, the agent’s payoff is given by x − η, where x denotes
the quality of the applicant, and η denotes the extent of the agent’s bias against the
applicant’s demographic group. The payoff to the principal is x. If the applicant is not
hired, the payoff to the agent and the payoff to the principal are normalized to 0. Note
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that the principal is benevolent and unbiased, in the sense that it cares about the quality
of the applicant hired by the agent, but does not care about the bias of the agent. The
quality of the applicant x is a continuous random variable drawn from a distribution F ,
and its realization is privately observed by the agent.

In the first period, the principal commits to a direct-revelation mechanism without
transfers in order to maximize its own value, which would be equal to the value received by
the agent if the agent were unbiased. In each period, the mechanism solicits a report from
the agent about the quality of the applicant. Depending on the realized history of play,
the mechanism may make use of the agent’s report to decide whether the applicant is
hired, or it may ignore the agent’s report. In the first case, the mechanism produces
the same outcomes as if the agent was directly choosing whether or not to hire the
applicant, taking as given the consequences of its decision on the future prescriptions
of the mechanism. For this reason, we refer to the first case as “delegation”. In the
second case, the mechanism produces the same outcomes as if the principal was directly
choosing whether to hire the applicant. For this reason, we refer to the second case as
“control”. Since the upper envelope of the principal’s value under delegation and control
is unlikely to be a concave function of the agent’s value, the mechanism includes a public
lottery between delegation and control at the beginning of each period. In Section 2, we
restrict attention to mechanisms with the property that: (i) once the mechanism gives
control to the principal, the principal remains in control forever; (ii) while in control, the
principal hires every applicant. In Section 3, we prove that these restrictions are made
without any loss in generality.

We formulate the optimal mechanism design problem recursively, using the agent’s
promised value as an auxiliary state variable. We first characterize the optimal lottery
between delegation and control as a function of the agent’s promised value V . We show
that, if V is lower than some threshold VC , the optimal lottery is non-degenerate, in the
sense that it assigns positive probability to both delegation and control. If the outcome
of the lottery is control, the principal hires every future applicant and the agent’s value
falls to its lower bound VP . If the outcome of the lottery is delegation, the agent keeps
making the hiring decisions and its value moves up to the threshold VC . If the agent’s
promised value V is higher than VC , the optimal lottery is degenerate. In particular, the
hiring decision is delegated to the agent and the agent’s continuation value V̂ is equal to
its promised value V .

We then characterize the optimal incentives in delegation as a function of the agent’s
promised value V̂ . We show that, if the agent hires the applicant in the current period, it
gets rewarded with a continuation value V1 that is strictly greater than the promised value
V̂ . If the agent does not hire the applicant, it gets punished with a continuation value V0
that is strictly smaller than the promised value V̂ . The gap between V1 and V0 induces the
agent’s to adopt a reservation quality for hiring, R, that is tilted away from η, the agent’s
preferred reservation quality, and towards 0, the principal’s preferred reservation quality.
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The mechanism delivers the reward V1−V̂ by increasing the expected time until the hiring
decision is taken away from the agent, and by weakening the incentives faced by the agent,
which allows the agent to adopt a reservation quality R that is closer to its preferred one.
Conversely, the mechanism delivers the punishment V̂ − V0 by decreasing the expected
time until the hiring decision is taken away from the agent, and by strengthening the
incentives faced by the agent, which forces the agent to adopt a reservation quality R
that is further away from its preferred one. If the agent keeps hiring applicants, its value
approaches VF , which denotes the value that the agent could obtain if it had permanent
discretion over hiring. In this limit, the hiring incentives provided by the mechanism
vanish, and the agent’s reservation quality R approaches η. If the agent keeps on passing
up on applicants, its value eventually falls below the threshold VC , and the agent faces the
threat of control, where applicants are hired irrespective of their quality. Even though the
probability that the agent hires the applicant is always strictly positive, the mechanism
reaches the control state with probability 1.

In Section 4, we establish that the characterization of the optimal mechanism in the
baseline environment can be directly applied to richer, and more realistic situations. First,
we show that the optimal mechanism in the baseline environment is identical to the op-
timal mechanism in a model where the agent can choose between an applicant from a
demographic group against which it is biased (a contentious applicant) and an applicant
from a demographic group against which it holds no bias (an uncontentious applicant).
Second, we show that the analysis of the optimal mechanism in the baseline environment
can be extended to the case in which the agent can choose between n contentious appli-
cants and m uncontentious applicants. Third, we show that the analysis of the baseline
environment can be applied to the case in which the agent’s bias is positive rather than
negative. Lastly, we show that the analysis can be generalized to the case in which the
agent privately observes whether a contentious applicant is available for hire or not.

Our paper relates to the literature on delegation, broadly defined as mechanism de-
sign without transfers (Holmstrom 1977, Alonso and Matouschek 2008). Important ex-
amples of delegation in static environments include allocating decision rights within a
firm (Aghion and Tirole 1997), setting hiring rules for a biased employer (Frankel 2021),
and setting trade tariffs (Amador and Bagwell 2013). Several papers study delegation
in dynamic models with hyperbolically-discounting agents, and focus on designing rules
for time-inconsistent individuals (Angeletos, Werning and Amador 2006), governments
(Halac and Yared 2018), or monetary authorities (Athey, Atkeson and Kehoe 2005). A
common result in these papers is that, as long as shocks are independently drawn over
time, the optimal mechanism is static– in the sense that it makes the same prescriptions
independently of the realized history of play. In contrast to these papers, we find that the
optimal mechanism is history-dependent. Intuitively this is so because in our model the
principal and the agent disagree not only today, but also in the future.

Other papers on dynamic delegation find that the optimal mechanism is history-
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dependent. Jackson and Sonneschein (2007) show that “quota mechanisms”are optimal
as players become infinitely patient. Escobar and Toikka (2013) establish a similar re-
sult with Markov types. In contrast to these papers, we consider an environment where
players are impatient and, hence, the timing, and not simply the frequency, with which
the agent takes a particular action matters to the principal. Frankel (2016) and Malenko
(2019) show that appropriately discounted quotas are optimal also in an environment in
which players are impatient, as long as the agent’s preferences are state-independent. In
contrast to these papers, we consider an environment in which both the principal and
the agent care about the quality of the applicant. In such an environment, quotas are
excessively restrictive.

The closest papers to ours are Li, Matouschek and Powell (2017), Guo and Horner
(2020), and Lipnowski and Ramos (2020). Li, Matouschek and Powell (2017) consider
a dynamic version of Aghion and Tirole (1997) in which the presence of a principal’s
preferred project is privately observed by the agent, who is rewarded for adopting it, and
punished for undertaking its own preferred project. Guo and Horner (2020) study the
problem of a principal that needs to rely on a biased agent to assess the quality of an
investment opportunity. Lipnowski and Ramos (2020) consider the same environment as
Guo and Horner (2020), but assume that the principal lacks commitment. These papers
restrict attention to environments in which the quality of the investment is a binary
random variable, while we consider an environment in which the quality of the applicant
is a continuous random variable. The difference is not purely technical, as it affects the
properties of the optimal mechanism. First, with a continuum of qualities, the mechanism
rewards and punishes the agent by inducing changes in the agent’s reservation quality.
With two qualities, this margin for rewards and punishments is inactive. Second, with a
continuum of qualities, we find that the mechanism drives the agent to its lowest value
with probability 1. With two qualities, the mechanism may drive the agent to either
its lowest or its highest value (see also the repeated moral-hazard problems in Clementi
and Hopenhayn 2006, Sannikov 2008, and Padro i Miguel and Yared 2012). Third, with a
continuum of qualities, it is immediate to extend the analysis of the optimal mechanism to
an environment with multiple investment opportunities, some of which are contentious and
some of which are not. This extension captures the essence of labor market discrimination.

2 Baseline model

In this section, we consider a basic environment. In every period, the principal has the
option to hire a new applicant from some particular demographic group. The principal
does not have the expertise to assess the quality of the applicant, but the agent does. The
agent, however, is biased against applicants from that demographic group. The principal
commits to a direct-revelation mechanism in order to elicit the information of the agent
while minimizing the consequences of the agent’s bias. The mechanism does not allow for
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monetary transfers between the principal and the agent and, in this sense, the mechanism
design problem is a delegation problem. In Section 2.1, we describe and interpret the
environment. In Section 2.2, we formulate the mechanism design problem recursively as
a two-stage problem, using the agent’s value as an auxiliary state variable. In Section
2.3, we characterize the solution of the first-stage problem– a lottery between delegation
and control, where delegation means that, effectively, the agent directly chooses whether
to hire the applicant, and control means that, effectively, the principal directly chooses
whether to hire the applicant. In Section 2.4, we characterize the solution of the second-
stage problem– the design of the mechanism when the hiring decision is delegated to the
agent.

2.1 Environment

In every period t = 0, 1, 2, ..., a new applicant is available for hire. The quality x of
the applicant is drawn from a continuously differentiable cumulative distribution function
F (x) with mean 0 and support X = [x, x].1 The agent observes the quality of the
applicant, but the principal does not. If the applicant is hired, the agent obtains a flow
payoffof (1−β)(x−η) and the principal obtains a flow payoffof (1−β)x, where β ∈ (0, 1)

is the factor at which the principal and the agent discount future payoffs, and η ∈ (0, x) is
the agent’s bias against hiring the applicant. If the applicant is not hired, both the agent
and the principal obtain a flow payoff of 0. No monetary transfers between the principal
and the agent are allowed.

In period t = 0, the principal commits to a direct-revelation mechanism. In every
period t, the mechanism solicits a report x̂ ∈ X from the agent about the quality x ∈ X
of the applicant and decides whether or not to hire the applicant a ∈ {0, 1}.2 Depending
on the history ht of play observed up to period t, the mechanism may act on the report
from the agent, in the sense that it does or does not hire the applicant depending on the
report, or it may ignore the report from the agent, in the sense that it may or may not hire
the applicant irrespective of the report. In the first case, we say that the mechanism is
delegating the hiring decision to the agent. In the second case, we say that the mechanism
is letting the principal control the hiring decision.

Consider the case in which hiring is delegated to the agent. Let X0 denote the set

1The assumption E[x] = 0 is not critical for any of our results. The cases in which E[x] < η only
require minor but tedious modifications in the proofs. The cases in which E[x] ≥ η are more involved.
Numerically, however, we find that our results hold also when E[x] ≥ η.

2We restrict attention to mechanisms that specify a hiring probability a(x) that is either 0 or 1. The
restriction is not without loss in generality. The restriction, however, is natural. If the mechanism specifies
a hiring probability a(x) ∈ {0, 1}, a direct-revelation mechanism can be implemented by delegating the
hiring decision to the agent or letting the principal control the hiring decision, depending on the hirtory
of play. In this sense, the direct-revelation mechanism is implemnted as a genuine delegation mechanism—
a mechanism that assigns the decision power to either player depending on the history of play. If the
mechanism is allowed to specify a hiring probability a(x) ∈ [0, 1], the direct-revelation mechanism cannot
be implemented as a delegation mechanism.
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of reports such that the mechanism does not hire the applicant, i.e. a(x̂, ht) = 0 for all
x̂ ∈ X0. Similarly, let X1 denote the set of reports such that the mechanism does hire
the applicant, i.e. a(x̂, ht) = 1 for all x̂ ∈ X1. If the agent reports x̂, its flow payoff is
a(x̂, ht)(1−β)(x−η) and its continuation value is some V (x̂, ht). Since a direct-revelation
mechanism must induce the agent to report the applicant’s quality truthfully, it follows
that V (x̂, ht) = V0(ht) for all x̂ ∈ X0 and V (x̂, ht) = V1(ht) for all x̂ ∈ X1. In words, the
mechanism must give the same continuation value V0(ht) to the agent for all the reports
that make the mechanism pass on the applicant, and the same continuation value V1(ht)
for all the reports that make the mechanism hire the applicant. Moreover, since the
mechanism must induce the agent to report the applicant’s quality truthfully, it has to
be the case that X0 = [x`, R(ht)) and X1 = [R(ht), xh], where R(ht) is the quality of the
applicant that makes the agent indifferent between (1− β)(x− η) + βV1(ht) and βV0(ht).
Overall, when the mechanism uses the agent’s report, it is as if the agent was directly
choosing whether or not to hire the applicant, taking into account that its continuation
value is V0(ht) if it does not hire the applicant and V1(ht) if it does.

Consider the case in which hiring is controlled by the principal. In this case, the mech-
anism either does not hire the applicant irrespective of the agent’s report, i.e. a(x̂, ht) = 0

for all x̂ ∈ X, or it hires the applicant irrespective of the agent’s report, i.e. a(x̂, ht) = 1

for all x̂ ∈ X. In either case, since the mechanism must induce the agent to report
truthfully the quality of the applicant, the agent’s continuation value V (x̂, ht) must be
independent of the agent’s report x̂. Overall, when the mechanism is ignoring the agent’s
report, it is as if the principal was controlling the hiring process directly.

Clearly, the combinations of agent’s and principal’s values that the mechanism can
implement under delegation and under control are different and, in turn, the upper en-
velope of the agent’s and principal’s values under delegation and under control need not
be concave. For this reason, it is natural to let the mechanism specify a public lottery
between delegation and control at the beginning of every period t. Specifically, at the
beginning of every period, the mechanism specifies some probability p(ht) with which
hiring is controlled by the principal and some probability 1 − p(ht) with which hiring is
delegated to the agent.

In this section, we are going to restrict attention to mechanisms such that: (i) if the
mechanism hands the control of the hiring process to the principal, it does so forever;
(ii) if the mechanism hands control of the hiring process to the principal, the mechanism
instructs the principal to hire every applicant. In the next section, we are going to
show that these restrictions are without loss in generality. Even though starting with
a restriction on the space of mechanisms and then showing that it is without loss in
generality may appear awkward to some of our readers, it does lead to a neater derivation
of the optimal mechanism.

