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Stéphane Boucheron Université Paris Diderot
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baisse pas le rythme de travail. J’ai une pensée à Alain Pajor qui m’a tant impressionné par
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régal de faire des maths, discuter avec les nombreux collègues/amis, jouer au basket (et se
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2
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Overview

The present manuscript summarizes my research work which resulted in the publication list
given in the sequel. It is meant to give an overview of my contributions without entering
into technical details. It should be noted that the manuscript is far from being an extensive
survey of the research directions which will be discussed, and focuses instead on my personal
work.

I am mainly interested in high dimensional phenomena where one ideally aim at the
following three stages:

1. Capture a phenomenon arising as the “dimension” grows.

2. Quantify the phenomenon.

3. Provide, when possible, a qualitative explanation as to why such a phenomenon occurs.

Let me illustrate this by a very basic observation. Let Bn
2 be the Euclidean ball of radius 1

in Rn and Bn be the Euclidean ball of volume one. It can be checked that the radius rn of
Bn satisfies rn ∼

√
n

2πe
as n→∞. Now (Bn,B(Bn),Vol) defines a probability space and by

multi-linearity of the volume, one has that the volume of (1− ε)Bn vanishes as n→∞.

∼
rn

rn

Bn •Bn = rnB
n
2 of volume 1.

• (Bn,B,Vol) probability space.

• ∼rn = (1− ε)rn.

•Vol(
∼
rnB

n
2 ) = (1− ε)n −→

n→∞
0.

This trivial observation is very enlightening as it asserts that the ball becomes “empty”
as the dimension grows and the whole mass is pushed out to the surface. This phenomenon
which is captured in the high dimension regime is known as the concentration of measure and

1



can be quantified as to control the decay of the mass outside a set of non-negligible volume.
It is known to be implied by isoperimetric inequalities and is further established on other
probability spaces. We refer to [88] and references therein for more on the concentration
of measure phenomenon and to the excellent recent book [146] for an introduction to high
dimensional probability.

The high dimensional componant is a common feature to all my research work combining
random matrices, spectrum of random graphs, geometric functional analysis, concentration
inequalities and data selection problems. At the intersection of these subjects is the word
“Matrix”, a very simple object which will be looked at from different angles. In Chapter 1,
we will look at it from a data scientist point of view and study problems of extracting sub-
matrices with certain properties from a large array of data. This will cover some results
present in [Y2,Y4,Y9,Y10,Y19]. In Chapter 2, we add a geometric flavor by interpreting
a matrix as a linear transformation, studying distances between high dimensional convex
bodies and establishing some structural properties. The geometry is also mixed with prob-
ability as we study convex hulls of random walks in high dimensions [Y1,Y5,Y10,Y19]. In
Chapter 3, we officially enter the random matrix world as we focus on the study of the
norm of random matrices with independent entries and the outliers of their limiting spectral
distribution [Y15,Y18]. In Chapter 4 , we further dive in random matrix theory by drop-
ping the independence feature and investigating the universality phenomenon through the
study of random regular graphs. Our journey there leads us to visit interesting problems
as the rank of their adjacency matrices, their “well” invertibility captured by the small-
est singular value, delocalization properties of their eigenvectors and finally their limiting
spectral distribution [Y7,Y8,Y13,Y14,Y16,Y17]. In Chapter 5, we move from the macro-
scopic level and investigate the edge of the spectrum of random graphs by studying the
spectral gap of the two famous random graph models: random regular graphs and the Erdős-
Renyi graph [Y11,Y12,Y15,Y18]. Finally, in Chapter 6, we discuss classical concentration
inequalities extensions in two different directions: implementing dependence and providing
non-commutative analogues [Y3,Y6,Y12,Y15].

Publications

The articles [Y1,Y2,Y3] below were part of my PhD thesis. The papers [Y4,Y5,Y6] were
completed while in postdoc at the University of Alberta, and the remaining works were done
since I moved to Paris Diderot in September 2015 as a mâıtre de conférences.
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[Y7] Anti-concentration property for random digraphs and invertibility
of their adjacency matrices.

C.R. Math. Acad. Sci. Paris, 354 (2016), 121–124.
(Joint with A. Lytova, A. Litvak, K. Tikhomirov and N. Tomczak-Jaegermann)

[Y8] Adjacency matrices of random digraphs: singularity and anti-concentration.
J. of Math. Analysis and Appl., 445 (2017), 1447–1491. (Winner of AMES 2017 award)
(Joint with A. Lytova, A. Litvak, K. Tikhomirov and N. Tomczak-Jaegermann)

[Y9] Restricted invertibility revisited.
A Journey Through Discrete Mathematics. A Tribute to Jiŕı Matousek.,
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Chapter 1

Data selection problems

In the current era of data science, determining among millions of features which are the
informative ones is an important problem. The ability to select such features from high-
dimensional data is therefore crucial. Column selection problems consist of searching inside
a big data set for some specific subset. More precisely, we are given a flat matrix A of size
n×m (the column vectors play the role of the input data) and we would like to select inside
A a block of columns satisfying special properties. We investigate in this chapter several
problems of this kind.

1.1 Approximating matrices [Y10]

A very natural problem is to look for a sub-matrix with much fewer columns, approximating
the original one. One can ask for such an approximation using different notions of matrix
norms. Perhaps the most interesting one is the operator norm as it provides a tight control
on the singular values.

Let A be an n ×m matrix. We denote by si(A) =
√
λi(AtA) the singular values of A,

where At denotes the transpose matrix of A, and λi(A
tA) denotes the ith-eigenvalue of AtA

when rearranged in the non-increasing order. The operator norm of A is given by

‖A‖ = sup
x∈Sn−1

‖Ax‖2,

where ‖ · ‖2 denotes the Euclidean norm on Rn and Sn−1 its unit Euclidean sphere. It is
easy to check that the operator norm is equal to the largest singular value of the matrix.
The singular values play an important role in the numerical analysis of data. Indeed, several
data mining and low rank approximation methods are based on the analysis of the singular
value decomposition. For instance, writing the spectral decomposition of AAt = σ2

1v1v
t
1 +

. . . + σ2
nvnv

t
n where v1, . . . , vn are the left singular vectors of A, we can see that a good

approximation of AAt is obtained just by projecting A on the subspace spanned by singular
vectors associated with “large” singular values. This observation indicates that the rank
of the approximation should be somehow approximated by the number of “large” singular
values. A quantity measuring this is what is usually called numerical rank or stable rank and
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is given by

srank(A) :=
‖A‖2

HS

‖A‖2

where ‖A‖HS denotes the Hilbert-Schmidt norm (or Frobenius norm) of A, i.e. ‖A‖HS =√
Tr(AAt) =

√∑
i≤m si(A)2. It is easy to check that srank(A) is less or equal than rank(A).

Since srank(A) is the ratio of the sum of all singular values squared to the squared largest
one, it doesn’t take into account the tiny singular values. Therefore, it indeed accounts to
the number of “large” singular values. Our goal is to obtain a “canonical” approximation
of AAt by extracting a block of columns in A serving as the low rank approximation. More
precisely, we aim to show the existence of a small subset σ ⊂ [m] := {1, . . . ,m} so that Aσ,
the matrix containing the columns indexed by σ, verifies that

‖AσAtσ − AAt‖

is small. This ensures that the spectrum of AσA
t
σ is close to that of AAt implying the

same for the sequence of singular values. Such statement would be much more informative
than the approximation done using the singular value decomposition as one now reads the
approximation inside the original data. We treat this problem while allowing a reweighting
of the extracted columns. This corresponds to finding a multi-set σ ⊂ [m] and looking at Aσ
with the number of repetitions of an index in σ giving the value of the weight associated to
the corresponding column. We denote by Ã the matrix obtained by normalizing the columns
of A by their Euclidean norms. In [Y10], we obtain the following.

