

Introduction

- In order to find a voice more congruent with the feminine gender, some transgender women seek voice modification therapy.
- Voice modification therapy has typically focused on increasing fundamental frequency (F0) and formant frequencies. [1]
- Research on the efficacy of therapy methods has been limited, particularly in the area of **formant manipulation**.
- Though F0 is the most salient acoustic indicator of gender, raising F0 has yielded neither completely effective nor consistent results in increasing perceived femininity. [2]
 - Vowel formants (and specifically the second formant, F2) have been shown to act as important contributors to the perception of gender, **in conjunction with F0**. [3]
- Formant frequencies differ between males and females, with females exhibiting higher average formant frequencies.
- Inspiration for formant matching comes from visual biofeedback.

D Real-Time LPC Response: CHILD

VOWEL TABLE: TABLEC.VTI

• With biofeedback, a speaker's formants are displayed on a linear predictive coding spectrum in real time.

Frequency (Hz)

: 0.00 Hz y: 0.00 dB

• The participant uses the external visual information to attempt to alter their vocal quality to match a formant target.

Hancock, A. & Garabedian, L. (2013). Transgender voice and communication treatment: a retrospective chart review of 25 cases. International Journal of Language [2] Gelfer, M. & Schofield, K. (2000). Comparison of Acoustic and Perceptual Measures of Voice in Male-to-Female Transsexuals Perceived as Female Versus Those Perceived as Male. Journal of Voice, 14 (1), 22-33. AcNeill, E., Wilson, J., Clark, S., & Deakin, J. (2008). Perception of Voice in the Transgender Client. Journal of Voice, 22 (6), 727-73.

, & Oates, J. (2006). The Effectiveness of Oral Resonance Therapy on the Perception of Femininity of Voice in Male-to-Female Transsexuals. Gelfer, M. & Bennett, Q. (2013). Speaking Fundamental Frequency and Vowel Formant Frequencies: Effects on Perception of Gender. Journal of Voice, 27 (5), 556-566 rger, S. (2014). Influences of Fundamental Frequency, Formant Frequencies, Aperiodicity, and Spectrum Level on the Perception of Voice Gender Journal of Speech, Language, and Hearing Research, 57, 285-296. . Gender Typicality in Children's Speech: A comparison of the Speech of Boys with and without Gender Identity Disorder. Journal of the Acoustic Society of America, 137(4), 1995-2003

The Effect of Biofeedback on the Feminization of Voice in Transgender Women

Deanna Kawitzky & Tara McAllister Byun New York University

Objectives

- . Determine whether transgender speakers can use biofeedback to manipulate their F2 frequency to match a target formant frequency typical of female speakers. 2. Assess whether such an acoustic shift
 - influences the speaker's perceived femininity.

Methods

- transgender women and 20 cisgender men participated, forming 2 groups.
- Orientation to biofeedback and training in matching a formant target were provided. Speakers produced the words bud, bad, and bod in blocks of nine trials in three conditions to match a target formant frequency.
 - Shifted-up: target was scaled up to match a typical female F2 for the vowel in question (experimental condition)
 - Shifted-down: target was scaled down by the same amount (control for effects of atypical speech output)
 - **Own**: mean F2 value across speaker's own productions in the baseline phase

• Magnitude of shift was standard across speakers. Shift increment was added/ subtracted from each person's baseline F2. Trained graduate students measured F2 at the midpoint of each vowel; F0, F1, F2, and F3 values were extracted at the midpoint. Blinded listeners, recruited online through the Amazon Mechanical Turk crowdsourcing platform, rated the gender typicality of each speaker on a visual analog scale from "definitely male" to "definitely female". [4] • Female productions were included for balance. Each file was rated by nine unique listeners

c	•	┣
J.	•	F
	•	В
female	•	L

Rating

definitely male

Advance (or press Enter)

definitely

Acoustic Results

F2 was significantly higher in the shifted-up condition (and lower in the shifted-down condition), relative to the own condition ($\beta = -111.79$, SE = 26.17, p = 0.02). • Between groups, F2 was significantly higher in transgender speakers than in cisgender speakers (β = 83.31, SE = 26.49, p = 0.004).

Higher degree of variability of F0, F1, F2, and F3 was found in the transgender group.

Perceptual Rating

While the transgender group received significantly higher femininity ratings than the cisgender group $(\beta = 0.16, SE = 0.06, \beta = 0.008)$, they were still generally perceived as male (below midpoint on VAS rating scale).

Fig. 2: Perceptual ratings of tokens by group, word, and condition

• Higher F2 frequencies were significantly associated with higher mean femininity ratings ($\beta = 0.02$, SE < 0.01, p = 0.002),as were higher FO values ($\beta = 0.05$, SE = 0.01, p < 0.01). • There was a

significant interaction between F0 and F2 $(\beta = 0.01, SE < 0.01,$ p = 0.001).

Discussion

• Participants successfully used biofeedback to match a shifted F2 target, across vowels and groups. Higher F2 values were associated with an increase in the perceived femininity of speech. ³0 and F2 make a joint contribution to the perception of gender, confirming previous literature. Biofeedback might be a useful tool in voice modification therapy for transgender women. arger studies and information about generalization will be essential before strong conclusions can be drawn.

Fig. 1: F2 frequencies of tokens by group, word, and condition