Before turning to the characterization of the optimal mechanism, let us briefly com-
ment on the environment. At an abstract level, the environment is typical in the dynamic
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delegation literature. In each period, the principal has to decide whether or not to invest
in a particular project, but some of the information that is relevant for making the deci-
sion is privately held by an agent whose preferences are only partially aligned with those
of the principal. The principal commits to a direct-revelation mechanism without mon-
etary transfers in order to make use of the agent’s private information while mitigating
the consequences of the agent’s bias. The key difference between our environment and
those studied by the existing dynamic delegation literature is that the quality x of the
investment is not a binary random variable, but a continuous random variable with an
arbitrary distribution F . The continuity of the random variable x is not a simple techni-
cality. Indeed, the continuity of the random variable x allows us to immediately generalize
the characterization of the optimal mechanism to richer and more realistic cases. For in-
stance, the characterization of the optimal mechanism generalizes to the case in which the
principal can invest in one of n available projects or not invest at all. The characterization
of the optimal mechanism also generalizes to the case in which the principal can invest
in one of several projects that come in two observable types, one type against which the
agent is biased and one type for which the agent is neutral.

Concretely, our preferred interpretation of the environment is about discrimination in
the labor market. In our preferred interpretation, the principal is a labor market authority
and the agent is a firm. Through some search-and-matching process, an applicant from
a particular demographic group becomes available to the firm for hiring. The firm and
the labor market authority both care about the quality of the applicant, but only the
firm is in the position to evaluate the applicant’s quality. The firm and the labor market
authority disagree about the value of hiring applicants from that the demographic group.
Specifically, the labor market authority values these hires more than the firm. The dis-
agreement may arise directly from the fact that the firm is biased against the applicant’s
demographic group, while the labor market authority is not. The disagreement may ob-
tain indirectly from the fact that the labor market authority values the long-term benefits
of a diverse workforce, while the firm does not. The labor market authority commits to
a hiring regulation in order to make use of the firm’s expertise about applicants while
mitigating the consequences of the firm’s bias.

In the environment described above, an applicant from the discriminated demographic
group does not compete against any other current or future applicants because, say, the
firm operates a technology with constant returns to scale in labor. The analysis of the basic
environment will be extended to more realistic cases in which several applicants compete
for the same job because, say, the firm operates a technology with decreasing returns
to scale. In one of these cases, all applicants come from the discriminated demographic
group. In another case, some applicants come from a demographic group against which
the firm is biased, while other applicants come from a group against which the firm holds
no bias.
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2.2 Recursive formulation and preliminaries

The principal’s mechanism design problem can be formulated recursively, using the value
of the mechanism to the agent as an auxiliary state variable. In the first-stage of the
recursive problem, the mechanism chooses a lottery between delegation and control, sub-
ject to delivering a particular value to the agent. In the second-stage, which is the stage
associated with the delegation branch of the lottery, the mechanism chooses the agent’s
continuation value conditional on the agent hiring the applicant, and the agent’s contin-
uation value conditional on the agent not hiring the applicant, subject to delivering a
particular expected value to the agent.

Formally, the first-stage problem is

J(V ) = max
p∈[0,1],V̂ ∈V̂

pJP + (1− p)Ĵ(V̂ ), (2.1)

subject to the promise-keeping constraint

V = pVP + (1− p)V̂ . (2.2)

The first-stage problem is easy to understand. The mechanism chooses the probability
p with which it permanently assigns the hiring decision to the principal (control), the
probability 1−p with which this period’s hiring decision is made by the agent (delegation),
as well as the value V̂ to the agent in case the outcome of the lottery is delegation. The
mechanism makes these choices to maximize the principal’s expected value, subject to
delivering some expected value of V to the agent. The value to the principal is JP if
hiring is controlled by the principal, and Ĵ(V̂ ) if hiring is delegated to the agent. The
value to the agent is VP if hiring is controlled by the principal, and V̂ if hiring is delegated
to the agent. The values JP and VP , with P standing for “punishment”, are

JP ≡
∫ x

x

xdF (x) = 0, VP ≡
∫ x

x

(x− η) dF (x) = −η. (2.3)

The second-stage problem is

Ĵ(V̂ ) = max
V0,V1∈V

(1− β)

∫
R

xdF (x) + β [F (R)J(V0) + (1− F (R))J(V1)] , (2.4)

subject to the promise-keeping constraint

V̂ = (1− β)

∫
R

(x− η)dF (x) + β [F (R)V0 + (1− F (R)))V1] , (2.5)

and the incentive-compatibility constraint

R = η − β

1− β (V1 − V0) . (2.6)
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The second-stage problem is also easy to understand. The mechanism chooses the agent’s
continuation value V0 conditional on the agent not hiring the applicant, and the agent’s
continuation value V1 conditional on the the agent hiring the applicant. Given V0 and
V1, the agent finds it optimal to hire the applicant if and only if the applicant’s quality
x exceeds the reservation threshold R in (2.6). The mechanism maximizes the principal’s
value, subject to delivering the expected value V̂ to the agent. In the current period, the
payoff to the principal is (1 − β)

∫
R
xdF (x) and the payoff to the agent is (1 − β)

∫
R

(x −
η)dF (x). If the agent does not hire the applicant, an event that occurs with probability
F (R), the continuation value to the principal is J(V0) and the continuation value to
the agent is V0. If the agent hires the applicant, an event that occurs with probability
1− F (R), the continuation value to the principal is J(V1) and the continuation value to
the agent is V1.

The formulation of the first and second-stage problems (2.1) and (2.4) is still incom-
plete, as it does not specify the choice sets V and V̂ for the agent’s continuation values.
The agent’s continuation value V̂ in (2.1) must be implementable in the second stage, in
the sense that there exists a mechanism that delivers V̂ to the agent in the second stage.
The agent’s continuation values V0 and V1 in (2.4) must be implementable in the first
stage, in the sense that there exist mechanisms that deliver V0 and V1 to the agent in the
first stage. The set V denotes the agent’s values that can be implemented in the first-stage.
The set V̂ denotes the agent’s values that can be implemented in the second-stage.
Lemma 1 below characterizes the implementable sets V and V̂. The lemma shows that,

in the first stage, the implementable set is the interval [VP , VF ], where VP is the value to
the agent of a mechanism in which the principal has permanent control over hiring, and VF
is the value to the agent of a mechanism in which hiring is permanently delegated to the
agent, with F standing for “freedom.”The values VP and VF are implementable. Values
between VP and VF can be implemented by choosing the appropriate lottery between
control and delegation. Values lower than VP and values greater than VF cannot be
implemented in the first stage. In the second stage, the implementable set is the interval
[VL, VF ], where VL is the value to the agent of a mechanism in which hiring is in the hands
of the agent in the current period and in the hands of the principal from the next period
onwards. Values between VL and VF can be implemented by appropriately choosing
the agents’continuation values. Values lower than VL and greater than VF cannot be
implemented in the second stage.

Lemma 1: (Implementability) The sets V and V̂ are, respectively, given by

V = [VP , VF ], V̂ = [VL, VF ], (2.7)
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where VL and VF are defined as

VL ≡ (1− β)VF + βVP , (2.8)

VF ≡
∫ x

x

max{x− η, 0}dF (x) =

∫
η

(x− η)dF (x). (2.9)

Proof : Consider the first-stage problem (2.1). The choice p = 1 is feasible. For p = 1, the
first-stage value to the agent is VP . Hence, VP ∈ V. Consider the second-stage problem
(2.4). The choices V0 = VP and V1 = VP are feasible. Given (V0, V1) = (VP , VP ), the
second-stage value to the agent is

V 1 = (1− β)
∫
η
(x− η)dF (x) + βVP

= (1− β)VF + βVP ,
(2.10)

where the first line in (2.10) makes use of the fact that V0 = V1 implies R = η, and the
second line in (2.10) makes use of the definition of VF . Hence, V 1 ∈ V̂. Notice that, since
VF > VP , V 1 > VP and V 1 < VF .

Return to the first-stage problem (2.1). The choices p = (V 1 − V )/(V 1 − VP ) and
V̂ = V 1 are feasible for any V ∈ [VP , V 1], since p ∈ [0, 1] and V 1 ∈ V̂. Given the choices
p = (V 1 − V )/(V 1 − VP ) and V̂ = V 1, the first-stage value to the agent is V . Hence, any
V ∈ [VP , V 1] belongs to V. Now, consider the second-stage problem (2.4). The choices
V0 = V and V1 = V are feasible for any V ∈ [VP , V 1]. Given (V0, V1) = (V, V ), the
second-stage value to the agent is V̂ = (1 − β)VF + βV . Hence, any value V̂ in the
interval [V 1, V 2] belongs to V̂, where

V 2 = (1− β)VF + βV 1. (2.11)

Since V 1 < VF , it follows that V 2 > V 1 and V 2 < VF .

Repeating the above argument k times yields that any value V ∈ [VP , V k] belongs to
V, and any value V̂ ∈ [V 1, V k+1] belongs to V̂, where

V k+1 = (1− β)VF + βV k. (2.12)

The sequence {V i}k+1i=1 is strictly increasing and converges to VF . Since a mechanism that
permanently delegates hiring to the agent is worth VF to the agent, VF belongs to both
V and V̂. These observations imply that [VP , VF ] ⊆ V and [V 1, VF ] ⊆ V̂.
Now, notice that the periodical payoff to the agent is such that

v ≥ min

{
min
R

(1− β)

∫
R

(x− η)dF (x), (1− β)

∫ x

x

(x− η)dF (x)

}
. (2.13)

The right-hand side of (2.13) is the minimum between two terms. The first term is the
lowest periodical payoff that an agent can attain when hiring is delegated to him. The
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second term is the periodical payoff that an agent attains when hiring is controlled by
the principal. The minimum between the two terms is −(1 − β)η = (1 − β)VP . This
observation implies that a mechanism cannot implement any agent’s value V smaller
than VP . That is, V /∈ V , V̂ for any V < VP .

The periodical payoff v to the agent is such that

v ≤ max

{
max
R

(1− β)

∫
R

(x− η)dF (x), (1− β)

∫ x

x

(x− η)dF (x)

}
. (2.14)

The right-hand side of (2.14) is the maximum between two terms. The first term is the
highest periodical payoff that the agent can attain when hiring is delegated to him. The
second term is the periodical payoff that the agent attains when the hiring is controlled
by the principal. The maximum of the two terms is (1 − β)VF . Therefore, a mechanism
cannot implement any value V strictly greater than VF . That is, V /∈ V , V̂ for any
V > VF .

Finally, notice that V /∈ V̂ for any V < V 1 = VL. To see why this is the case notice
that, in the second stage, the agent’s value is such that

V̂ = max
R

(1− β)
∫
R

(x− η)dF (x) + βF (R)V0 + β(1− F (R))V1

≥ max
R

(1− β)
∫
R

(x− η)dF (x) + βF (R)VP + β(1− F (R))VP

= (1− β)VF + βVP = VL,

(2.15)

where the second line makes use of the fact that V0 and V1 must be greater than VP , and
the third line makes use of the fact that the agent finds it optimal to set R = η when V0
and V1 are both equal to VP . �
Before turning to the characterization of the optimal mechanism, it is useful to examine

some points along the (V, J) and (V̂ , Ĵ) frontiers. First, consider the agent’s value VP .
Since VP ∈ V and VP /∈ V̂, a mechanism can deliver the value VP to the agent only in the
first stage. It follows immediately from (2.1) that a mechanism can only deliver VP to
the agent through a lottery such that the hiring decision is delegated to the agent with
probability 0 and permanently controlled by the principal with probability 1. Hence,
J(VP ) = JP . We denote as P the point (VP , JP ). The point P belongs to the (V, J)

frontier.

Second, consider the agent’s value VF . Since VF ∈ V and VF ∈ V̂, a mechanism can
deliver the value VF to the agent in both the first and the second stage. In the first stage,
the mechanism can deliver the value VF to the agent only through a lottery such that the
hiring decision is delegated to the agent with probability 1 and gives the agent a second-
stage value of VF . Hence, J(VF ) is equal to Ĵ(VF ). In the second stage, the mechanism
can only deliver the value VF to the agent by setting both V0 and V1 equal to VF . Since
V0 = V1 implies R = η, it follows that Ĵ(VF ) is equal to (1−β)

∫
η
xdF (x) +βJ(VF ). Since

J(VF ) = Ĵ(VF ), it follows that Ĵ(VF ) is equal to
∫
η
xdF (x), which we denote as JF . We

11



Figure 1: Points P , L, F and S, and frontier (V̂ , Ĵ(V̂ )).

denote as F the point (VF , JF ), which belongs to both the (V, J) and (V̂ , Ĵ) frontiers.
Note that, from the above characterization of the optimal mechanism, it follows that F
is an absorbing state, in the sense that, once the mechanism reaches F , it remains there
forever and, hence, the hiring decision is permanently delegated to the agent.

Third, consider the agent’s value VL, which is defined as (1 − β)VF + βVP . Since VL
belongs to V̂, a mechanism can deliver the value VL to the agent in the second stage. In the
second stage, the mechanism can only deliver the value VL to the agent by setting both V0
and V1 to VP . Since V0 = V1 implies R = η, Ĵ(VL) is equal to (1− β)

∫
η
xdF (x) + βJ(VP ).

Since J(VP ) = JP and
∫
η
xdF (x) = JF , it follows that Ĵ(VL) is equal to (1− β)JF + βJP ,

which we denote as JL. We denote as L the point (VL, JL). The point L belongs to the
(V̂ , Ĵ) frontier but, as we will show soon, it does not belong to the (V, J) frontier.

Note that the points P , L and F are on a line, as illustrated in Figure 1. Formally,
P , L and F are on the line

H(V ) = JP +
JF − JP
VF − VP

(V − VP ). (2.16)

The slope of H(V ) is

H ′ =
JF − JP
VF − VP

. (2.17)

The slope is strictly positive because JF =
∫
η
xdF (x) > 0, JP =

∫ x
x
xdF (x) = 0, VF =∫

η
(x− η)dF (x) > 0 and VP =

∫ x
x

(x− η)dF (x) = −η. The slope is smaller than 1 because
VF − VP is equal to JF − JP + ηF (η).