Theorem 1.1 ([Y10]). Let A be an n×m matrix of unit norm. Then, for any ε > 0 there
exists a multi-set σ ⊂ [m] with |σ| ≤ srank(A)/cε2 so that∥∥∥cε2ÃσÃ

t
σ − AAt

∥∥∥ ≤ ε

where c > 0 is a universal constant. Moreover if A = κÃ for some κ > 0, then the above
holds with σ being a set.

The conclusion of the above theorem can be also formulated as follows. There exists an
m×m non-negative diagonal matrix with rank at most srank(A)/cε2 so that

‖ADAt − AAt‖ ≤ ε.

When A = κÃ for some κ > 0, the non-zero diagonal entries of D are given explicitly by
cε2/κ2.

Results of this kind, which falls under the name of “column subset selection”, attract a
lot of attention in the numerical analysis and the analysis of algorithms communities. Many
papers are devoted to this problem, let us mention a few [39, 44, 14, 141] and refer to [73] and
references therein for a detailed exposition on the topic. Theorem 1.1 produces the minimal
size approximation compared to the results available in the literature. For instance, the best
known bounds on the number of selected columns are of order srank(A) log(srank(A)) (see
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Table 2 and Theorem 4.1 in [76]). This is for example done in [121] using random sampling
in which case the logarithmic factor is needed. Thus, we improve the existing results by
removing the logarithmic factor and obtaining, up to a constant, the optimal sampling size
for this approximation problem. It should be noted that our result is only existential and we
do not know how to produce a polynomial time algorithm achieving the extraction promised
in the theorem. The main reason for this is that our proof is based on the solution of the
Kadison-Singer problem [93] which will be discussed in the next section.

We should mention that in [Y10], we developed as well a tensorization trick to treat
constraint approximation problems. One may ask to achieve an approximation of the matrix
while keeping some special properties it has. For example, given an n×m matrix A and a
vector v in its kernel, one may be interested in approximating A by a submatrix with fewer
columns while keeping v not far from the kernel of the restricted matrix. This is motivated
by some geometric applications which will be discussed later. To give a brief idea, looking
at the columns of the matrix A as vectors in Rn, we see the vector v from the kernel as
some weighted barycenter of the column vectors of A. Therefore, the constraint in this case
can be seen as keeping v not far from being a weighted barycenter of the selected column
vectors. We refer to Theorem 1.2 in [Y10] for a statement.

Finally, Theorem 1.1 also implies a sparsification result for quadratic forms improving
on results of [22] by providing additional information on the sparsification weights.

Corollary 1.2. Let x1, . . . , xm ∈ Rn with ‖xi‖2 = 1 for any i ≤ m and Id =
∑

i≤m cixix
t
i for

some positive scalars (ci)i≤m. Then for any ε ∈ (0, 1), there exists a multi-set σ ⊂ {1, . . . ,m}
with |σ| . n/ε2 such that

(1− ε)Id � n

|σ|
∑
i∈σ

xix
t
i � (1 + ε)Id,

where “�” refers to the semi-definite order.

The notation a . b above and in the remainder of the manuscript always refers to an
inequality holding up to a universal constant i.e. there exists a universal constant c such
that a ≤ cb.

1.2 Well conditioned submatrices [Y2]

The condition number of an n×m matrix A is given by

κ(A) =
smax(A)

smin(A)

,

where smax and smin denote the largest and smallest singular values of A. When the matrix
is not of full rank, then its smallest singular value is equal to zero and its condition number
explodes. Note that κ(A) ≥ 1 and is equal to one whenever A is a multiple of an isometry.
The condition number serves as a measure of precision of certain matrix algorithms [23,
Chapter III], [128]. The problem of interest here is to extract inside any matrix A a “large”
submatrix which is “well” conditioned. In this context, we proved the following.
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Theorem 1.3 ([Y2]). Let A be an n×m matrix and Ã the matrix obtained by normalizing the
columns of A by their Euclidean norms. Then for any ε ∈ (0, 1), there exists σ ⊂ {1, . . . ,m}
of size at least cε2srank(A) such that κ(Ãσ) ≤ 1 + ε, where c is a universal constant.

Theorem 1.3 improves on earlier results of Vershynin [144] and its proof which builds on
the work of [22] provides a polynomial time algorithm to find the promised set σ. Theorem 1.3
answers a question raised by Naor as to obtain a constructive proof of a related result of
Bourgain and Tzafriri [35, 36, 37]. The latter is related to the famous Kadison-Singer
problem which originated in operator theory and was left open since 1959 until its resolution
by Marcus, Spielman and Srivastava [93]. One of its many equivalent formulations is the
paving problem which states that any n × n matrix with zero diagonal can be partitioned
into a universal number of diagonal blocks of small norm. By iteratively using Theorem 1.3,
one can obtain the following.

Theorem 1.4 ([Y2]). Let A be an n×n symmetric matrix with zero diagonal. Then for any
ε ∈ (0, 1), there exists a partition of {1, . . . , n} into k sets σ1, . . . , σk such that k . ε−2 log n
and

‖PσiAP t
σi
‖ ≤ ε‖A‖,

where Pσi : Rn → Rσi denotes the canonical projection on Rσi.

This statement recovers results of Bourgain and Tzafriri [35], and Tropp [141], and has
the advantage of producing a deterministic polynomial time algorithm to construct the above
partition. The paving problem proved by Marcus, Spielman and Srivastava [93] significantly
strengthens the above by showing the existence of a partition whose size is independent of
the dimension of the matrices considered.

1.3 The restricted invertibility principle [Y4, Y9, Y19]

The restricted invertibility principle due to Bourgain and Tzafriri [35, 36, 37] asks to extract
inside a matrix the largest number of columns possible such that the resulting sub-matrix
is well invertible i.e. the norm of its inverse is well bounded. In addition to numerical
analysis, this basic question finds applications in the local theory of Banach spaces as well
as in harmonic analysis.

In this problem, we wish to find a large subset σ ⊂ [m] such that A is injective on
Rσ ⊂ Rm. Secondly, rather than being satisfied with mere invertibility we ask for A
to be quantitatively invertible on Rσ in the sense that the operator norm of the inverse
A−1 : A(Rσ) → Rσ is not too large. Following earlier results of Bourgain–Tzafriri [35] and
Vershynin [144], Spielman–Srivastava [129] obtained the following improved restricted in-
vertibility principle, relying nontrivially on a remarkable method for sparsifying quadratic
forms that was developed by Batson–Spielman–Srivastava [22] (see also the survey [103]).

Theorem 1.5 (Spielman–Srivastava). Suppose that k,m, n ∈ N and let A be an n × m
matrix such that k < srank(A). Then there exists a subset σ ⊂ [m] with |σ| = k such that

‖(AJσ)−1‖ ≤ 1

1−
√
k/srank(A)

·
√
m

‖A‖HS

,
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where Jσ denotes the formal identity from Rσ to Rm.

Equivalently, the above theorem can be stated as a lower bound on the smallest singular
value of the restricted matrix i.e.

smin(AJσ) ≥
(
1−

√
k/srank(A)

)‖A‖HS√
m

.

The quantity ‖A‖HS√
m

appears naturally in this context. Indeed, if σ contains one element, then
the corresponding sub-matrix is of rank one and its only non-zero singular value equals the
Euclidean norm of the chosen columns. Now, ‖A‖HS√

m
is the “`2-average” of the norms of the

columns and provides therefore a sharp lower bound on the smallest singular value of the
rank one matrix obtained. Due to Cauchy interlacing theorem, by selecting more columns
inside the original matrix, the smallest singular value can only get smaller. Remarkably,
Theorem 1.5 asserts that one can still lower bound the smallest singular value by ‖A‖HS√

m
up

to a loss by a multiplicative factor of
(
1−

√
k/srank(A)

)
.

In [Y9], we revisited this problem with the aim of increasing the size of the extracted sub-
matrix and bringing back to life old methods from functional analysis essentially developed
in the work of Bourgain and Tzafriri [35] as opposed to the modern linear algebraic method
introduced in [22] and used in [129]. To this aim, we introduced for any p > 2 the notion of
p-stable rank of an n×m matrix A as

srankp(A) :=

(
‖A‖S2
‖A‖Sp

) 2p
p−2

, (1.1)

where

‖A‖Sp :=
(

Tr(AtA)
p
2

) 1
p

=

( m∑
j=1

sj(A)p
) 1

p

,

is the p-Schatten norm of A and the sj’s denote the singular values of A. With this definition,
since ‖A‖ = ‖A‖S∞ we have srank(A) = srank∞(A). A direct application of Hölder’s
inequality implies that srankp(A) is non-increasing in p so that srank(A) is the smallest
stable rank. Taking the limit as p → 2+, we can also define the entropic stable rank (see
[Y9] for more details). Let us state one of the many restricted invertibility statements
obtained in [Y9].

Theorem 1.6 ([Y9] ). Suppose that k,m, n ∈ N, p > 2, and let A be an n×m matrix such
that k < srankp(A). Then there exists a subset σ ⊂ [m] with |σ| = k such that

‖(AJσ)−1‖S∞ . ψp

(
1− k

srankp(A)

) √
m

‖A‖S2
,

where ψp : R → [0,∞] is defined by ψp(x) = ∞ if x ≤ 0, ψp(x) = (
√
p/(p− 2))/x if

0 < x < 1/2, ψp(x) = (
√
p/(p− 2))/ log(1/(1−x)) if 1/2 < x ≤ 1− e−p/(p−2) and ψp(x) = 1

if x > 1− e−p/(p−2).
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In these results, one is interested in the dependence on ε = 1− k
srankp(A)

in the regime where

k is close to srankp(A). Theorem 1.6 matches the optimal dependence on ε in Theorem 1.5.
We should note that the case p = 4 was obtained in [95] using the method of interlacing
polynomials. Theorem 1.6 can detect the well-invertibility of A on a much larger scale
compared to what is captured by Theorem 1.5. For example suppose that the singular
values of A are s1(A) � 3

√
m and s2(A) � s3(A) � . . . � sm(A) � 1. Then Theorem 1.5

yields a subset σ ⊂ {1, . . . ,m} of size of order m1/3 for which the operator norm of the
inverse of AJσ is O(1), while (the case p = 3 of) Theorem 1.6 yields such a subset whose
size is proportional to m.

Through our study, we came to realize that the restricted invertibility problem is a two
stage procedure: the first being a restricted invertibility on a global scale, and the second
being a more refined one on a microscopic scale. More precisely, the first stage consists of
finding a restriction for which the singular values, “on average”, are large: this can be done
by aiming to find ω ⊂ [m] of large size such that the quantity

∑|ω|
i=1 s

−2
i (AJω) = ‖(AJω)−1‖2

S2

is well bounded above, ensuring that most singular values of AJω are well bounded below.
This first stage, which can be seen as a restricted invertibility principle on a macroscopic
scale, is much easier to achieve. For instance, we studied this problem [Y4] generalizing
earlier results (see [Y4] for details and references). Once the first stage completed, one
needs to refine the study by finding a further restriction on which all singular values are well
bounded below. The difficulty and depth of the restricted invertibility principle lies in this
second refined stage which can be seen as a restricted invertibility principle on a microscopic
scale.

Theorem 1.7 ([Y19]). Let k < r ≤ n ∈ N and A be an n× r matrix of rank r. Then there
exists σ ⊂ [r] with |σ| = k such that

‖(AJσ)−1‖S∞ .
‖A−1‖S2√
r − k

·
√

log
( r

r − k

)
.

The above theorem surprisingly asserts that any matrix is well invertible (up to removing
few columns) as long as it is well invertible on average. The bound stated above is sharp
up to the logarithmic term. Let us note that one always has 1√

r
‖A−1‖S2 ≤ ‖A−1‖S∞ and

Theorem 1.7 asserts that this inequality can be reverted, up to a multiplicative factor, on
a large sub-matrix. Interestingly, using the modern method of interlacing polynomials [94]
produces a strictly weaker result as opposed to the classical methods developed by Bourgain
and Tzafriri which we employ for the proof of the above theorem. Finally, before fully
adding the geometric flavor in the next chapter, let us end this section by giving a geometric
interpretation of the above result. Say A is an n × n invertible symmetric matrix and let
E = ABn

2 be an ellipsoid in Rn, where we denoted Bn
2 the unit Euclidean ball in Rn. The

lengths of the axis of this ellipsoid are given by the singular values of A−1. Theorem 1.7
states that there exists σ ⊂ {1, . . . , n} of size n/2 say such that the coordinate projection PσE
contains a Euclidean ball of radius equal, up to a multiplicative constant, to the harmonic
mean of the lengths of the axis of E . Results of this form were previously studied by
Giannopoulos [66], as well as Giannopoulos and Milman [67].

12



1.4 Perspectives

One of the major drawbacks of the modern techniques developed mainly in [22] and [94]
is that they are very much spectral methods which therefore restrict their applicability to
problems where matrices are seen as operators on `2. On the contrast, the old methods from
Functional Analysis which we brought back to life in [Y9] and [Y19] are more flexible in
this respect. Already in the work of Bourgain and Tzafriri [35], the restricted invertibility
of operators on `p spaces was considered, and this gives us hope that with our current
understanding, it would be possible to elaborate such invertibility results beyond the `2

setting. In a similar manner, extending the paving problem mentioned in Theorem 1.4 in
terms of `p norms would be of great interest and requires the elaboration of new techniques.

13



Chapter 2

Matrices in convex geometry

In this chapter, matrices will appear naturally as linear transformations and embeddings
between normed spaces. The object of interest is a convex body K in Rn i.e. a convex
compact set of non-empty interior. When K is symmetric i.e. K = −K, one can see K as
the unit ball of a norm defined as

‖x‖K := inf{λ ∈ R+ : x ∈ λK},

so that the study of symmetric convex bodies is equivalent to that of n-dimensional normed
spaces. Geometric Functional Analysis is concerned with the study of the structure of these
convex bodies.

2.1 `1-analogue of Dvoretzky’s theorem [Y1, Y19]

In order to capture structural properties of convex bodies, we start first by defining a distance
which helps compare these objects. Given K,L two convex bodies in Rn, the Banach-Mazur
distance between K and L is given by

d(K,L) = inf
T,u

{
α ≥ 1 : L+ u ⊆ T (K) ⊆ α(L+ u)

}
,

where the infimum is taken over all isomorphisms T on Rn and all vectors u ∈ Rn. If K
and L are symmetric, then u = 0. In words, two convex bodies are “close” if we can (up
to an isomorphism) squeeze one into an another. In terms of the associated normed spaces,
the distance measures the equivalence between the corresponding norms and we may as well
write the distance between two normed spaces as the above distance between their unit
balls. As an example, it is easy to check that d(Bn

2 , B
n
1 ) =

√
n. Let us note that log d(·, ·)

is a distance so that d(·, ·) is multiplicative and two convex bodies are close whenever their
distance is close to one. Moreover, d(·, ·) is invariant by polarity (or by duality of the norms).

One of the founding results in Geometric Function Analysis is Dvoretzky’s theorem which
looks for Euclidean structure inside high dimensional normed spaces.