Lastly, we denote as S the point (V ∗, J∗), where V ∗ is the agent’s value such that
the principal’s value J(V ) is maximized. That is, V ∗ and J∗ are, respectively, the arg-
maximum and the maximum of J(V ) with respect to V ∈ V. The point S is the initial
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position of the optimal mechanism, since the initial value of the mechanism to the agent
is unconstrained by prior promises. For some parameter values, S is equal to F . In these
cases, the optimal mechanism is such that the hiring decision is permanently delegated
to the agent. For other parameter values, S is different from F and, hence, J∗ > JF
and V ∗ < VF . In these cases, the optimal mechanism must be such that, after some
history, the principal takes over the hiring process. In any case, V ∗ and J∗ are also the
arg-maximum and the maximum of Ĵ(V̂ ) with respect to V̂ ∈ V̂. This is so because J(V )

is a convex combination between JP and some Ĵ(V̂ ), and Ĵ(VF ) > JP . Therefore, the
optimal mechanism is always such that the hiring decision is initially delegated to the
agent.

The following lemma identifies a suffi cient condition on the parameters of the model
such that S 6= F and, hence, the optimal mechanism is dynamic. In the remainder of the
paper, we assume that the suffi cient condition holds.

Lemma 2: (Suffi cient condition for a dynamic mechanism) The starting position S =

(V ∗, J∗) of the optimal mechanism is such that J∗ > JF as long as η and F are such that

ηF ′(η)

F (η)
>

∫
η
xdF (x)∫

η
xdF (x) + ηF (η)

. (2.18)

Proof : Consider the following mechanism. In the current period, the hiring decision is

delegated to the agent. If the agent hires the applicant, the agent’s continuation value
V1 is VF . That is, if the agent hires the applicant, the hiring decision is permanently
delegated to the agent. If the agent does not hire the applicant, the agent’s continuation
value V0 is εVP + (1 − ε)VF for some ε > 0. The continuation value V0 is delivered as a
lottery that assigns probability ε to VP and probability 1− ε to VF . That is, if the agent
does not hire the applicant, the hiring decision is permanently delegated to the agent
with probability 1− ε, and it is permanently controlled by the principal with probability
ε. The mechanism need not be optimal, but it is feasible.

The value Γ(ε) of the mechanism to the principal is

Γ(ε) = (1− β)

∫
R

xF ′(x)dx+ βF (R) [εJP + (1− ε)JF ] + β(1− F (R))JF , (2.19)

where the reservation quality R is

R = η − β

1− β [VF − εVP − (1− ε)VF ] . (2.20)

The derivative of Γ(ε) with respect to ε is

Γ′(ε) = −βF (R) (JF − JP )− dR

dε
{(1− β)RF ′(R) + βF ′(R)ε [JF − JP ]} , (2.21)
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where
dR

dε
= − β

1− β (VF − VP ). (2.22)

When evaluated at ε = 0, the derivative of Γ(ε) with respect to ε becomes

Γ′(0) = −βF (η) (JF − JP ) + βηF ′(η)(VF − VP ). (2.23)

The above expression is strictly positive as long as

ηF ′(η)

F (η)
>
JF − JP
VF − VP

=

∫
η
xdF (x)∫

η
xdF (x) + ηF (η)

. (2.24)

Note that the value Γ(ε) is such that Γ(0) = JF . Hence, if condition (2.24) is satisfied,
there exists some ε∗ > 0 such that Γ(ε∗) > JF . Next, note that the value Γ(ε∗) is such that
Γ(ε∗) ≤ J∗, since the mechanism is feasible but need not be optimal. Hence, if condition
(2.24) is satisfied, J∗ > JF . �
Intuitively, condition (2.18) is a lower bound on the agent’s bias η given the distribution

F of applicant’s quality. For instance, if the distribution of applicant’s quality is uniform
over some interval [−δ, δ], condition (2.18) boils down to η > δ/2. That is, as long as
the agent’s bias is large relative to the dispersion of the applicant’s quality, the optimal
mechanism involves a transfer of the hiring decision from the agent to the principal.3

2.3 Optimal lottery

In this subsection, we characterize the solution to the first-stage problem in (2.1), which
is the design of the lottery between delegation and control. In order to simplify the
characterization of the problem, we assume that the second-stage value to the principal,
Ĵ(V̂ ), is strictly concave and differentiable. In order to guarantee the weak concavity of
Ĵ(V̂ ), it would be enough to allow for lotteries in the second-stage problem (2.4). Doing
so, however, would make the notation quite cumbersome. Weak concavity of Ĵ(V̂ ) would
be enough to derive results that are analogous to those presented below. It is harder to
find conditions to guarantee the differentiability of Ĵ(V̂ ). This is because, in contrast to
the standard dynamic problems considered in, e.g., Stokey, Lucas and Prescott (1988),
the only way to deliver a higher/lower value to the agent is by changing its continuation
values.4

3Even in the case of other standard distributions, such as a Normal or an Exponential, condition
(2.24) implies a lower bound on η that is increasing in the dispersion of the applicant’s quality.

4Using an envelope argument, we can show that Ĵ(V̂ ) is differentiable everywhere if, for every V̂ , there
is a history that is reached with positive probability where the first-stage lottery is non-degenerate. In
our numerical examples, we find that this is indeed the case and, hence, the assumption of a differentiable
Ĵ(V̂ ) is vindicated.
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Using the promise-keeping constraint (2.2) to substitute out p, we can rewrite (2.1) as

J(V ) = max
V̂ ∈V̂

V̂ − V
V̂ − VP

JP +
V − VP
V̂ − VP

Ĵ(V̂ ),

s.t. V̂ ≥ V .

(2.25)

The necessary condition for the optimality of V̂ is

V − VP
V̂ − VP

[
Ĵ ′(V̂ )− Ĵ(V̂ )− JP

V̂ − VP

]
= 0 if V̂ ∈ (max{V, V`}, VF ),

≤ 0, if V̂ = max{V, V`},
≥ 0, if V̂ = VF .

(2.26)

Let us examine the term in square brackets on the left-hand side of (2.26). The function
Ĵ ′(V̂ ) is the derivative of the second-stage problem value function. Since Ĵ(V̂ ) is strictly
concave and attains its maximum at some V ∗ ∈ (VL, VF ), it follows that Ĵ ′(V̂ ) is strictly
decreasing and such that Ĵ ′(VL) > 0, Ĵ ′(V ∗) = 0, and Ĵ ′(VF ) < 0. Since Ĵ(V̂ ) is strictly
concave and such that Ĵ(VL) = H(VL), Ĵ(VF ) = H(VF ) and Ĵ(V ∗) > H(VF ) > H(V ∗), it
follows that Ĵ ′(VL) > H ′ and Ĵ ′(VF ) < 0 < H ′. For the same reason, Ĵ(V̂ ) > H(V̂ ) for
all V̂ ∈ (VL, VF ).

The function (Ĵ(V̂ ) − JP )/(V̂ − VP ) is the slope of the line connecting the points
(VP , JP ) and (V̂ , Ĵ(V̂ )). Since Ĵ(VL) = H(VL) and Ĵ(VF ) = H(VF ), it follows that
(Ĵ(V̂ ) − JP )/(V̂ − VP ) is equal to H ′ for V̂ = VL and V̂ = VF . Since Ĵ(V̂ ) > H(V̂ ) for
all V̂ ∈ (VL, VF ), (Ĵ(V̂ ) − JP )/(V̂ − VP ) is strictly greater than H ′ for all V̂ ∈ (VL, VF ).
These observations imply that the function (Ĵ(V̂ )−JP )/(V̂ −VP ) is strictly smaller than
the function Ĵ ′(V̂ ) at V̂ = VL and strictly greater than Ĵ ′(V̂ ) at V̂ = VF . Therefore, there
must exist at least one VC ∈ (VL, VF ) such that (Ĵ(VC)−JP )/(VC−VP ) is equal to Ĵ ′(VC).
Clearly, any VC is strictly greater than VL. Similarly, any VC is strictly smaller than V ∗,
since the function (Ĵ(V̂ )− JP )/(V̂ − VP ) is strictly positive and Ĵ ′(V̂ ) is non-positive for
any V̂ ∈ [V ∗, VF ].

It is easy to verify that the derivative of the function (Ĵ(V̂ ) − JP )/(V̂ − VP ) with
respect to V̂ equals zero if and only if V̂ = VC , and that the function attains a local
maximum at VC . Therefore, VC must be unique and the function (Ĵ(V̂ )− JP )/(V̂ − VP )

must attain its global maximum at VC . Moreover, since Ĵ ′(V̂ ) is strictly decreasing and
the function (Ĵ(V̂ )− JP )/(V̂ − VP ) is equal to Ĵ ′(V̂ ) and attains its maximum at VC , it
follows that (Ĵ(V̂ )−JP )/(V̂ −VP ) must be strictly smaller than Ĵ ′(V̂ ) for all V̂ ∈ [VL, VC).
Similarly, (Ĵ(V̂ )− JP )/(V̂ −VP ) must be strictly greater than Ĵ ′(V̂ ) for all V̂ ∈ (VC , VF ].

The above observations imply that, for any V ∈ [VP , VC), the optimality condition
(2.26) and the promise-keeping constraint (2.2) are satisfied if and only if

V̂ = VC , p =
VC − V
VC − VP

> 0. (2.27)
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Plugging the optimal choice for V̂ in (2.25) yields

J(V ) = JP +
V − VP
VC − VP

(JC − JP ), (2.28)

where JC ≡ Ĵ(VC). Differentiating (2.28) with respect to V yields

J ′(V ) =
JC − JP
VC − VP

< Ĵ ′(V ), (2.29)

where the last inequality follows from the fact that (JC − JP )/(VC − VP ) = Ĵ ′(VC) and
Ĵ ′(V ) > Ĵ ′(VC).

For any V ∈ [VC , VF ], the optimality condition (2.26) and the promise-keeping con-
straint (2.2) are satisfied if and only if

V̂ = V , p = 0. (2.30)

Plugging the optimal choice for V̂ in (2.25) yields

J(V ) = Ĵ(V ). (2.31)

Differentiating (2.31) with respect to V yields

J ′(V ) = Ĵ ′(V ). (2.32)

The proposition below summarizes the characterization of the first-stage problem.

Proposition 1: (Optimal lottery) The solution to the first-stage problem (2.1) is such
that:

1. For V ∈ [VP , VC), the hiring process is permanently controlled by the principal
with probability p, and it is delegated to the agent with probability 1 − p, where
p = (VC − V )/(VC − VP ). Conditional on delegation, the agent’s value is VC.

2. For V ∈ [VC , VF ], the hiring process is permanently controlled by the principal with
probability 0, and it is delegated to the agent with probability 1. Conditional on
delegation, the agent’s value is V .

3. The value to the principal is

J(V ) =


JP +

V − VP
VC − VP

(V − VP ), if V ∈ [VP , VC),

Ĵ(V ), if V ∈ [VC , VF ].
(2.33)

4. The point C = (VC , JC) is such that JC = Ĵ(VC) and VC ∈ (VL, V
∗) is the unique

solution to
Ĵ ′(VC) =

JC − JP
VC − VP

. (2.34)
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Figure 2: Value functions J(V ) and Ĵ(V̂ ).

Figure 3: Optimal lottery p and V̂ as function of the promised value V .

The properties of the optimal lottery between delegation and control are illustrated in
Figures 2 and 3. The properties are intuitive. The lottery allows the mechanism to achieve
any combinations of the agent’s and the principal’s values that lie on a line connecting the
control values, given by the point P , and one of the delegation values, given by a point
along the (V̂ , Ĵ) frontier. The optimal lottery is the highest of such lines, which is the line
that connects P and C, the point where the lottery line is tangent to the (V̂ , Ĵ) frontier.
It follows that, for any V ∈ (VP , VC), the optimal lottery randomizes with between P and
C with non-degenerate probabilities. For any V ∈ [VC , VF ], the lottery is useless, in the
sense that the lottery assigns the hiring decision to the agent with probability 1.
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2.4 Optimal incentives in delegation

In this subsection, we characterize the solution to the second-stage problem in (2.4), which
is the design of the mechanism conditional on the hiring decision being delegated to the
agent in the current period. We focus the analysis on agent’s promised values V̂ in the
interval [VC , VF ], since Proposition 1 implies that values outside of this interval are never
reached.

In Proposition 2 we show that the solution to the second-stage problem is such that
the agent’s reservation quality R is in the interior of the support of the quality distribution
F . Proposition 2 is useful, as it guarantees that there is a strictly positive probability
that the agent hires the applicant, in which case the agent’s continuation value is V1, and
a strictly positive probability that the agent does not hire the applicant, in which case
the agent’s continuation value is V0.

The intuition behind Proposition 2 is simple. If R was smaller than x, the agent
would hire the applicant for sure. The agent’s and the principal’s values would then be a
non-degenerate convex combination between the point P and some point along the (V̂ , Ĵ)

frontier. This convex combination is achievable in the first-stage problem (2.1) but, as
shown in Proposition 1, a non-degenerate convex combination is not optimal. Therefore,
Ĵ(V̂ ) would be strictly smaller than J(V̂ ). Proposition 1, however, guarantees that J(V̂ )

is equal to Ĵ(V̂ ) for all V̂ ∈ [VC , VF ]. Similarly, if R was greater than x, the agent would
not hire the applicant. Therefore, the agent’s and principal’s values would be a convex
combination between the point (0, 0) and some point on the frontier (V̂ , Ĵ). We show that
such a convex combination also implies that Ĵ(V̂ ) would be strictly smaller than J(V̂ ),
which would contradict Proposition 1.

Proposition 2: (Optimal reservation quality) For all V̂ ∈ [VC , VF ], the solution to the
second-stage problem (2.4) is such that the reservation quality R belongs to (x, x).

Proof : On the way to a contradiction, suppose that, for some V̂ a ∈ [VC , VF ], the solution
to the second-stage problem (2.4) specifies continuation values V a

0 , V
a
1 ∈ V such that

Ra = η − β

1− β (V a
1 − V a

0 ) ≤ x. (2.35)

In this case, the value to the agent is

V̂ a = (1− β)
∫ x
x

(x− η)dF (x) + βV a
1

= (1− β)VP + βV a
1 .

(2.36)

The value to the principal is

Ĵ(V̂ a) = (1− β)
∫ x
x
xdF (x) + βJ (V a

1 )

= (1− β)JP + βJ(V a
1 )

= (1− β)JP + βĴ(V a
1 )

(2.37)
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The second line in (2.36) makes use of the definition of VP . The second line in (2.37)
makes use of the definition of JP . The third line in (2.37) makes use of the fact that
V̂ a > VP implies V a

1 > V̂ a ≥ VC and, in light of Proposition 1, J(V a
1 ) = Ĵ(V a

1 ).

Now, consider the first-stage problem (2.1) for V̂ a. The problem is

J(V̂ a) = max
p∈[0,1],V̂ ∈V̂

pJP + (1− p)Ĵ(V̂ ),

s.t. V̂ a = pVP + (1− p)V̂ .
(2.38)

The lottery (p, V̂ ) = (β, V a
1 ) is a feasible choice for (2.38), since β ∈ (0, 1), V a

1 ∈ V̂,
and βVP + (1 − β)V a

1 is equal to V̂
a. The lottery (β, V a

1 ) is not the optimal choice for
(2.38), since V̂ a ≥ VC and Proposition 1 states that the optimal lottery for any V ≥ VC is
(p, V̂ ) = (0, V ). From (2.37), it follows that the value to the principal of the feasible and
suboptimal lottery (β, V a

1 ) is Ĵ(V̂ a). Since the lottery (β, V a
1 ) is suboptimal, it follows that

Ĵ(V̂ a) is strictly smaller than J(V̂ a). However, Proposition 1 states that J(V ) = Ĵ(V )

for all V ≥ VC , including for V = V̂ a. We have thus reached the desired contradiction.

On the way to a second contradiction, suppose that, for some V̂ b ∈ [VC , VF ], the
solution to the second-stage problem (2.4) specifies continuation values V b

0 , V
b
1 ∈ V such

that
R = η − β

1− β (V b
1 − V b

0 ) ≥ x. (2.39)

In this case, the value to the agent is

V̂ b = βV b
0 . (2.40)

The value to the principal is

Ĵ(V̂ b) = 0 + βJ
(
V b
0

)
< (1− β)J(0) + βJ(V b

0 )

≤ J((1− β)0 + βV b
0 )

= J(V̂ b)

(2.41)

The second line in (2.41) makes use of the fact that J(0) > 0 because J(V ) ≥ H(V ) > 0

for all V > VP and VP < 0. The third line makes use of the fact that J(V ) is weakly
concave. The fourth line makes use of the fact that V b

0 = V̂ b/β. Comparing the first and
the last line yields Ĵ(V̂ b) < J(V̂ b). However, Ĵ(V̂ b) = J(V̂ b), since Proposition 1 implies
that J(V ) = Ĵ(V ) for all V ≥ VC , including for V = V̂ b. We have thus reached the
desired contradiction. �
We now turn to the characterization of the optimal agent’s continuation values in the
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second-stage problem. The necessary condition for the optimality of an interior V0 is

0 = βF (R)J ′(V0) + βF ′(R) [J(V0)− J(V1)]
dR

dV0
− (1− β)RF ′(R)

dR

dV0

+λ

{
βF (R) + βF ′(R)(V0 − V1)

dR

dV0
− (1− β)(R− η)F ′(R)

dR

dV0

}
,

(2.42)

where λ denotes the Lagrange multiplier on the promise-keeping constraint (2.5) and
dR/dV0 denotes the derivative of the agent’s reservation quality (2.6) with respect to V0,
i.e.

dR

dV0
=

β

1− β . (2.43)

The first line on the right-hand side of (2.42) is the derivative of the principal’s value with
respect to V0. This derivative is given by the change in the principal’s continuation value
due to the change in V0 and the change in the principal’s flow payoff and continuation
value due to change in the agent’s reservation quality R. The second line on the right-
hand side of (2.42) is the derivative of the agent’s value with respect to V0 multiplied by λ.
This derivative is given by the change in the agent’s continuation value due to the change
in V0 and the change in the agent’s flow payoff and continuation value due to change in
the agent’s reservation quality R.

Using the fact that the agent’s reservation quality R is given by (2.6) and that the
derivative dR/dV0 is given by (2.43), we can rewrite (2.42) as

J ′(V0) + λ =
F ′(R)

F (R)

{
R +

β

1− β [J(V1)− J(V0)]

}
. (2.44)

The necessary condition for optimality for an interior V1 is

0 = β(1− F (R))J ′(V1) + βF ′(R) [J(V0)− J(V1)]
dR

dV1
− (1− β)RF ′(R)

dR

dV1

+λ

{
β(1− F (R)) + βF ′(R)(V0 − V1)

dR

dV1
− (1− β)(R− η)F ′(R)

dR

dV1

}
,

(2.45)

where dR/dV1 denotes the derivative of the agent’s reservation quality (2.6) with respect
to V1, i.e.

dR

dV1
= − β

1− β . (2.46)

Using the fact that the agent’s reservation quality R is given by (2.6) and that the deriv-
ative dR/dV1 is given by (2.46), we can rewrite (2.45) as

J ′(V1) + λ = − F ′(R)

1− F (R)

{
R +

β

1− β [J(V1)− J(V0)]

}
. (2.47)

Finally, the derivative Ĵ ′(V̂ ) of the principal’s value with respect to the agent’s promised
value V̂ is equal to the Lagrange multiplier λ on the promise-keeping constraint (2.5).
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Figure 4: Optimal continuation values V0 and V1 as functions of the promised value V̂ .

That is,
Ĵ ′(V̂ ) = −λ. (2.48)

In the next proposition, we further characterize the solution to the second-stage prob-
lem (2.4). In order to simplify the analysis, let us take it as given that the agent’s con-
tinuation values V0 and V1 are continuous functions of the value V̂ promised to the agent.
Using the first-order conditions (2.44) and (2.47) and the envelope condition (2.48), we
show that, for any V̂ ∈ (VC , VF ), the agent’s continuation value if it does not hire the ap-
plicant, V0, is strictly smaller than the agent’s promised value V̂ . Conversely, the agent’s
continuation value if it hires the applicant, V1, is strictly greater than V̂ . Since V0 < V1,
the agent’s reservation quality R is strictly smaller than the agent’s preferred quality
cutoff η. Since V0 < V̂ < V1, the agent’s value increases when it hires the applicant,
and decreases when it does not hire the applicant. Similarly, for V̂ = VC , we show that
V0 ≤ V̂ ≤ V1 and V0 < V1 and, hence, R < η. As we already established, for V̂ = VF ,
V0 = V1 = VF and, hence, R = η. We also show that V1 is strictly smaller than VF
for all V̂ ∈ [VC , VF ), which implies that the optimal mechanism does never permanently
delegate the hiring decision to the agent, independently of the agent’s hiring record. The
characterization results are illustrated in Figure 4.

Proposition 3: (Optimal incentives in delegation). The solution to the second-stage
problem (2.4) is such that:

1. For any agent’s promised value V̂ ∈ (VC , VF ), the agent’s continuation value con-
ditional on not hiring the applicant is V0 < V̂ , the agent’s continuation value con-
ditional on hiring the applicant is V1 > V̂ , and the agent’s reservation quality is
R < η. For V̂ = VC , V0 ≤ VC ≤ V1, V0 < V1 and R < η. For V̂ = VF ,
V0 = V1 = VF and R = η.
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2. For any agent’s promised value V̂ ∈ [VC , VF ), the agent’s continuation value condi-
tional on hiring the applicant is V1 < VF .

Proof of part (1). We break down the proof in three claims.

Claim 1: For any value V̂ promised to the agent such that V̂ ∈ [VC , VF ), the continuation
values V0 and V1 are different.

On the way to a contradiction, suppose that the continuation values V0 and V1 are both
equal to some V , with V ∈ (VP , VF ). The necessary conditions (2.44) and (2.47) become

J ′(V0) + λ =
F ′(R)

F (R)

{
R +

β

1− β [J(V1)− J(V0)]

}
=
F ′(η)

F (η)
η,

J ′(V1) + λ = − F ′(R)

1− F (R)

{
R +

β

1− β [J(V1)− J(V0)]

}
= − F ′(η)

1− F (η)
η,

(2.49)

where the second equality in both lines makes use of the fact that V0 = V1 implies J(V1) =

J(V0) and R = η. The necessary conditions (2.49) imply that J ′(V0)+λ > 0 > J ′(V1)+λ.
However, V0 = V1 implies that J ′(V0) + λ = J ′(V1) + λ. A contradiction.

On the way to another contradiction, suppose that the continuation values V0 and V1
are both equal to VP . The promise-keeping constraint (2.5) becomes

V̂ = (1− β)
∫
R

(x− η)dF (x) + βVP

= (1− β)
∫
η
(x− η)dF (x) + βVP

= (1− β)VF + βVP = VL,

(2.50)

where the second line makes use of the fact that V0 = V1 implies R = η, and the third line
makes use of the definitions of VF and VL. Since V̂ ≥ VC and VC > VL, we have reached
a contradiction.

Lastly, suppose that the continuation values V0 and V1 are both equal to VF . In this
case, the promise-keeping constraint (2.5) becomes

V̂ = (1− β)
∫
R

(x− η)dF (x) + βVF

= (1− β)
∫
η
(x− η)dF (x) + βVF

= (1− β)VF + βVF = VF .

(2.51)

where the second line makes use of the fact that V0 = V1 implies R = η, and the third
lines makes use of the definition of VF . Since V̂ < VF , we have reached a contradiction.

Claim 2: For any value V̂ promised to the agent such that V̂ ∈ [VC , VF ), the continuation
values V0 and V1 are such that V0 < V1.

Since V0 6= V1 for all V̂ ∈ [VC , VF ) and V0 and V1 are continuous functions of V̂ , it follows
that either V0 > V1 for all V̂ ∈ [VC , VF ) or V0 < V1 for all V̂ ∈ [VC , VF ). On the way to a
contradiction, suppose that V0 > V1 for all V̂ ∈ [VC , VF ). If that is the case, the agent’s
reservation quality R is strictly greater than η for all V̂ ∈ [VC , VF ). For V̂ = VF , the only

22



feasible continuation values are V0 = V1 = VF and, hence, the agent’s reservation quality
R is equal to η. If hiring is delegated to the agent, V̂ ∈ [VC , VF ] and, hence, R ≥ η.
Therefore, if hiring is delegated to the agent, the principal’s flow payoff is such that

u ≤ max
R≥η

∫
R

xdF (x)

=

∫
η

xdF (x) = (1− β)JF ,
(2.52)

where the second line uses the fact that the integral in the first line is strictly decreasing
in R for all R > 0. If hiring is controlled by the principal, the principal’s flow payoff is

u =

∫ x

x

xdF (x) = (1− β)JP . (2.53)

Since the value of the mechanism to the principal is the discounted sum of flow payoffs,
it follows that

J(V̂ ) ≤ (1− β) max {JF , JP}
1− β = JF . (2.54)

The above inequality holds for any V̂ ∈ [VL, VF ]. However, V ∗ ∈ [VC , VF ) and J(V ∗) > JF .
A contradiction.

Claim 3: For any value V̂ promised to the agent such that V̂ ∈ (VC , VF ), the continuation
values V0 and V1 are such that V0 < V̂ < V1. By continuity, V0 ≤ V̂ ≤ V1 for V̂ = VC .

Consider some value V̂ ∈ (VC , VF ) promised to the agent. The continuation values V0 and
V1 are such that V0 < V1. Suppose that V0 and V1 are both interior. Using the envelope
condition (2.48) to substitute out the Lagrange multiplier λ, we can rewrite the necessary
conditions (2.44) and (2.47) as

J ′(V0)− Ĵ ′(V̂ ) =
F ′(R)

F (R)

{
R +

β

1− β [J(V1)− J(V0)]

}
,

J ′(V1)− Ĵ ′(V̂ ) = − F ′(R)

1− F (R)

{
R +

β

1− β [J(V1)− J(V0)]

}
.

(2.55)

Subtracting the second equation in (2.55) from the first yields

J ′(V0)− J ′(V1) =

[
F ′(R)

F (R)
+

F ′(R)

1− F (R)

]{
R +

β

1− β [J(V1)− J(V0)]

}
. (2.56)

Suppose that V0 ≥ VC . Since V0 ≥ VC and V1 > V0 ≥ VC , Proposition 1 guarantees
that J ′(V0) is equal to Ĵ ′(V0) and J ′(V1) is equal to Ĵ ′(V1). Since V1 > V0 and Ĵ is strictly
concave, Ĵ ′(V0) is strictly greater than Ĵ ′(V1). Putting these observations together yields
J ′(V0) > J ′(V1). Since J ′(V0) > J ′(V1), (2.56) implies

R +
β

1− β [J(V1)− J(V0)] > 0. (2.57)
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Using (2.57) in the first necessary condition in (2.55) yields J ′(V0) > Ĵ ′(V̂ ). Since J ′(V0)
is equal to Ĵ ′(V0) and Ĵ is strictly concave, V0 < V̂ . Using (2.57) into the second necessary
condition in (2.55) yields J ′(V1) < Ĵ ′(V̂ ). Since J ′(V1) is equal to Ĵ ′(V1) and Ĵ is strictly
concave, V1 > V̂ .

Now, suppose that V0 < VC . Since V0 < VC , Proposition 1 guarantees that J ′(V0) is
equal to Ĵ ′(VC). Since V̂ > VC and Ĵ is strictly concave, it follows that Ĵ ′(V̂ ) < Ĵ ′(VC).
Putting these observations together yields Ĵ ′(V̂ ) < J ′(V0). Since Ĵ ′(V̂ ) < J ′(V0), the first
necessary condition in (2.55) implies

R +
β

1− β [J(V1)− J(V0)] > 0. (2.58)

Using (2.58) in the second necessary condition in (2.55) yields J ′(V1) < Ĵ ′(V̂ ). Since
Ĵ ′(V̂ ) is equal to J ′(V̂ ) and J is weakly concave, V1 > V̂ . Moreover, since V0 < VC and
V̂ > VC , we also have V0 < V̂ .