Theorem 2.1 (Dvoretzky [51, 101]). Let K be a symmetric convex body in Rn. For any
ε ∈ (0, 1), there exists k & c(ε) log n and a subspace E of dimension k such that d(K ∩
E,Bk

2 ) ≤ 1 + ε, where c(ε) is a constant depending only on ε.
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The dimension of the corresponding subspace captured above is optimal as can be checked
on the cube Bn

∞. There is a hidden fascinating aspect of Theorem 2.1 which asserts that
if one takes a random (uniformly distributed according to the rotation-invariant measure)
subspace E of dimension as above then it is most likely that K ∩ E is almost Euclidean.
Such a statement can be made quantitative and the concentration of measure phenomenon
plays an important role in its proof due to Milman [101] and in the development of the field
(see [13, 102, 113, 146]).

A natural problem is to look for other structures such as the `1-ball for instance. The aim
would be to find a large section which is close to Bk

1 := {(x1, . . . , xk) ∈ Rk : |x1|+ . . .+ |xk| ≤
1}. This is of course impossible as can be seen when looking at the Euclidean ball whose
sections of dimension k are Euclidean and at distance

√
k from the corresponding `1-ball.

Instead, we will look to find a section with the largest possible dimension which is not far
from the `1-ball i.e. matches the behavior of the Euclidean ball in this respect. This was
studied by Bourgain and Szarek [34], Szarek and Talagrand [133], Giannopoulos [66]. Since
Bk

1 is the convex hull of the canonical basis which constitutes a perfectly conditioned matrix,
finding an `1-structure inside K can be related to the restricted invertibility principle where
one looks for a well invertible sub-matrix. This link was made explicit in [Y1] allowing to
recover and improve the constants involved in the results of [66].

Theorem 2.2 ([Y1]). Let K be a symmetric convex body in Rn. For any ε ∈ (0, 1), there

exists k ≥ (1− ε)n and a subspace E of dimension k such that d(K ∩ E,Bk
1 ) .

√
k

ε(1−ε) .

The above is related to a question concerning the structure of the Banach-Mazur com-
pactum Mn defined as the collection of all centrally symmetric convex bodies in Rn. It
follows from John’s theorem [79] that d(K,Bn

2 ) ≤
√
n for any K ∈ Mn meaning that the

diameter of Mn is less than n. On the other hand, it was shown by Gluskin [69] that this
is sharp meaning that the diameter of Mn is of order n and that Bn

2 is a center of Mn

(in the sense that Mn is of diameter n and all convex bodies are at distance at most
√
n

from Bn
2 ). The question of (approximate) uniqueness of the center of Mn was raised by

Pelczynski [109] i.e. if H is such that d(H,K) .
√
n for all K ∈Mn, would that imply that

H is somehow close to Bn
2 ? This was answered negatively by Szarek [132]. Thus, a natural

problem is to look for other potential centers and to ask for instance if Bn
1 is a center of

Mn. It was shown in [132] and further strengthened by Tikhomirov [138] that this is not
the case. Nevertheless, the question which was left open is to estimate the distance between
any convex body and Bn

1 . Following the results of Bourgain and Szarek [34], Szarek and
Talagrand [133], Giannopoulos [65], we obtained in [Y1] the estimate d(K,Bn

1 ) ≤ 2n5/6 for
any K ∈Mn, recovering the dependence on the dimension from [65]. It was shown in [138]
that, up to a logarithmic term, the quantity supK∈Mn

d(K,Bn
1 ) is lower bounded by n5/9,

leaving a substantial gap to fill as to the right order of magnitude of this quantity. In [Y19],
with the aim to fill in this gap, we introduced the following geometric parameter for any
symmetric convex body K in Rn and any m ≤ n

γK,m := inf
{x1,...,xm}⊆Rn

1

m

m∑
i=1

‖xi‖K
dist
(
xi, span{xj : j 6= i}

) ,
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where “dist” refers to the Euclidean one. This parameter captures in a sense the presence
of vectors in K which are well separated mimicking the structure of the `1-ball.

Theorem 2.3 ([Y19]). Let K be a symmetric convex body in Rn and a, b > 0 be such that
bBn

2 ⊆ K ⊆ aBn
2 . Then

d(K,Bn
1 ) .

a

b
min

m∈{1,...,n}

√
max(n−m, bmγK,m) ·

√
log
( m

max(n−m, bmγK,m)

)
.

Although the statement is somehow complicated, one can apply a linear transformation to
K so that the minimal volume ellipsoid containing it is Bn

2 [79] and get that a = 1, b = n−1/2

and

1 ≤ γK,m ≤
√

n

n−m
.

For bodiesK where the right hand side inequality is attained, one recovers up to a logarithmic
term the bound obtained in [65] and [Y1] while when the left hand side inequality is attained,
the distance to Bn

1 is bounded above by n3/4
√

log n. There are examples where this is indeed
the case and Theorem 2.3 strictly improves on existing results.

2.2 Contact points of a convex body [Y10]

As was apparent in the previous section, some quantities of interest in convex geometry
are invariant under linear transformations. Thus, it is useful to find suitable positions (i.e.
transformations) of the convex body that make the corresponding problem tractable in a
similar manner to what was discussed at the end of the previous section. One such important
position is the one given by the ellipsoid of minimal volume containing the body. It was
shown by John [79] that there exists a unique ellipsoid of minimal volume containing a given
convex body K in Rn. This ellipsoid is often referred to as John’s ellipsoid and by applying
a suitable linear transformation to the body K, one can suppose that John’s ellipsoid is the
standard Euclidean ball. This position plays a central role in convex geometry due to the
following characterization due to John [79]. Given a convex body K in Rn, Bn

2 is it’s John’s
ellipsoid if and only if there exists m ≤ n(n+ 3)/2 points x1, . . . , xm with ‖xi‖K = ‖xi‖2 = 1
and positive scalars c1, . . . , cm such that

Id =
m∑
i=1

cixix
t
i and

m∑
i=1

cixi = 0.

The points xi’s above are called contact points of K with its John’s ellipsoid. Let us note
that the above characterization is valid for symmetric and non-symmetric convex bodies.
Moreover, the balancing condition

∑m
i=1 cixi can be trivially omitted in the symmetric case

(by adding the points −xi which are still contact points). Contact points play an important
role in convex geometry and have been successfully used to understand volume ratios [18, 19]
and distances between convex bodies. Reducing the number of contact points is of interest as
it allows for example to obtain non-trivial approximations of the convex body by polytopes
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with few vertices. In view of John’s characterization, the number of contact points cannot
be smaller than the dimension. This motivates the problem of finding for any convex body
K and any ε ∈ (0, 1), a convex body H such that d(K,H) ≤ 1 + ε and H has at most C(ε)n
contact points.

This question was studied by Rudelson [117, 118] who partially answered the above ques-
tion by finding an approximating body H with C(ε)n log n contact points. In view of John’s
decomposition, sparsification results such as Corollary 1.2 or the results of [22], provide an
essential tool to reduce the number of contact points. Since the balancing condition plays no
role in the symmetric case, this allowed Srivastava [130] to solve the problem for symmetric
convex bodies. When K is a non-symmetric convex body, Srivastava [130] shows the exis-
tence of a convex body H with O(n) contact points such that d(K,H) ≤ 2.24. In [Y10], we
developed a technique to deal with constraint sparsification problems allowing us to prove
the following.

Theorem 2.4 ([Y10]). Let K be a convex body in Rn. For any ε ∈ (0, 1), there exists a
convex body H with at most Cn/ε2 contact points such that d(K,H) ≤ 1 + ε.