Similar arguments can be used to prove that V0 < V̂ < V1 even when the agent’s
continuation values are not interior. �
Proof of part (2). Since V0 is a continuous function of V̂ and it is such that V0 = VF
for V̂ = VF and V0 ≤ V̂ for all V̂ ∈ [VC , VF ], there exists an interval (V a, VF ) such that
V0 ∈ (VC , VF ) for all V̂ ∈ (V a, VF ). Hence, for all V̂ ∈ (V a, VF ), the first-order condition
for V0 is given by

Ĵ ′(V0)− Ĵ ′(V̂ )

Ĵ ′(V̂ )
=

1

Ĵ ′(V̂ )

F ′(R)

F (R)

{
R +

β

1− β [J(V1)− J(V0)]

}
, (2.59)

where the above expression is obtained by dividing (2.44) by Ĵ ′(V̂ ) and using the fact
that J ′(V0) = Ĵ ′(V0) and λ = −Ĵ ′(V̂ ).

On the way to a contradiction, suppose that Ĵ ′(V̂ ) converges to some κ for V̂ → VF .
Since V0 converges to VF , Ĵ ′(V̂0) converges to κ for V̂ → VF , it follows that the left-
hand side of (2.59) converges to 0. Since R converges to η for V̂ → VF , it follows that
the right-hand side of (2.59) converges to (F ′(η)η)/(F (η)κ) 6= 0. We have thus reached
a contradiction. Therefore, Ĵ ′(V̂ ) must diverge for V̂ → VF . Since Ĵ ′(V̂ ) < 0 for all
V̂ > V ∗, Ĵ ′(V̂ ) = −∞ for V̂ → VF .

For any V̂ ∈ [VC , VF ), V1 = VF is optimal only if

Ĵ ′(VF )− Ĵ ′(V̂ ) ≥ − F ′(R)

1− F (R)

{
R +

β

1− β [JF − J(V0)]

}
. (2.60)

The left-hand side of (2.60) is equal to −∞ since Ĵ ′(VF ) = −∞ and Ĵ ′(V̂ ) is finite.
The right-hand side of (2.60) is finite, since R ∈ (x, x), F ′(R)/(1 − F (R)) is finite, and
JF − J(V0) is bounded between JF − J∗ and JF − JP . Hence, the condition for the
optimality of V1 = VF cannot hold for any V̂ ∈ [VC , VF ). �
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The characterization results in Propositions 1, 2 and 3 allow us to understand the
properties of the optimal mechanism. The optimal mechanism is such that initial value
to the principal is J∗, with J∗ > JF and J∗ > JP , and the initial value to the agent is V ∗,
with V ∗ > VC and V ∗ < VF . Since J∗ > JP , the optimal mechanism allows the principal
to achieve a value higher than what it could obtain by making the hiring decision without
any input from the agent. Since J∗ > JF , the optimal mechanism allows the principal
to achieve a value higher than what it could obtain by permanently delegating the hiring
decision to the agent. The optimal mechanism provides the principal with a value higher
than both JF and JP by using the threat of taking the hiring decision away from the
agent. The threat induces the agent to follow hiring criteria that are not the agent’s most
preferred ones, but are tilted towards the preferences of the principal.

Since V ∗ > VC , the mechanism starts with the hiring decision being delegated to the
agent. The agent chooses to hire applicants with a quality x that is greater than some
reservation R, where R is strictly smaller than η. The agent adopts a reservation quality
that is tilted away from the one that maximizes its own flow payoff (η) and towards the
one that maximizes the flow payoff of the principal (0) because the mechanism rewards
the agent for hiring, and punishes it for not hiring. The reward to the agent is an increase
in value. The punishment to the agent is a decrease in value. The increase in value
moves the agent further away from the threshold VC , below which the hiring decision
may be permanently given to the principal. Thus, heuristically, the increase in value is
delivered by delegating the hiring decision to the agent for a longer period of time. The
increase in value also moves the agent towards a part of the mechanism where incentives
are weaker, since the gap between V1 and V0 converges to 0 as the agent’s value increases.
Thus, heuristically, the increase in value is delivered by letting the agent to hire applicants
according to criteria that are closer to those preferred by the agent. These properties of
the optimal mechanism are illustrated in Figure 6, where we plot the expected duration
of delegation and the reservation quality as a function of the agent’s value. Figure 5,
where we plot the value and policy functions, shows that, as conjectured, Ĵ(V̂ ) is strictly
concave and that V0 and V1 are continuous functions of V̂ .

When the agent hires an applicant, the agent’s value increases and the hiring decision
is delegated to the agent for a longer period of time. Yet, no matter how many applicants
the agent does hire, the hiring decision is never permanently delegated to the agent. This
finding is easy to understand. If, after some history of play, the hiring decision were to
be permanently delegated to the agent, the agent would hire all and only applicants with
quality x greater than η and, hence, its value would be VF . As shown in Proposition 3,
however, the optimal mechanism never gives the agent a value of VF . Since the hiring
decision is never permanently delegated to the agent5, it follows that the hiring decision is

5The optimal mechanism never reaches VF because Ĵ ′(VF ) diverges to −∞ for V → VF . In turn, this
is the case because, at VF , the agent’s reservation quality R is equal to its preferred reservation quality η
and different from the principal’s preferred reservation quality 0. For this reason, at VF , a small reduction
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(a) Value functions (b) Policy functions

Notes: Value functions and policy functions given parameters β = 0.9, η= 0.5, and F (x) uniform
on the interval [−1, 1].

Figure 5: Numerical example: Value and policy functions

(a) Reservation quality (b) Time to control

Notes: Reservation quality R and expected time to control given parameters β = 0.9, η= 0.5,
and F (x) uniform on the interval [−1, 1].

Figure 6: Numerical example: Reservation quality and time to control
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(a) Agent’s value over time (b) Reservation quality over time

Notes: Average , 25th percentile and 75th percentile of the agent’s value and the reservation
quality across 100,000 simulations as a function of time, given parameters β = 0.9, η= 0.5, and
F (x) uniform on the interval [−1, 1].

Figure 7: Numerical example: Agent’s value and reservation quality over time

eventually given to the principal. In other words, the probability that the hiring decision
is given to the principal is 1 and, hence, the agent’s value reaches its minimum VP with
probability 1. The finding, which is illustrated in Figure 7, is reminiscent of the “immis-
eration in the limit” result in the repeated moral-hazard problems studied by Thomas
and Worrall (1990) and Atkeson and Lucas (1992), although the environment and the
economic forces behind the result are quite different.

When the agent does not hire an applicant, the agent’s value declines. Eventually, the
agent’s value is bound to fall below the threshold VC . When this happens, the mechanism
involves a lottery. If the lottery breaks against the agent, the hiring decision is perma-
nently given to the principal. In this case, the value to the agent reaches its minimum VP .
If the lottery breaks in favor of the agent, the current hiring decision remains in the hands
of the agent. In this case, the value to the agent moves to the threshold VC . Then, if the
agent does not hire the applicant in the current period, the hiring decision is permanently
given to the principal with some positive probability. If the agent hires the applicant in
the current period, the agent is rewarded by the mechanism and its value increases above
the threshold VC . The agent thus retains (temporarily) control of the hiring process.

The optimal mechanism involves ex-post ineffi ciencies. The most obvious of these
ineffi ciencies occurs when the hiring decision is given to the principal. Indeed, both
the agent and the principal would be better off if the hiring decision was permanently
delegated to the agent rather than permanently controlled by the principal, as the value
to the agent would be VF rather than VP and the value to the principal would be JF
rather than JP . More generally, whenever the optimal mechanism reaches a point on
the upward sloping part of the (V, J) frontier, there exists a different mechanism that is

in the agent’s reservation quality R leads to a second-order decline in the agent’s value and a first-order
increase in the principal’s value. Carrasco et al. (2017) use a similar argument.
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feasible and would give both parties strictly higher values. Yet, the optimal mechanism
needs these ex-post ineffi ciencies to deliver the highest ex-ante value to the principal.
Indeed, if a mechanism never gave control of hiring to the principal, the highest ex-ante
value it could deliver to the principal would be JF . Even in the delegation phase, the
optimal mechanism may feature some ex-post ineffi ciencies. Figure 6 shows that, when
the agent’s value is suffi ciently low, the optimal mechanism induces the agent to use a
reservation quality R that is negative. That is, when the agent’s value is low, the optimal
mechanism may induce the agent to hire candidates that not even the principal would
want to hire.

3 Optimal control

In Section 2, we restricted attention to mechanisms such that: (i) if the mechanism hands
the control of the hiring process to the principal, it does so forever; (ii) if the mechanism
hands control of the hiring process to the principal, the mechanism instructs the principal
to hire every applicant. In this section, we show that these seemingly arbitrary restrictions
to the mechanism space are without loss in generality.

Let us start by relaxing restriction (i) and consider mechanisms that allow for the
hiring decision to be either controlled by the principal or delegated to the agent in every
period and after every history. We maintain the restriction to mechanisms that require
the principal to hire the applicant whenever the principal controls the hiring decision. As
in Section 2, the principal’s mechanism design problem can be written recursively as a
two-stage problem. The first-stage problem is

Γ(V ) = max
p,Ṽ ,V̂

pJ̃(Ṽ ) + (1− p)Ĵ(V̂ ),

s.t. V = pṼ + (1− p)V̂ ,

p ∈ [0, 1], Ṽ ∈ V , V̂ ∈ V̂,

(3.1)

where Ṽ and J̃(Ṽ ) denote the second-stage values to the agent and the principal condi-
tional on the hiring decision being controlled by the principal in the current period, and
V̂ and Ĵ(V̂ ) denote the second-stage values to the agent and the principal conditional on
the hiring decision being delegated to the agent in the current period. The value Ĵ(V̂ ) is
given by (2.4). The value J̃(Ṽ ) is given by

J̃(Ṽ ) = (1− β)

∫ x

x

xdF (x) + βΓ(V+)

= (1− β)JP + βΓ(V+),

(3.2)
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where

Ṽ = (1− β)

∫ x

x

(x− η)dF (x) + βV+

= (1− β)VP + βV+.

(3.3)

Consider some arbitrary value V0 of the first-stage problem to the agent. Using (3.2)
to substitute J̃(Ṽ ) on the right-hand side of (3.1), we can write Γ(V0) as

Γ(V0) = p0(1− β)JP + (1− p0)Ĵ(V̂0) + p0βΓ(V1), (3.4)

where p0, Ṽ0 and V̂0 are the solution to (3.1) for V = V0, and V1 is obtained from (3.3)
and hence it is such that Ṽ0 = (1− β)VP + βV1. Note that the coeffi cients in front of JP ,
Ĵ(V̂0) and Γ(V1) are positive and they sum to 1.

Using (3.1) to substitute Γ(V1) on the right-hand side of (3.4) and (3.2) to substitute
J̃(Ṽ ) in (3.1), we can write Γ(V0) as

Γ(V0) = p0(1− β)JP + βp0p1(1− β)JP

+(1− p0)Ĵ(V̂0) + βp0(1− p1)Ĵ(V̂1) + β2p0p1Γ(V2),
(3.5)

where p1, Ṽ1 and V̂1 are the solution to (3.1) for V = V1, and Ṽ1 is obtained from (3.3)
and hence it is such that Ṽ1 = (1 − β)VP + βV2. Again, the coeffi cients in front of JP ,
Ĵ(V̂0), Ĵ(V̂1) and Γ(V2) are positive and they sum to 1. This is because, when we replace
Γ(V1) on the right-hand side of (3.4) with p1 [(1− β)JP + βΓ(V2)] + (1 − p1)Ĵ(V̂1), the
coeffi cients on JP , Γ(V2) and Ĵ(V̂1) are positive and they sum to 1.

Repeating the same steps as above T times, we can write Γ(V0) as

Γ(V0) =
[
(1− β)

∑T

t=0
βt
(∏t

i=0 pi
)]
JP

+
∑T

t=0

[
βt(1− pt)

(∏t−1
i=0 pi

)
Ĵ(V̂t)

]
+
(
βT+1

∏T
i=0 pi

)
Γ(VT+1).

(3.6)

For T →∞, the expression above becomes

Γ(V0) =
[
(1− β)

∑∞

t=0
βt
(∏t

i=0 pi
)]
JP

+
∑∞

t=0

[
βt(1− pt)

(∏t−1
i=0 pi

)
Ĵ(V̂t)

]
.

(3.7)

Again, the coeffi cients in front of JP and Ĵ(V̂t) are positive and sum up to 1.

Note that we can write (3.7) as

Γ(V0) = pJP + (1− p)
∑∞

t=0

[
βt(1− pt)

(∏t−1
i=0 pi

)
1− p Ĵ(V̂t)

]
≤ pJP + (1− p)Ĵ

(
V
)
,

≤ J(V0),

(3.8)
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where p and V are given by

p = (1− β)
∞∑
t=0

βt
(

t∏
i=0

pi

)
and V =

βt(1− pt)
(∏t−1

i=0 pi
)

1− p̃ V̂t. (3.9)

The second line in (3.8) makes use of the fact that Ĵ is concave. The third line in (3.8)
makes use of the fact that the lottery (p, V̂ ) = (p, V ) is a feasible choice in the first-stage
problem (2.1) for V = V0.

The inequality in the third line of (3.8), Γ(V0) ≤ J(V0), shows that a mechanism
that allows the hiring decision to be assigned to either the agent or the principal in
every period and after every history cannot give a higher value to the principal than a
mechanism that, when it assigns the hiring decision to the principal, it does so forever.
Since a mechanism that assigns the hiring decision to the principal once and for all is
a special case of a mechanism that allows the hiring decision to be assigned to either
party in every period, it follows that Γ(V0) ≥ J(V0). Combining these observations yields
Γ(V0) = J(V0). That is, the optimal mechanism that allows the hiring decision to be
given to either party in every period is payoff-equivalent to the optimal mechanism in
which control by the principal is permanent. The intuition for this finding is simple and
can be seen from the analysis above. Namely, a lottery between temporary control by the
principal and delegation to the agent is equivalent to a lottery between permanent control
by the principal and delegation to the agent that attaches a lower probability on control.

Next, we relax restriction (ii) by considering mechanisms that, when the principal is in
control of the hiring decision, are allowed to instruct the principal to either hire or not hire
the applicants. We maintain the restriction to mechanisms that hand the hiring decision
to the principal on a permanent basis. As in Section 2, the principal’s mechanism design
problem can be written recursively as a two-stage problem. The first-stage problem is

Γ(V ) = max
p,q,V̂

pJP + qJQ + (1− p− q)Ĵ(V̂ ),

s.t. V = pVP + qVQ + (1− p− q)V̂ ,
p, q ∈ [0, 1], p+ q ≤ 1, V̂ ∈ V̂,

(3.10)

where VQ and JQ are the values to the agent and the principal if the principal has control
over hiring and he is prescribed not hire the applicants, i.e. (VQ, JQ) = (0, 0), VP and
JP are the values to the agent and the principal if the principal has control over hiring
and is prescribed to hire the applicants, i.e. (VP , JP ) = (−η, 0), and V̂ and Ĵ(V̂ ) are the
values to the agent and the principal if the hiring decision is delegated to the agent in the
current period.

Let p0, q0 and V̂0 denote a solution to (3.10) for V equal to some arbitrary V0. Suppose
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that VQ ≥ VL. Then, the value Γ(V0) to the principal is such that

Γ(V0) = p0JP + q0JQ + (1− p0 − q0)Ĵ(V̂0)

≤ p0JP + (1− p0)
[

q0
1− p0

Ĵ(VQ) +
1− p0 − q0

1− p0
Ĵ(V̂0)

]
≤ p0JP + (1− p0)Ĵ

(
V
)
,

(3.11)

where
V =

q0
1− p0

VQ +
1− p0 − q0

1− p0
V̂0. (3.12)

The second line in (3.11) uses the fact that Ĵ(VQ) > 0 = JQ. The third line in (3.11)
makes use of the concavity of Ĵ . Similarly, notice that the value V0 to the agent is such
that

V0 = p0VP + (1− p0)V . (3.13)

Note that the lottery (p, V̂ ) = (p0, V ) is a feasible choice in the first-stage problem (2.1).
In turn, this implies that J(V0) ≥ Γ(V0). Since any mechanism that involves the principal
hiring applicants when in control is a feasible choice for (3.11), it follows that Γ(V0) ≥
J(V0). Combining the two inequalities yields Γ(V0) = J(V0).

Suppose that VQ < VL and, hence, V̂0 > VQ. Notice that the value Γ(V0) to the
principal is such that

Γ(V0) = p0JP + q0JQ + (1− p0 − q0)Ĵ(V̂0)

≤ pJP + (1− p) Ĵ(V̂0),
(3.14)

where p is defined as

p = p0 + q0
V̂0 − VQ
V̂0 − VP

∈ [p0, p0 + q0] . (3.15)

The inequality in (3.14) makes use of the fact that JP = JQ < Ĵ(V̂0) and 1−p ≥ 1−p0−q.
Similarly, notice that the value V0 to the agent is such that

V0 = p0VP + q0VQ + (1− p0 − q0)V̂0.
= pVP + (1− p) V̂0.

(3.16)

Therefore, the lottery (p, V̂ ) = (p, V̂0) is a feasible choice in the first-stage problem (2.1).
Hence, J(V0) ≥ Γ(V0). Since any mechanism that involves the principal hiring applicants
when in control is a feasible choice for (3.11), it follows that Γ(V0) ≥ J(V0). Combining
the two inequalities yields Γ(V0) = J(V0).

Whether VQ ≥ VL or VQ < VL, Γ(V0) is equal to J(V0). That is, any optimal mechanism
that, when the principal is in control of the hiring decision, is allowed to instruct the
principal to either hire or not hire the applicants is payoff-equivalent to the optimal
mechanism that, when the principal is in control of the hiring decision, instructs the
principal to hire the applicants. This finding is also intuitive. If the mechanism gives
control over hiring to the principal and instructs the principal to hire, the first-stage
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values to the agent and the principal, V and J(V ), are a convex combination between
the point P = (−η, 0) and the point C = (VC , JC). Since VC > −η and JC > 0, the
convex combination generates a J(V ) such that J(0) > 0. If the mechanism is allowed
to instruct the principal not to hire, the first-stage values to the agent and the principal,
V and J(V ), can be further convexified with the point Q = (0, 0). This convexification,
however, is useless because Q lies below the (V, J) frontier (see Figure 2).

It is straightforward to combine the above arguments to obtain the following proposi-
tion.

Proposition 4 (Optimal control). Consider the class of mechanisms that can assign the
hiring decision to either the principal or the agent in any period and after any history,
and that can prescribe that the principal hires or does not hire the applicant in any period
in which the hiring decision is assigned to the principal. Let Γ denote the first-stage value
function for this class of mechanisms and let J be the first-stage value function in the
restricted class of mechanisms considered in Section 2. Then, Γ = J .

4 Extensions

In this section, we use the analysis of the baseline model to characterize the optimal
mechanism in richer and more realistic environments. In Section 4.1, we consider an
environment in which the agent has the option to hire either a contentious applicant,
an applicant from a demographic group against which the agent is biased, or a non-
contentious applicant, an applicant from a demographic group against which the agent
holds no bias. In Section 4.2, we consider an environment in which the agent has the
option to hire one among n contentious applicants, and an environment in which the
agent has the option to hire one among n contentious applicants and m uncontentious
applicants. In Section 4.3, we consider a version of the baseline model in which the agent
is positively biased. In Section 4.4, we consider an environment in which the principal
cannot observe whether an applicant is available or not. The analysis of these extensions
follows directly from the analysis of the baseline model.

4.1 Contentious and uncontentious applicants

In the baseline model of Section 2 we considered an environment in which there is only one
applicant that can be hired in each period and the agent is biased against the applicant.
This environment describes well a situation in which the principal operates a technology
with constant returns to scale in labor and, hence, applicants do not compete against each
other but only against the option of not hiring. Moreover, since applicants do not compete
against each other under constant returns to scale, it is natural to restrict attention to
applicants against which the agent is biased. The assumption of constant returns to scale
in labor is made by most search-theoretic models of the labor market, such as Mortensen
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and Pissarides (1994), Burdett and Mortensen (1998), Postel-Vinay and Robin (2002),
Menzio and Shi (2011). In other situations, however, it may be more realistic to assume
that applicants compete against each other because the principal operates a technology
with decreasing returns to scale. A simple formulation of this situation is an environment
in which multiple applicants compete for a single vacancy. This is the assumption in the
search-theoretic models by Montgomery (1991) and Burdett, Shi and Wright (2001). In
this case, it is also natural to assume that the agent is biased against some applicants
but not against others based on the applicant’s demographics. In this subsection, we
characterize the optimal mechanism in this alternative environment.

We consider a version of the model in which in there are multiple applicants for
each vacancy. Suppose that applicants come from two different groups. Some applicants
come from group X, and some applicants come from group Y . The quality x of an X-
applicant is drawn from a distribution Fx(x), with mean 0 and support [x, x]. The quality
y of a Y -applicant is drawn from a distribution Fy(y), with mean 0 and support [y, y].
The agent is negatively biased towards X-applicants, with a bias given by η ∈ (0, x).
The agent is unbiased towards Y -applicants. In this sense, X-applicants are contentious
and Y -applicants are not contentious. The group of a particular applicant is known to
both the principal and the agent, as it may reflect some readily observable demographic
characteristics. The quality of a particular applicant is known only to the agent.

In order to keep the analysis simple, let us assume that there is exactly oneX-applicant
and one Y -applicant for each vacancy6 and that the vacancy needs to be filled.7 It is useful
to denote as z the difference between the quality x of an X-applicant and the quality y of
a Y -applicant. That is, z equals x− y. The joint distribution of the random variables y
and z is determined by the quality distribution Fx and Fy. For our purposes, it is useful
to describe the joint distribution of y and z with the marginal distribution Fz(z) of the
random variable z and the distribution G(y|z) of the random variable y conditional on z.
Note that the support of z is [z, z], with z = x− y and z = x− y.
The mechanism design problem can be written recursively as a two-stage problem.

The first-stage problem is

J(V ) = max
p,V̂

pJP + (1− p)Ĵ(V̂ )

s.t. V = pVP + (1− p)V̂ ,

p ∈ [0, 1], V̂ ∈ V̂,

(4.1)

6In the next subsection, we extend the analysis to the case of multiple contentious and non-contentious
applicants.

7If the vacancy does not need to be filled, the structure of the mechanism design problem is quali-
tatively different than in the baseline. In particular, in the second-stage problem, the mechanism can
specify different continuation values for the agent depending on whether the agent hired the contentious
applicant, the agent hired the uncontentious applicant, or the agent did not hire anyone. We leave the
characterization of this mechanism design problem to future work.
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where VP and JP are respectively given by

VP = −η, JP = 0. (4.2)

For the same reasons as in Section 3, it is without loss in generality to restrict attention to
mechanisms such that: (i) when the mechanism gives control to the principal, it does so
forever; (ii) when the mechanism gives control to the principal, the mechanism instructs
the principal to hire the contentious applicant. For this reason, VP is equal to −η and JP
is equal to 0.

At the second stage, the value of the mechanism to the agent is

V̂ =

∫
z

[∫
y

max {(1− β) (y + z − η) + βV1, (1− β)y + βV0} dGy(y|z)

]
dFz(z). (4.3)

The above expression is easy to understand. Consider a particular realization of the
random variables y and z. If the agent hires the X-applicant, the agent’s flow payoff
is (1 − β) (y + z − η), where y + z is the quality x of the X-applicant, and the agent’s
continuation value is V1. If the agent does not hire theX-applicant, the agent’s flow payoff
is (1− β)y, where y is the quality of the Y -applicant, and the agent’s continuation value
is V0. The agent chooses whether to hire or not hire the X-applicant so as to maximize
the sum of its flow and continuation payoffs. Hence, the agent hires the X-applicant if
and only if z ≥ R, where

R = η − β

1− β (V1 − V0). (4.4)

Using the definition of the reservation quality R in (4.4), we can rewrite (4.3) as

V̂ =

∫ R [∫
y

[(1− β)y + βV0] dGy(y|z)
]
dFz(z)

+

∫
R

[∫
y

[(1− β) (y + z − η) + βV1] dGy(y|z)
]
dFz(z)

= (1− β)

∫
R

(z − η) dFz(z) + βFz(R)V0 + β (1− Fz(R))V1,

(4.5)

where the last line makes use of the fact that the mean of the random variable y is 0.

At the second stage, the value of the mechanism to the principal is

Ĵ =

∫ R [∫
y

[(1− β)y + βJ(V0)] dGy(y|z)
]
dFz(z)

+

∫
R

[∫
y

[(1− β) (y + z) + βJ(V1)] dGy(y|z)
]
dFz(z)

= (1− β)

∫
R

zdFz(z) + βFz(R)J(V0) + β (1− Fz(R)) J(V1).

(4.6)

The above expression is also easy to understand. Consider a particular realization of the
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random variables y and z. If z ≥ R, the agent hires the X-applicant. The principal’s
flow payoff is (1 − β) (y + z), where y + z is the quality x of the X-applicant, and the
principal’s continuation value is J(V1). If z < R, the agent does not hire the X-applicant.
The principal’s flow payoff is (1− β)y, where y is the quality of the Y -applicant, and the
principal’s continuation value is J(V0).

Using (4.5) and (4.6), we can write the second-stage problem as

Ĵ(V̂ ) = max
V0,V1∈V

(1− β)

∫
R

zdFz(z) + β [Fz(R)J(V0) + (1− Fz(R))J(V1)],

s.t. V̂ = (1− β)

∫
R

(z − η) dFz(z) + βFz(R)V0 + β (1− Fz(R))V1

R = η − β

1− β (V1 − V0).

(4.7)

Following the same argument as in Lemma 1, it is easy to show that the implementable
set V is given by the interval [VP , VF ], and the implementable set V̂ is given by the interval
[VL, VF ], where

VL ≡ (1− β)VF + βVP , VF ≡
∫
η

(z − η)dFz(z). (4.8)

Following the same argument as in Lemma 2, it is east to show that

J∗ ≡ max
V ∈V

J(V ) >

∫
η

zdFz(z) ≡ JF (4.9)

if the marginal distribution Fz and the bias η are such that

ηF ′z(η)

Fz(η)
>

∫
η
zdFz(z)∫

η
zdFz(z) + ηF (η)

. (4.10)

Note that the mechanism design problem with contentious and uncontentious appli-
cants is identical to the mechanism design problem with a single contentions applicant,
except that the distribution Fz of the difference in quality between the contentious and
the uncontentious applicants takes the place of the distribution F of the quality of the
contentious applicant. Since the distribution Fz has a mean of 0, just like the distrib-
ution F , the mechanism design problem with contentious and uncontentious applicants
is a special case of the mechanism design problem with a single contentious applicant.
Therefore, under condition (4.10), we can directly apply Propositions 1, 2 and 3.

Proposition 5: (Contentious and uncontentious applicants) The optimal mechanism has
the following properties:

1. The solution to the first-stage problem in (4.1) is a lottery (p, V̂ ) such that p > 0 and
V̂ = VC for all V ∈ [VP , VC), and such that p = 0 and V̂ = V for all V ∈ [VC , VF ],
where VC is given by (2.34).

2. The solution to the second-stage problem in (4.5) is a pair of agent’s continuation

35



values (V0, V1) such that V0 ≤ VC, V1 ∈ [VC , VF ) and V0 < V1 for V̂ = VC, such
that V0 < V̂ and V1 ∈ (V̂ , VF ) for all V̂ ∈ (VC , VF ), and such that V0 = VF and
V1 = VF for V̂ = VF . For all V̂ ∈ [VC , VF ), the solution induces the agent to
follow a threshold R on the difference between the quality of the contentious and the
uncontentious applicants such that R ∈ (z, η).