2.3 Convex hull of high dimensional random walks [Y5]

In this section, we investigate convexity aspects of random walks in high dimensions. The
convex hull of a random walk is a geometric characteristic of the walk which has been
widely studied (see for instance [45, 116, 126] for surveys on the subject). While it has been
extensively studied in the case of planar walks, the literature lacks results in high dimensions.
Recently in [52, 81], some aspects of the convex hull of random walks in high dimensions
were studied.

We were interested in the following question raised by Benjamini and first considered by
Eldan [53].

Problem 2.3.1. Given a discrete-time random walk W (i) with values in Rn, how many steps
N are needed until the origin becomes an interior point of the convex hull of {W (i)}i≤N?

The above can be seen as a multi-dimensional analogue of the persistence problem which
consists of studying the probability that a one dimensional random walk stays positive.
Different models of random walks can be studied, the standard random walk on Zn being
a natural one to consider. We can also study the standard Brownian motion BMn in Rn

captured at discrete times.

Theorem 2.5 ([Y5]). There exists a universal constant C such that the following holds. Let
n ∈ N and N ≥ eCn. Then with probability at least 1−e−n, the convex hull of {BMn(i/N), i ≤
N} (resp. the standard random walk on Zn) contains the origin in its interior.

The above result improves on an earlier result of Eldan [53] by removing an extra loga-
rithmic factor in the exponent. Moreover, Theorem 2.5 answers Problem 2.3.1 for the two
models considered (see [Y5] for another model of a random walk on the sphere). Indeed, we
show that in the case of the Brownian motion (see [53] for the standard random walk on
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Zn), Theorem 2.5 is optimal as if N ≤ ecn for some small universal constant, then with high
probability the origin won’t belong to the interior of the convex hull of the walk. We should
note that since then, some of our results were superseded by those of Kabluchko, Vysotsky
and Zaporozhets [80] who completely characterize the probability that the origin belongs to
the convex hull of a random walk with i.i.d symmetric increments.

Perhaps the main contribution hidden behind Theorem 2.5 is the interconnection between
random walks, random matrix theory and high-dimensional convex geometry. Indeed, we
connect Problem 2.3.1 to that of estimating the probability that the image of certain random
matrices (whose rows are the increments of the random walk) does not intersect with a given
subset of the unit sphere. The study of random sections of convex sets is a central theme in
the area of geometric functional analysis and its importance has been highlighted in Milman’s
proof of Dvoretzky’s theorem which we discussed at the beginning of this chapter.

Let us state a simplified version of the result we obtained (see [Y5] and Theorem D there
for a more general statement).

Theorem 2.6 ([Y5]). For any K > 1, ε, B > 0 , there exist constants η, δ, L depending on
K, ε,B such that the following holds. Let N ≥ Ln and A be an N ×n random matrix whose
rows Ri’s are independent, centered, isotropic i.e. ERiR

t
i = Id and satisfy the moment

assumption
E〈Ri, x〉2+ε ≤ B,

for any i ≤ N . Then, for any N ×N matrix F satisfying ‖F − Id‖ ≤ η, we have

P
(

Im(A) ∩ F (RN
+ ) 6= ∅

)
≤ e−δN + P

(
‖A‖ > K

√
N
)
.

The above statement reminds the so-called escape through a mesh theorem due to Gor-
don [71] which estimates the probability that the image of the standard Gaussian matrix
intersects a subset S of the sphere in terms of the Gaussian width of S. On the contrast,
the above theorem considers the image of a wide range of random matrices and study the
intersection with a special type of convex cones given as some well conditioned image of
RN

+ . Questions of this type have attracted considerable attention in recent years due to its
connection to the theory of compressed sensing [41].

2.4 Perspectives

Despite our modest advances, estimating the Banach-Mazur distance to the cross polytope
remains open. We conjecture the following bound.

Conjecture 2.4.1. For any symmetric convex body K in Rn, we have d(K,Bn
1 ) . n3/4.

Our motivation for such a prediction comes from Theorem 2.2 where the dependence on
ε, if improved to

√
ε, would lead to the above conjecture. Moreover, such a dependence,

if true, would be optimal as was shown in [117]. Solving the above conjecture remains a
very delicate task as estimating the distance to the cross polytope is dimension sensitive in
the following sense. Given a symmetric convex body K in Rn, the motivation is to find a
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polytope with few vertices which is not far from K. If one aims to have a polytope with
exactly 2n vertices, then finding the distance to it is still not known. However, if one is willing
to give up on the exact number of vertices and allow (2 + ε)n ones, then it can be shown
that there exists such a polytope with distance of order

√
n to the body. In the language

of embeddings, one can see the question of estimating the distance to the cross polytope as
the problem of embedding an n-dimensional Banach space (X, ‖ · ‖X) into `n1 and estimating
the embedding distortion. The difficulty of this problem lies into embedding in exactly the
same dimension, while if one increase the dimension to (1 + ε)n then one can achieve the
embedding with distortion of order

√
n which is optimal as can be seen by taking X to be

the Euclidean space. In a work in preparation, we are able to strengthen this and show that
any n-dimensional Banach space X can be complemented by a “small” Euclidean space so
that it embeds into `1 of the corresponding dimension with the best possible distortion. The
proof also makes use of the sparsification results discussed in the previous chapter.

Theorem 2.7. Let (X, ‖ · ‖X) be an n-dimensional Banach space. For any λ > 1, we have

d
(
X ⊕1 `

(λ−1)n
2 , `λn1

)
≤ 2

√
λ+ 1√
λ− 1

√
λn.

In particular, if ε ∈ (0, 1), then d
(
X ⊕1 `

εn
2 , `

(1+ε)n
1

)
.
√
n/ε.
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Chapter 3

Norm and outliers of random matrices

While we had a glance at Random Matrix Theory at the end of the previous chapter, here
we officially enter this field. Spectral analysis of large random matrices is a very active area
of research motivated by questions in statistics, mathematical physics, computer science. In
this chapter, we restrict our attention to random matrices with independent entries before
dropping this assumption in the next chapters. We refer to [99, 12, 34, 107, 55] for an
introduction to random matrix theory.

3.1 Outliers in the sparse semi-circular law [Y18]

In its essence, random matrix theory aims at understanding the behavior of the eigenvalues
of a large array of random data. This line of research has led to an enormous amount of
works resulting in a very detailed analysis of the properties of the spectrum. A quantity
of particular interest is the empirical spectral distribution which provides information on
how the spectrum is distributed. Given an n× n symmetric matrix A, its empirical spectral
distribution is a measure on R defined by

µA :=
1

n

n∑
j=1

δλj(A),

where λj(A) denote the eigenvalues of A. When applied to an interval, this measure counts
the average number of eigenvalues of A landing in this interval, providing therefore informa-
tion on the location of the spectrum of A on the real line.