The version of the model in which a contentious and an uncontentious applicant are
available to fill each vacancy and each vacancy needs to be filled is isomorphic to the
baseline model, except that the distribution F needs to be interpreted as the distribution
of the quality gap between the contentious and the uncontentious applicants and not hiring
needs to be interpreted as hiring the uncontentious applicant. It is useful to read Figure 6
in light of this alternative interpretation. The figure shows that the reservation quality gap
is smaller than η, it is strictly positive when the agent’s promised value is suffi ciently high,
and it is strictly negative when the agent’s promised value is suffi ciently low. This implies
that, when the agent’s promised value is suffi ciently high, the agent’s hiring decision is
still biased against the contentious applicant and in favor of the uncontentious applicant,
although the extent of the bias is less than under unfettered delegation. When the agent’s
promised value is suffi ciently low, the agent’s hiring decision becomes biased in favor
of the contentious applicant and against the uncontentious applicant, since the agent’s
reservation quality gap becomes negative. Therefore, the optimal mechanism is such that,
after some histories, the agent is induced to switch the direction of its bias. Even though
this is ex-post ineffi cient, it is ex-ante optimal.

4.2 Multiple applicants

In this subsection, we characterize the optimal mechanism in a version of the baseline
model in which multiple contentious applicants and multiple uncontentious applicants
compete for each of vacancy. It is useful to start the analysis from the case in which there
are n ∈ N contentious applicants and no uncontentious applicants. Each contentious
applicant has a quality x that is independently drawn from the distribution F (x). Let xn
denote the maximum of the quality of the n contentious applicants. Let Fn(xn) denote
the distribution of xn, i.e., Fn(x) = F (x)n.

The principal’s optimal mechanism design problem can be written recursively as a
two-stage problem. The first-stage of the recursive problem is

J(V ) = max
p,V̂

pJP + (1− p)Ĵ(V̂ )

s.t. V = pVP + (1− p)V̂ ,

p ∈ [0, 1], V̂ ∈ V̂,

(4.11)
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where the values VP and JP are given by

VP =

∫ x

x

(xn − η)dFn(xn), JP =

∫ x

x

xndFn(xn). (4.12)

The second-stage of the recursive problem is

Ĵ(V̂ ) = max
V0,V1∈V

(1− β)

∫
R

xndFn(xn) + β [Fn(R)J(V0) + (1− Fn(R))J(V1)] ,

s.t. V̂ = (1− β)

∫
R

(xn − η)dFn(x) + β [Fn(R)V0 + (1− Fn(R)))V1]

R = η − β

1− β (V1 − V0).

(4.13)

The formulation of (4.11) subsumes a restriction to mechanisms such that: (i) if the
mechanism gives control of the hiring process to the principal, it does so permanently;
(ii) if the principal has control over the hiring process, the mechanism instructs the agent
to report the ranking of the applicants, which the agent has an incentive to disclose
truthfully, and then it instructs the principal to hire the highest-ranked applicant. The
first restriction on the mechanisms is without loss in generality. The second restriction
may not be without loss in generality. If the principal has control over hiring and hires
a randomly-selected applicant, the values to the agent and the principal are −η and
0. If the principal has control over hiring and hires the best applicant, the value to
the agent is VP = E[xn] − η and the value to the principal is JP = E[xn]. The optimal
lottery between delegation and control may be a convex combination between a delegation
point (VC , JC) and the control point (−η, 0). Alternatively, the optimal lottery may be a
convex combination between a delegation point (VC , JC) and the control point (VP , JP ) for
V ∈ [VP , VC) and a convex combination between the control points (−η, 0) and (VP , JP )

for V ∈ [−η, VP ). If the optimal mechanism in delegation is such that V0 ≥ VP for
all V̂ ≥ VC , the only relevant control is the point (VP , JP ) and the restriction (ii) is
innocuous.8 This is the case in the numerical example illustrated in Figure 8 and in all
the other numerical examples we explored.

Taking as given the restrictions on the space of mechanisms implicit in (4.11), it is
immediate to show that the implementable set V is given by the interval [VP , VF ], and the
implementable set V̂ is given by the interval [VL, VF ], where

VL ≡ (1− β)VF + βVP , VF ≡
∫
η

(xn − η)dFn(xn). (4.14)

Similarly, it is straightforward to show that J∗, which is defined as the maximum of
J(V ) with respect to V , is strictly greater than JF , which is defined as

∫
η
xndFn(xn), if

8The analysis of the optimal mechanism when the optimal control involves hiring an applicant at
random is similar, and is omitted for the sake of brevity.
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(a) Value functions (b) Policy functions

Notes: Value functions and policy functions given parameters n = 2, β = 0.9, η= 0.5, and F (x)
uniform on the interval [−1, 1].

Figure 8: Numerical example: Value and policy functions with n applicants

the quality distribution Fn and the bias η are such that

ηF ′n(η)

Fn(η)
>

∫
η
xndFn(xn)−

∫ x
x
xndFn(xn)∫

η
(xn − η)dFn(xn)−

∫ x
x

(xn − η)dFn(xn)
. (4.15)

Note that the mechanism design with multiple contentious applicants is identical to
the mechanism design problem with a single applicant, except that the distribution Fn
of the highest quality xn among n applicants replaces the distribution F of the quality
of a single applicant. The only substantive difference between the distribution Fn and
the distribution F is that the former has a strictly positive mean and the latter has a
mean equal to 0. Yet, under condition (4.15), it is easy to verify that the characterization
results in Propositions 1, 2 and 3 also apply to the case of a distribution with a strictly
positive mean.

Proposition 6: (Multiple contentious applicants) The optimal mechanism has the fol-
lowing properties:

1. The solution to the first-stage problem in (4.11) is a lottery (p, V̂ ) such that p > 0

and V̂ = VC for all V ∈ [VP , VC), and such that p = 0 and V̂ = V for all
V ∈ [VC , VF ], where VC is given by (2.34).

2. The solution to the second-stage problem in (4.13) is a pair of continuation values
(V0, V1) such that V0 ≤ VC, V1 ∈ [VC , VF ) and V0 < V1 for V̂ = VC, such that
V0 < V̂ and V1 ∈ (V̂ , VF ) for all V̂ ∈ (VC , VF ), and such that V0 = VF and V1 = VF
for V̂ = VF . For V̂ ∈ [VC , VF ), the solution induces an agent’s reservation quality
R such that R ∈ (x, η).

In light of the results of the previous subsection, it is easy to extend Proposition 6 to
the case in which n ∈ N contentious applicants and m ∈ N non-contentious applicants
compete for each vacancy, and each vacancy needs to be filled. Let xn denote the maximum
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quality of the contentious applicants, and let Fx,n(xn) denote the distribution of xn. Let
ym denote the maximum quality of uncontentious applicants, and let Fy,m(ym) denote the
distribution of ym. Let z denote the difference between the maximum quality xn of the
contentious applicants and the maximum quality ym of the uncontentious applicants, and
let Fz(z) denote the distribution of the random variable z.

The mechanism design problem can be written recursively as a two-stage problem.9

The first-stage problem is (4.11), where VP and JP are respectively given by

VP = µ+

∫ z

z

(z − η)dFz(z), JP = µ+

∫ z

z

zdFz(z). (4.16)

and µ denotes the unconditional mean of the random variable ym and is given by

µ =

∫
ymdFy,m(ym). (4.17)

The second-stage problem is

Ĵ(V̂ ) = max
V0,V1∈V

(1− β)
[
µ+

∫
R
zdFz(z)

]
+ β [Fz(R)J(V0) + (1− Fz(R))J(V1)],

s.t. V̂ = (1− β)
[
µ+

∫
R

(z − η) dFz(z)
]

+ βFz(R)V0 + β (1− Fz(R))V1

R = η − β

1− β (V1 − V0).
(4.18)

The implementable set V is given by the interval [VP , VF ], and the implementable set
V̂ is given by the interval [VL, VF ], where

VL ≡ (1− β)VF + βVP , VF ≡ µ+

∫
η

(z − η)dFz(z). (4.19)

The optimal mechanism is not unfettered delegation, in the sense that

J∗ ≡ max
V ∈V

J(V ) > µ+

∫
η

zdFz(z) ≡ JF (4.20)

if the marginal distribution Fz and the bias η are such that

ηF ′z(η)

1− Fz(η)
>

∫
η
zdFz(z)−

∫ z
z
zdFz(z)∫

η
(z − η)dFz(z)−

∫ z
z

(z − η)dFz(z)
. (4.21)

The mechanism design with multiple contentious and multiple uncontentious appli-

9We maintain the restriction to mechanisms such that: (i) if the mechanism gives control of the hiring
process to the principal, it does so permanently; (ii) if the principal has control over the hiring process,
the mechanism instructs the agent to report the ranking of the contentious applicants, and it instructs
the principal to hire the highest-ranked contentious applicant.
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cants is identical to the mechanism design problem with a multiple contentious applicant,
except that the distribution Fz of the gap between the highest quality xn among the n
contentious applicants and the highest quality ym among the m uncontentious applicants
replaces Fn, and the payoffs to the agent and the principal are shifted by a constant µ.
Propositions 1, 2 and 3 generalize to the case in which the distribution that has a non-zero
mean and to the case in which the payoffs are shifted by a constant. Therefore, under
condition (4.21), Propositions 1, 2 and 3 and, in turn, Proposition 6 apply to the version
of the model with multiple contentious and uncontentious applicants.

4.3 Positive bias

In the baseline model of Section 2, we characterize the optimal mechanism when the agent
is biased against the applicants. In this subsection, we want to characterize the optimal
mechanism in an environment where the agent is biased in favor of the applicants. In
particular, we consider a version of the baseline model in which the difference between
the payoff to the agent and the payoff to the principal if an applicant is hired is a strictly
positive constant φ.

The principal’s mechanism design problem can be written recursively as a two-stage
problem. The first-stage of the recursive problem is

J+(V ) = max
p+,V̂+

p+J
+
P + (1− p+)Ĵ+(V̂+)

s.t. V = p+V
+
P + (1− p+)V̂+,

p+ ∈ [0, 1], V̂+ ∈ V̂+,

(4.22)

where the values V +
P and J+P are given by

V +
P = 0, J+P = 0. (4.23)

The second-stage of the recursive problem is

Ĵ+(V̂ ) = max
V +0 ,V

+
1 ∈V+

(1− β)

∫
R+

xdF (x) + β
[
F (R+)J(V +

0 ) + (1− F (R+))J(V +
1 )
]
,

s.t. V̂ = (1− β)

∫
R+

(x+ φ) dF (x) + β[F (R+)V +
0 + (1− F (R+))V +

1 ],

R+ = −φ− β

1− β (V +
1 − V +

0 ).

(4.24)

The formulation of (4.22) assumes a restriction to mechanisms such that: (i) if the
mechanism gives control of the hiring process to the principal, it does so permanently;
(ii) if the principal has control over the hiring process, the mechanism prescribes that the
principal hires none of the applicants. The first restriction is without loss in generality, for
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the same reasons as in Section 3. The second restriction is also without loss in generality.
This is intuitive. If the principal has control over hiring and hires all the applicants,
the values to the agent and the principal are φ and 0. If the principal has control over
hiring and does not hire any applicants, the value to both the agent and the principal is
0. Clearly, the optimal lottery between delegation and control is a convex combination
between a point on the delegation frontier (V̂ , Ĵ+) and the control point (0, 0).

As in Lemma 1, we can prove that the implementable set V+ is given by the interval
[V +
P , V

+
F ], and the implementable set V̂+ is given by the interval [V +

L , V
+
F ], where

V +
L ≡ (1− β)V +

F + βV +
P , V +

F ≡
∫
−φ

(x+ φ)dF (x). (4.25)

As in Lemma 2, we can prove that J∗+, which is defined as the maximum of J+(V ) with
respect to V , is strictly greater than J+F , which is defined as

∫
−φxdF (x), if the quality

distribution F and the bias φ are such that

φF ′(−φ)

1− F (−φ)
>

∫
−φ xdF (x)∫

−φ(x+ φ)dF (x)
. (4.26)

Under condition (4.26), we can use the same arguments as in Propositions 1, 2 and 3
to show that the optimal mechanism has the same qualitative features as in the baseline
model. There are only two substantive differences between the optimal mechanism when
the agent is positively biased and the optimal mechanism when the agent is negatively
biased. First, as we have already mentioned, if the agent is positively biased, the opti-
mal mechanism is such that, when the hiring decision is controlled by the principal, the
principal is required to hire none of the applicants. If the agent is negatively biased, the
optimal mechanism is such that, when the hiring decision is controlled by the principal,
the principal is required to hire all of the applicants. Second, if the agent is positively
biased, the optimal mechanism is such that, when the hiring decision is delegated to the
agent, the agent is punished for hiring an applicant with a lower continuation values, and
it is rewarded for not hiring an applicant with a higher continuation value. If the agent
is negatively biased, the optimal mechanism is such that the agent is rewarded for hiring
an applicant and punished for not hiring an applicant. This difference is easy to under-
stand. If the agent is positively biased, the agent wants to hire more applicants than the
principal. The optimal mechanism reduces the gap between the preferences of the agent
and the principal by rewarding the agent for not hiring applicants and by punishing him
for hiring applicants.

The proposition below contains the characterization of the optimal mechanism when
the agent is positively biased.

Proposition 7: (Positive bias) The optimal mechanism has the following properties:

1. The solution to the first-stage problem in (4.22) is a lottery (p+, V̂+) such that
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p+ > 0 and V̂+ = VC for all V ∈ [V +
P , V

+
C ), and such that p+ = 0 and V̂+ = V for

all V ∈ [V +
C , V

+
F ], where V +

C is given by (2.34).

2. The solution to the second-stage problem in (4.24) is a pair of continuation values
(V +
0 , V

+
1 ) such that V +

1 ≤ V +
C , V

+
0 ∈ [V +

C , V
+
F ) and V +

1 < V +
0 for V̂ = V +

C , such
that V +

0 ∈ (V̂ , V +
F ) and V +

1 < V̂ for all V̂ ∈ (V +
C , V

+
F ), and such that V +

0 = V +
F

and V +
1 = V +

F for V̂ = V +
F . For all V̂ ∈ [V +

C , V
+
F ), the solution induces an agent’s

reservation quality R such that R ∈ (−φ, x).

Under some conditions on φ and F , the solution to the mechanism design problem
under positive bias can be expressed as a simple transformation of the solution to the
mechanism design problem under negative bias. Specifically, if the quality distribution
F is symmetric around 0, in the sense that F (x) = 1 − F (−x) for all x ∈ [x, x], and
the positive bias has the same magnitude as the negative bias, in the sense that φ = η,
the value functions that solve (4.22) and (4.26) are an horizontal translation of the value
functions that solve (2.1) and (2.4), and the policy functions associated with (4.22) and
(4.24) are an horizontal translation of the policy functions that solve (2.1) and (2.4), with
V +
0 taking the place of V1 and V +

1 taking the place of V0.