One of the celebrated results in this area is due to Wigner [150] and states that whenever
(Ξn)n≥1 is a sequence of n×n symmetric matrices whose entries on and above the diagonal are
i.i.d centered random variables with unit variance, then the sequence of (random) measures
µ 1√

n
Ξn

converges1 almost surely to what is called the Wigner semi-circular distribution µsc

with density 1
2π

√
4− x21[−2,2](x). One of the amazing features of this result is its universality

as the distribution of the matrix entries plays absolutely no role as long as they are centered

1By the convergence of measures, we mean weak convergence with continuous bounded test functions.
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and of unit variance. Moreover, by considering the support of the limiting measure, it follows
that asymptotically almost surely

‖ 1√
n

Ξ‖ ≥ 2− o(1),

where ‖ ·‖ stands for the spectral norm and o(1) designates a term vanishing to 0 as n→∞.
It turns out that whenever the entries of the matrix have finite fourth moment, then the
extreme eigenvalues converge to the edge of the support of the limiting measure [16, 63, 64].
This determines the location of eigenvalues on a macroscopic scale and show that under the
fourth moment assumption, one has asymptotically almost surely ‖ 1√

n
Ξ‖ ≤ 2 + o(1) and

there are no outlier eigenvalues detached from the support of the limiting measure.
While the global statistics of the eigenvalues are stable under finite rank additive pertur-

bations (due to Weyl’s inequalities), the behavior of the extreme eigenvalues can be severely
affected. Understanding the appearance or not of outliers under the effect of perturbation is
a natural problem as it is a way to study a “signal plus noise” model. Studying the spectrum
of perturbed random matrices has been subject of an enormous number of articles. One is
interested in studying the spectrum of Mn +Hn, where Mn is an n×n Wigner matrix while
Hn is a fixed deterministic symmetric perturbation. When Hn is of finite rank, the limiting
spectral distribution of Mn +Hn remains the semi-circular distribution due to the interlac-
ing property of eigenvalues. However, this perturbation can affect the extreme eigenvalues
causing some of these to get detached from the rest of the spectrum. This has been first
considered in [61] where the authors, motivated by estimating the largest eigenvalue of the
adjacency matrix of an Erdős-Renyi graph, consider rank one deformations of a Wigner ma-
trix. Later on, the interest in deformed random matrices took off with the work of [17] where
the famous Baik, Ben Arous and Péché “BBP” phase transition was put forward. Later on,
an enormous number of articles were devoted to investigate this phase transition in a variety
of models as well as to the study of the fluctuations of eigenvalues separating or not from
the bulk. We refer, among others, to [108] for a review on the subject and we state below
an instance of the BBP phase transition.

Theorem 3.1. [108, Theorem 2.1] Let Mn be an n× n Wigner matrix i.e. with entries on
and above the diagonal i.i.d copies of 1√

n
ξ where ξ is centered with unit variance. Suppose

further that ξ has a finite fourth moment. Fix r ∈ N and an n× n deterministic symmetric
matrix Hn of rank r with non-zero eigenvalues θ1 ≥ . . . , θr > 0. Then for any 1 ≤ i ≤ r,

• If θi ≤ 1, then λi
a.s.−→
n→∞

2;

• If θi > 1, then λi
a.s.−→
n→∞

θi + 1
θi

,

where λ1 ≥ . . . ≥ λn denote the eigenvalues of Mn +Hn.

In [Y18], we were interested in establishing a “sparsity counterpart” to the above phe-
nomenon. More precisely, we interpret the sparsity as a perturbation and study its effect on
the extreme eigenvalues of a Wigner matrix. Let Ξn = (ξij)1≤i,j≤n be an n × n symmetric
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random matrix whose entries on and above the diagonal are i.i.d copies of ξ which is cen-
tered, of unit variance, and uniformly bounded (in particular, ξ has a finite fourth moment
and thus Ξn has no outliers). Let Bn = (bij)1≤i,j≤n be an n × n symmetric matrix whose
entries on and above the diagonal are i.i.d Bernoulli variables with probability of success pn
(less than 1/2 say) and suppose that Bn and Ξn are independent. We consider the random
matrix Wn obtained as the entry-wise product of Bn and Ξn normalized by

√
npn. In other

words, Wn is obtained by deciding randomly and independently to zero-out entries of Ξn.
One of the nice features of Wigner semi-circular law is its stability under sparsification as
long as the average number of non-zero entries in each row is large. More precisely, as long
as npn → ∞, we have µWn

a.s.−→
n→∞

µsc. While the limiting law is stable under this operation,

it is not clear at first glance if the extreme eigenvalues are rigid and would still stick to the
rest of the spectrum. Checking the fourth moment, we have

E
∣∣∣ bijξij√

pn(1− pn)

∣∣∣4 =
E |ξij|4

pn(1− pn)2
,

which is clearly finite whenever pn is fixed and diverges as pn → 0. Therefore, if one zeros out
on average a fixed fraction of the entries, then there are still no outliers to the semi-circular
law while when pn → 0, the fourth moment test is inconclusive. This leads us to several
interesting questions regarding the above observations:

1. Is there a phase transition (in terms of sparsity) in the appearance of outliers in the
semi-circular law?

2. In the affirmative, can we obtain a quantitative answer as to capture the sparsity con-
dition?

3. Would it be possible to obtain a qualitative explanation as to understand the reason for
the appearance of outliers?

4. Finally, can we capture the exact asymptotic value of the outlier?

In [Y18], we addressed these questions by proving the following.

Theorem 3.2 ([Y18]). Let ξ be a real centered uniformly bounded random variable of unit
variance. For each n, let Wn be n×n symmetric random matrix with i.i.d. entries, with each
entry equidistributed with the product 1√

npn
bnξ, where bn is 0/1 (Bernoulli) random variable

independent of ξ, with probability of success equal to pn. Assume further that npn →∞ with
n. For each n, define the quantity

θn :=

√
max

(
E max

i≤n
‖rowi(Wn)‖2

2 − 1, 1
)
.

Then the sequence
( ‖Wn‖
θn+θ−1

n

)
n≥1

converges to one in probability. In particular,
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• If lim supn θn ≤ 1, then ‖Wn‖
P−→

n→∞
2;

• If lim infn θn > 1, then ‖Wn‖
θn+θ−1

n

P−→
n→∞

1.

We refer to [Y18] where a more general version is stated (treating the k-th largest eigen-
value) and a non-centered counterpart to the result is established. The condition on θn
implicitly encapsulates a sparsity condition. Indeed, for example whenever npn

logn
→∞, stan-

dard concentration inequalities show that lim supn θn ≤ 1 and there are no outliers in the
sparse semi-circular law. In Chapter 5, we further illustrate this explicitly on an important
particular case given by the Erdős-Renyi graphs. In addition to being quantitative, our
result also provides a qualitative answer as to the exact reason of appearance of outliers,
that is, when the matrix has a row whose Euclidean norm squared exceeds twice the average
norm. In such a case, Wn has an outlier and its value is asymptotically given by θn + θ−1

n .
Let us give the following non-rigorous explanation of the apparent resemblance between

Theorem 3.2 and Theorem 3.1. Note that due to concentration inequalities, most of the
rows of Wn have their norms squared concentrated around its mean equal to 1. Only a
small fraction of these rows can have their norm far from the mean. For simplicity, suppose
that only one row (say, the first one after suitable permutation) has its Euclidean norm
signicantly larger than 1. Thus, this suggests that we may decompose our model as

Wn ≈Mn +Hn,

where Mn is obtained from Wn by a regularization procedure consisting of reducing the
entries of the first row (the one with the largest norm) as to make its Euclidean norm equal
to 1, and Hn is the n×n symmetric zero diagonal matrix whose first row/column’s Euclidean

norm is approximately given by un =
√

max
i≤n
‖rowi(Wn)‖2

2 − 1. Conceptually, we interpret

the excess Euclidean norm in the first row which was transferred to Hn as a deformation of
the regularized matrix Mn. Clearly, Hn is of rank 2 with eigenvalues ±un. On the other hand,
all rows of Mn have their norms concentrated around the mean which could suggest that Mn

has no outliers. Now, Theorem 3.2 states that if un ≤ 1, then Mn+Hn has all its eigenvalues
asymptotically bounded by 2; while if lim infn un > 1, then Mn + Hn has an outlier and its
value is given by un + 1

un
. This parallels the suggested behavior in the BBP phase transition

result. Let us emphasize that the above comparison is only on a conceptual level and we do
not provide any rigorous link between the two. Nevertheless, it would be very interesting if
such a relation could be elaborated. For instance, there has been recently several interesting
works concerned with the regularization of random graphs/matrices i.e. procedures to reduce
the norm of random matrices by changing few of its entries (see [56, 87, 121, 114]).

To end this section, let us record the following intriguing consequence of Theorem 3.2.
For any ε > 0, we have

max
i≤n
‖rowi(Wn)‖2 ≤ ‖Wn‖ ≤ (2 + ε) max

i≤n
‖rowi(Wn)‖2, (3.1)

with probability going to 1 as n goes to infinity. The left hand side inequality is valid
deterministically for any matrix since one always has ‖A‖`1→`2 ≤ ‖A‖`2→`2 for any linear
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Figure 3.1: This figure illustrates the asymptotic relation between the maximum row norm and the
operator norm of Wn, a centered symmetric Bernoulli matrix of parameter pn, with lim

n→∞
npn =∞

and lim
n→∞

pn = 0. The horizontal axis is the value of the limit limn
npn
logn . The blue curve is the

corresponding values of limn ‖Wn‖. The orange curve is the values of limn maxi≤n ‖rowi(Wn)‖2.
The green curve — the values of limn 2 maxi≤n ‖rowi(Wn)‖2. When npn

logn → 0, the left side of

inequality (3.1) is asymptotically sharp while for npn
logn →∞, the right side of (3.1) is sharp. This

is an illustration of the effect of sparsity on the operator norm.

operator A. While the reverse inequality is far from being true for a given matrix, the above
consequence of Theorem 3.2 asserts that this is the case for our sparse Wigner matrix up to
an asymptotically optimal constant equal to 2. We illustrate this inequality below in the case
of symmetric centered Bernoulli matrices. One may wonder how general this phenomenon
is and if it is some magical feature of random matrices. This will be investigated in the next
section.

3.2 The operator norm of a random matrix [Y15]

We ended the last section wondering if the phenomenon captured in (3.1) is more general.
Indeed, it was shown by Seginer [127] that random matrices X with i.i.d centered entries
exhibit this phenomenon i.e.

E ‖X‖ ≈ E max
i
‖rowi(X)‖2,

where the notation a ≈ b means a . b and b . a. In the previous section, we recovered this
observation for bounded entries as a byproduct of Theorem 3.2 while capturing the optimal
constant 2 in the above comparison. It turns out that the distribution of the entries plays
no role in Seginer’s result but rather it is the invariance by permutation which is exploited
by means of combinatorial methods.

In view of such a remarkably general probabilistic principle, it is natural to ask whether
the same conclusion also extends to nonhomogeneous matrix models that do not possess
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permutation symmetry. However, Seginer [127] already showed that this is not the case by
considering the example of a block diagonal matrix with blocks of suitable size filled with
independent Rademacher random variables. While it is customary in random matrix theory
that some results for Gaussian matrices are valid for subgaussian ones, no counterexamples
for the above phenomenon could be found for Gaussian matrices. This led to the following
conjecture made by Lata la 15 years ago.

Conjecture 3.2.1 (Lata la [86]). Let X be an n×n symmetric matrix whose entries on and
above the diagonal are independent centered Gaussian random variables. Then

E ‖X‖ ≈ E max
i
‖rowi(X)‖2.

In [Y15], we solve this conjecture in a much more general way. Indeed, let us define the
mixed norm

‖X‖`p(`2) :=
(∑

i

(∑
j

X2
ij

)p/2)
,

and analogously when p =∞, we get ‖X‖`∞(`2) = maxi ‖rowi(X)‖2.

Theorem 3.3 ([Y15]). Let X be an n×n symmetric matrix whose entries on and above the
diagonal are independent centered Gaussian random variables. Then for any 2 ≤ p ≤ ∞

E ‖X‖Sp ≈ E ‖X‖`p(`2).

The case p =∞ of the above result solves Lata la’s conjecture. Theorem 3.3 is also true
for a wider class of random matrices. For instance, we show its validity for a broad class of
heavy-tailed entry distribution. Moreover, the phenomenon extends for rectangular matrices
up to the obvious addition of the maximum Euclidean norm of the columns as well.

The striking observation made in [Y15] is that ‖X‖Sp and ‖X‖`p(`2) are even more inti-
mately related as we show that the distributions of these random variables are comparable
in a very strong sense.

Theorem 3.4 ([Y15]). Let X be an n×n symmetric matrix whose entries on and above the
diagonal are independent centered Gaussian random variables. Then

P
(
‖X‖`p(`2) ≥ t

)
≤ P

(
‖X‖Sp ≥ t

)
≤ C P

(
‖X‖`p(`2) ≥ t/C

)
,

for any t ≥ 0 and 2 ≤ p ≤ ∞, where C is a universal constant.

It is rather fascinating to have such a strong connection between these two quantities.
The case p = ∞ on its own is already very meaningful: it is trivial that the operator norm
of a matrix must be large if the matrix possesses a row with large Euclidean norm; what we
have shown is that for symmetric Gaussian matrices with independent centered entries, this
is the only reason why the operator norm can be large, regardless of the variance pattern of
the matrix entries.

The above observation provides a qualitative understanding of the operator norm of a
Gaussian matrix. This is made possible thanks to matching quantitative estimates obtained
for both quantities. In [Y15], we obtain the following explicit expression of the p-Schatten
norm and operator norm in terms of the variances of the matrix entries.
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Theorem 3.5 ([Y15]). Let X be an n×n symmetric matrix with Xij = bijgij, where bij ≥ 0
and gij are i.i.d. standard Gaussian variables for i ≥ j. Then

E ‖X‖Sp �

(∑
i

(∑
j

b2
ij

) p
2
) 1

p

+ max
i≤ep

max
j
b∗ij
√

log i+
√
p

(∑
i≥ep

max
j
b∗ij

p

) 1
p

for all 2 ≤ p <∞, and

E ‖X‖S∞ � max
i

√∑
j

b2
ij + max

ij
b∗ij
√

log i

for p =∞. Here the matrix (b∗ij) is obtained by permuting the rows and columns of the matrix
(bij) such that maxj b

∗
1j ≥ maxj b

∗
2j ≥ · · · ≥ maxj b

∗
nj, and the constants in the estimates are

universal (independent of n, p, {bij}).

It is remarkable that the above expressions hold with absolutely no restriction on the
variance pattern. Moreover, the dimension of the matrix plays absolutely no role in this
expression. This offers a lot of flexibility in applying the result and provide a way to tackle
natural questions which were previously out of reach. For instance, one could ask under
what conditions an infinite random matrix defines a bounded operator on `2. It is read-
ily verified that such matrices could never have identically distributed entries; to obtain
meaningful answers to such infinite-dimensional questions, it is therefore essential to con-
sider non-homogeneous random matrix models. As a consequence of Theorem3.5, we obtain
a characterization of all infinite matrices with independent Gaussian entries that define
bounded operators on `2.

Corollary 3.6 ([Y15]). Let (Xij)i,j∈N be a symmetric infinite matrix with independent Gaus-
sian entries Xij ∼ N(aij, b

2
ij) for i ≥ j. We have the following dichotomy:

• If

max
i

∑
j

b2
ij <∞, max

ij
b∗ij
√

log i <∞, ‖(aij)‖S∞ <∞,

then X defines a bounded operator on `2(N) a.s.

• Otherwise, X is unbounded as an operator on `2(N) a.s.