The next proposition makes the statements above formal. The proof is in the Appendix

Proposition 8: (Positive and negative bias under symmetry). Assume F (x) = 1−F (−x)

for all x ∈ [x, x] and φ = η. Then:

1. The first-stage and second-stage value functions J+ and Ĵ+ are such that

J+(V + η) = J(V ), Ĵ+(V̂ + η) = Ĵ(V̂ ). (4.27)

2. The solution to the first-stage problem in (4.22) given the promised value V+ = V +η

is the lottery (p+, V̂+), where p+ = p, V̂+ = V̂ + η, and (p, V̂ ) is the solution to the
first-stage problem in (2.1) given the promised value V .

3. The solution to the second-stage problem in (4.24) given the promised value V̂+ =

V̂+η is a pair of continuation values (V +
0 , V

+
1 ), where V +

0 = V1+η, and V +
1 = V0+η,

and (V0, V1) is the solution to the second-stage problem in (2.4) given the promised
value V̂ .

4. The agent’s reservation quality associated with the solution to (4.24) given the
promised value V̂+ = V̂ + η is R+ = −R, where R is the agent’s reservation quality
associated with the solution to (2.4) given the promised value V̂ .

4.4 Privately observed arrival of applicants

In the baseline model, we assume that the principal knows when there is an applicant
that could be hired. In some situations, though, it may be more realistic to assume that
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the principal does not know whether an applicant is available or not. In this subsection,
we characterize the optimal mechanism when the agent privately observes whether an
applicant is available or not and, in the former case, the agent privately observes the
quality of the applicant. Specifically, suppose that an applicant is available with proba-
bility ρ ∈ (0, 1) and no applicant is available with probability 1 − ρ. As in the baseline
model, we assume that the agent is biased against the applicant.

As usual, the mechanism design problem can be written recursively as a two-stage
problem. The first-stage problem is

J(V ) = max
p,V̂

pJP + (1− p)Ĵ(V̂ )

s.t. V = pVP + (1− p)V̂ ,

p ∈ [0, 1], V̂ ∈ V̂,

(4.28)

where Vp and JP are respectively given by

VP = 0, JP = 0. (4.29)

The above formulation of the first-stage problem assumes that the optimal mechanism is
such that: (i) if the mechanism gives control of hiring to the principal, it does so forever;
(ii) when the principal has control over hiring, the mechanism instructs the principal not
hire. These assumptions are without loss in generality. The first assumption is without
loss in generality for the same reasons discussed in Section 3. The second assumption
is without loss in generality because not hiring is the only feasible mechanism when the
principal has control over hiring. In fact, as the principal does not know whether an
applicant is available or not, it needs to rely on a report by the agent. Since the agent
prefers not hiring an applicant than hiring an applicant irrespective of quality, the only
mechanism that induces the agent to truthfully report whether an applicant is available
or not is such that, irrespective of the agent’s report, the principal does not hire.

The second-stage problem is

Ĵ(V̂ ) = max
V0,V1∈V

(1− β)ρ

∫
R

xdF (x) + β [(1− ρ(1− F (R))) J(V0) + ρ(1− F (R))J(V1)] ,

s.t. V̂ = (1− β)ρ

∫
R

(x− η)dF (x) + β [(1− ρ(1− F (R))V0 + ρ(1− F (R)))V1]

R = η − β

1− β (V1 − V0).
(4.30)

The problem above is easy to understand. In the current period, an applicant is available
with probability ρ. If the applicant’s quality x is higher than R, the agent hires the
applicant. In this case, the principal’s flow payoff is x, the agent’s flow payoff is x − η,
the principal’s continuation value is J(V1), and the agent’s continuation value is V1. If an
applicant is not available or if an applicant is available and their quality x is lower than

43



R, the agent does not hire. In this case, the principal’s and the agent’s flow payoffs are
0, the principal’s continuation value is J(V0), and the agent’s continuation value is V0.
Clearly, since the principal does not observe whether an applicant is or is not available,
the agent’s continuation payoff can only be contingent on whether an applicant is hired
or not.

Following the same argument as in Lemma 1, it is easy to show that the implementable
set V is given by the interval [VP , VF ], and the implementable set V̂ is given by the interval
[VL, VF ], where

VL ≡ (1− β)VF + βVP , VF ≡ ρ

∫
η

(x− η)dF (x). (4.31)

Following the same arguments as in Lemma 2, it is easy to show that J∗, which is
defined as the maximum of J(V ) with respect to V , is strictly greater than JF , which is
given by ρ

∫
η
xdF (x), if the quality distribution F , the bias η, anf the arrival probability

ρ are such that
ρηF ′(η)

1− ρ(1− F (η))
>

ρ
∫
η
xdF (x)

ρ
∫
η
(x− η)dF (x)

. (4.32)

The mechanism design problem where the arrival of applicants is privately observed
by the agent is very similar to the baseline mechanism design problem in Section 2. There
are three minor differences. First, the value to the agent and the principal in control are
both equal to 0, rather than −η and 0. Second, the agent and principal’s flow payoffs
in delegation are scaled by the factor ρ. Lastly, the probability that the agent hires an
applicant in delegation is ρ(1 − F (R)), rather than 1 − F (R). Notwithstanding these
differences, it is easy to generalize Propositions 1 and 3. Formally, under condition (4.32),
we can establish the following result.

Proposition 9: (Privately observed arrival of applicants). The optimal mechanism has
the following properties:

1. The solution to the first-stage problem in (4.28) is a lottery (p, V̂ ) such that p > 0

and V̂ = VC for all V ∈ [VP , VC), and such that p = 0 and V̂ = V for all
V ∈ [VC , VF ], where VC is given by (2.34).

2. The solution to the second-stage problem in (4.30) is a pair of continuation values
(V0, V1) such that V0 ≤ VC, V1 ∈ [VC , VF ) and V0 < V1 for V̂ = VC, such that
V0 < V̂ and V1 ∈ (V̂ , VF ) for all V̂ ∈ (VC , VF ), and such that V0 = VF and V1 = VF
for V̂ = VF .

5 Conclusions

In this paper, we approached the design of anti-discriminatory labor market regulations as
a delegation problem. A private firm (the agent) is repeatedly faced with the opportunity
of hiring one among several applicants to fill its vacancies. The firm is biased against
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applicants from some demographic groups, and it is neutral towards applicants from some
other demographic groups. Applicants differ not only with respect to their demographic
characteristics, but also with respect to the idiosyncratic quality of their match with the
firm. A benevolent and unbiased labor market authority (the principal) enacts a hiring
regulation (a direct-revelation mechanism) in order to reduce the impact of the firm’s bias
on its hiring behavior. The hiring regulation is constrained by the fact that the quality
of the match between any particular applicant and the firm is privately observed by the
firm.

We showed that the optimal regulation is dynamic. Depending on the history of the
firm, the regulation prescribes that either the firm is free to choose whom to hire (i.e.,
the hiring decision is delegated to the firm), or the labor market authority chooses whom
to hire (i.e., the hiring decision is controlled by the authority). In the delegation state,
the regulation rewards the firm for hiring applicants from the discriminated groups and
it punishes the firm for hiring applicants from the non-discriminated groups. The reward
is delivered as an increase in the expected time until the hiring decision is given to the
labor market authority, and as a weakening of the incentives given to the firm to hire
discriminated applicants. The punishment is delivered as a reduction in the expected
time until the hiring decision is taken away from the firm, and as a strengthening of the
incentives given to the firm to hire discriminated applicants. In the control state, the
authority hires the best applicant among those coming from discriminated groups. The
control state is absorbing and it is reached with certainty.

Much more work lies head. From the perspective of delegation theory, it would be
important to extend the analysis to the case in which the principal cannot directly observe
the extent of the agent’s bias. From the perspective of labor market discrimination, many
extensions are worthwhile. In this paper, we assumed that the firm’s only choice is whether
or not to hire applicants. In reality, a firm also chooses whether or not to fire its employees
and, for this reason, the firm may be able to circumvent the hiring regulation. Therefore,
it would be important to extend the analysis to an environment in which biased firms hire
and fire workers. In this paper, we assumed away all general equilibrium considerations
and, in particular, we kept both the wage and the arrival rate of applicants as exogenous.
It would be important to embed the mechanism design problem studied in this paper in
a general equilibrium model.
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Appendix
A Proof of Proposition 8

For V̂+ = V̂ + η, the functional equation (4.24) can be written

Ĵ+(V̂ + η)

= max
V +0 ,V

+
1

(1− β)

∫
R+

xdF (x) + β
[
F (R+)J+(V +

0 ) + (1− F (R+))J+(V +
1 )
]
,

s.t. V̂ + η = (1− β)

∫
R+

(x+ φ)dF (x) + β
[
F (R+)V +

0 + (1− F (R+)))V +
1

]
R+ = −φ− β

1− β (V +
1 − V +

0 ), V +
0 , V

+
1 ∈ [V +

P , V
+
F ].

(A.1)

Let us define V0 and V1 as, respectively, V +
1 −η and V +

0 −η. Since the choice variables
V +
0 and V +

1 must belong to the interval [V +
P , V

+
F ], the alternative choice variables V0 and

V1 must belong to the interval[
V +
P − η, V +

F − η
]

=

[
−η,

∫
−φ

(x+ φ)dF (x)− η
]

=

[
−η,

∫
−φ
xdF (x) + (1− F (−φ))φ− η

]
=

[
−η,

∫
η

xdF (x) + F (η)η − η
]

=

[
−η,

∫
η

(x− η)dF (x)

]
= [VP , VF ]

(A.2)

The first line makes use of the definitions of V +
P and V +

F . The third line makes use of the
fact that 1 − F (−φ) equals F (φ) and φ = η, as well as of the fact that, by symmetry of
the quality distribution,

∫
−φxdF (x) equals

∫
φ
xdF (x). The fourth line makes use of the

definition of VP and VF .

Using the above definitions and observations, we can rewrite (A.1) as

Ĵ+(V̂ + η)

= max
V0,V1

(1− β)

∫
R+

xdF (x) + β [F (R+)J+(V1 + η) + (1− F (R+))J+(V0 + η)] ,

s.t. V̂ + η = (1− β)

∫
R+

(x+ φ)dF (x) + β [F (R+)V1 + (1− F (R+))V0 + η]

R+ = −η − β

1− β (V0 − V1), V0, V1 ∈ [VP , VF ].

(A.3)

Defining R as −R+ and using the fact that F (R+) = 1 − F (−R+), we can rewrite
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(A.3) as

Ĵ+(V̂ + η)

= max
V0,V1

(1− β)

∫
R+

xdF (x) + β [(1− F (R))J+(V1 + η) + F (R)J+(V0 + η)] ,

s.t. V̂ + η = (1− β)

∫
R+

(x+ η)dF (x) + β [(1− F (R))V1 + F (R)V0 + η)]

R = η − β

1− β (V1 − V0), V0, V1 ∈ [VP , VF ].

(A.4)

Using the symmetry of the quality distribution and the definition of R, we can now
rewrite (A.4) as

Ĵ+(V̂ + η)

= max
V0,V1

(1− β)

∫
R

xdF (x) + β [(1− F (R))J+(V1 + η) + F (R)J+(V0 + η)] ,

s.t. V̂ = (1− β)

∫
R

(x− η)dF (x) + β [(1− F (R))V1 + F (R)V0]

R = η − β

1− β (V1 − V0), V0, V1 ∈ [VP , VF ].

(A.5)

In the objective function, we used the fact that
∫
R+
xdF (x) equals

∫
−R+xdF (x) and the

definition R = −R+. In the promise-keeping constraint, we collected η on the right-hand
side and used the fact that

∫
R+
xdF (x) equals

∫
R
xdF (x).

For V̂ + η, the functional equation (4.22) can be written as

J+(V + η) = max
p+,V̂+

p+J
+
P + (1− p+)Ĵ+(V̂+),

s.t. V + η = pV +
P + (1− p)V̂+,

p+ ∈ [0, 1], V̂+ ∈
[
V +
L , V

+
F

]
.

(A.6)

Let V̂ be defined as V̂+ − η. Since V̂+ belongs to the interval [V +
L , V

+
F ], V̂ belongs to

the interval [
V +
L − η, V +

F − η
]

=
[
(1− β)V +

P + βV +
F − η, V +

F − η
]

=
[
(1− β)

(
V +
P − η

)
+ β

(
V +
F − η

)
, V +

F − η
]

= [(1− β)VP + βVF , VF ] = [VL, VF ].

(A.7)

The third line makes use of the fact that

V +
P − η = −η = VP . (A.8)
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The third line also makes use of the fact that

V +
F − η =

∫
−φ(x+ φ)dF (x)− η

=
∫
−φxdF (x) + φ(1− F (−φ))− η

=
∫
η
(x− η)dF (x) = VF .

(A.9)

Using the definition of V̂ and the above observations, we can rewrite (A.6) as

J+(V + η) = max
p,V̂

pJ+P + (1− p)Ĵ+(V̂ + η)

s.t. V + η = pV +
P + (1− p)(V̂ + η),

p ∈ [0, 1], V̂ ∈ [VL, VF ],.

(A.10)

Rearranging terms in the objective function and using the fact that J+P = JP , we can
rewrite (A.10) as

Jφ(V + η) = max
p,V̂

pJP + (1− p)Ĵφ(V̂ + η)

s.t. V = pVP + (1− p)V̂ ,

p ∈ [0, 1], V̂ ∈ [V`, VF ], .

(A.11)

The value functions Ĵ+(V̂ + η) = Ĵ(V̂ ) and J+(V + η) = J(V ) solve the functional
equations (A.5) and (A.11), since Ĵ(V̂ ) and J(V ) are the solution to (2.4) and (2.1), (A.5)
is identical to (2.4), and (A.11) is identical to (2.1). Parts 2, 3 and 4 of the proposition
directly follow from the change in choice variables implemented in the derivation of (A.5)
and (A.11). �
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