Interestingly, the proof of these results provide considerable insight into what random
matrices with bounded operator norm look like: they must be nearly block-diagonal. Indeed,
we build on initial progress made by Bandeira and van Handel [20] as well as [143]. Using
permutation of rows and columns, we put in place a special decomposition of the matrix
into blocks on which we proceed using different techniques. More precisely, we show that the
random matrix X can have a bounded operator norm only if it has a specific form (modulo
a relabeling of the rows and columns): it consists of a nearly block-diagonal “core”, which is
made of blocks of controlled dimension in which the variance of the entries decay at a slow
rate; and an off-diagonal remainder, in which the entry variances decay at a much faster
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bij .
Γ√
log j
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jκ

Figure 3.2: After permutation of rows/columns, this is the structure of bounded operators with
independent Gaussian entries. A “core” where the variances decay slowly, while their decay is much
faster outside. The width of the core increases at a polynomial speed. In [Y15], we take s = 1

3 ,

κ = 1
4 and Γ = maxi

√∑
j b

2
ij + maxij b

∗
ij

√
log i in the above quantities.

rate (see Figure 3.2 for a rough illustration). On the part of the matrix with controlled
dimension, we extend a dimension-compression argument developed in [20] and establish a
comparison principle between the moments E ‖X‖pSp

and that of a smaller Wigner matrix of
appropriate dimension. To complement this analysis, a method based on the geometry of
Gaussian processes [143] is used to deal with part of the matrix where the dimension is not
controlled while the variances decay at a fast rate.

3.3 Perspectives

In the previous section, we discussed the solution to the characterization of the norm of a
matrix with independent Gaussian entries. As we mentioned, the proof relies on a special
decomposition and a combination of the moment method together with suprema of Gaussian
processes. The former method is very much spectral as it relates the norm of the matrix to
its trace, and is therefore limited to deal with spectral norms. On the other hand, dealing
with suprema of Gaussian processes offers a lot of flexibility as such method readily extends
to more general operator norms by considering suprema over unit balls of other norms than
the Euclidean one. It would be very interesting to elaborate a proof of the previous results
using only this method with the aim extending these to general norms. Suboptimal results
going in this direction were obtained in [72].

The original BBP famous phase transition was concerned with sample covariance matri-
ces. The limiting spectral distribution in this context is the Marcenko-Pastur law. What
would be the effect of sparsity on this model? In a similar manner, the Marcenko-Pastur
is stable under sparsification procedure which however may create outliers depending on its
magnitude. As in the Wigner case, when the sparsity level is very high, this should create a

27



very much spiked population model and outliers should emerge in the limiting distribution.
It would be interesting to study this model and eventually capture a similar phenomenon
as in the information-plus-noise type model. We expect that a similar phenomenon to the
Wigner case studied in this chapter can be elaborated for these models.

28



Chapter 4

Random regular matrices and
digraphs

The universality phenomenon is one of the fascinating sides of random matrix theory. In
its essence, it asserts that the occurrence of a particular phenomenon is independent in a
sense of the distribution of the matrix entries. We started the previous chapter with one
such instance of universality through the Wigner semi-circular distribution, and ended the
chapter with a non-universal phenomenon valid only for some class of random matrices. In
this chapter, we investigate the universality of the limiting spectral distribution in the non-
symmetric case. While the spectrum of Hermitian matrices enjoy nice properties such as the
interlacing phenomenon, its non-Hermitian counterpart lacks these making the study of the
empirical spectral distribution supported in C much more delicate. Let us emphasize that
our focus in this chapter will be on global statistics of eigenvalues and in the next chapter
we investigate the extreme eigenvalues at the edge of the support of the limiting spectral
distribution. The literature contains an enormous amount of results concerned with the
universality of local statistics of eigenvalues which are not considered in this manuscript, we
refer among others to [55] for references on this.

The universal object of interest in this chapter is the circular law i.e. the uniform measure
on the disk in C which we denote by µcirc. The circular law theorem asserts that whenever
(Xn)n≥1 is a sequence of n × n matrices whose entries on and above the diagonal are i.i.d
centered random variables with unit variance, then the sequence of random measures µ 1√

n
Xn

converges almost surely to the circular law. In parallel to its symmetric counterpart en-
countered in the previous chapter, this result is a further illustration of universality as the
distribution of the matrix entries play absolutely no role (beyond the first two moments).
The circular law theorem is the culmination of efforts of several mathematicians producing
partial results and introducing crucial ideas which led to the general case finally obtained
by Tao and Vu [135]. We refer to the survey [31] for a detailed account of the history and
references on this result.

One may wonder to what extend the circular law is universal. For instance, it is not
known if the validity of the circular law for a sequence of random matrices with i.i.d entries
imply the finiteness of their second moment (see [29] for heavy-tailed entries). In another
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direction, can the independence assumption be dropped somehow? Is the circular law stable
under sparsification? This line of research has attracted a lot of attention in the last ten
years or so, resulting in several results aiming at extending the universality class of the
Circular law. For instance, the circular law theorem was shown to hold under sparsification
[136, 70, 151, 21, 120]. Models with dependent entries were considered, to name a few:
random Markov matrices [30], random matrices with i.i.d log-concave rows [3], random sign
matrices with i.i.d rows of given sum [106], random doubly stochastic matrices with the
uniform distribution on the Birkhoff polytope [104], random matrices with exchangeable
entries [4], etc. Our aim in this chapter is to further enlarge the universality class of the
circular law by investigating a model encapsulating both dependence and sparsity. This will
be provided by random regular graphs which we introduce next.

4.1 The limiting spectral distribution of random regu-

lar digraphs [Y17]

Let d, n ∈ N. A directed graph G (digraph) on [n] is called d-regular if every vertex has
exactly d in-neighbors and d out-neighbors. A digraph can be encoded in a matrix A =
(aij)1≤i,j≤n called the adjacency matrix of the graph as follows

aij = 1 if there is an edge from i to j; and aij = 0 otherwise.

It turns out that expansion properties of the graph are intimately related to some properties
of the spectrum of its adjacency matrix making the understanding of the latter interesting
on its own. One trivial observation which follows from d-regularity is that A1 = d1, where
we denoted by 1 the n dimensional vector with all entries equal to 1. Thus, this is an
eigenvector associated to the eigenvalue d. Using Perron-Frobenius theorem, one can further
deduce that ‖A‖ = d.

We are interested in the “typical” behavior of the spectrum of a d-regular graph. To
this aim, we denote Mn,d the set of adjacency matrices of d-regular digraphs on n vertices,
where we allow loops but do not allow multiple edges. We condiser An,d the random matrix
uniformly distributed on Mn,d. In other words, An,d is the adjacency matrix of the random
digraph with the uniform distribution on the set of all d-regular graphs on n vertices, an
object very much studied in the graph theoretical literature. Our starting point is the
following well-known conjecture:

Conjecture 4.1.1 ([31]). Fix d ≥ 3 and let An,d be as above. Then, as n → ∞, µAn,d

converges in probability to µ
(d)
KM , the oriented Kesten-Mckay distribution on C whose density

with respect to the Lebesgue measure is given by

f
(d)
KM(z) :=

1

π

d2(d− 1)

(d2 − |z|2)2
1|z|≤

√
d.

The above conjecture parallels the undirected case, where the Kesten-Mckay distribu-
tion (a symmetric version of the above) was shown to be the limiting spectral distribution
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of the uniform random regular undirected graph [97]. When d → ∞ and after a proper
normalization, the circular law is recovered. This naturally leads to the following conjecture:

Conjecture 4.1.2. Let An,d be as above. Then, as d→∞, µ 1√
d
An,d

converges in probability

to µcirc.

The above conjecture parallels the undirected case, where the semi-circular distribution
was shown to be the limiting spectral distribution (as d→∞) of the uniform random regular
undirected graph [140]. The above conjecture was shown to hold when d & log96 n by Cook
[47]. Our first contribution in this chapter is the resolution of the above conjecture in the
complementary challenging sparse regime.

Theorem 4.1 ([Y17]). Fix a constant C ≥ 1 and for any n > 1 let d = d(n) be a positive
integer satisfying d ≤ logC n. Then, as d→∞, µ 1√

d
An,d

converges in probability to µcirc.

The above theorem is another remarkable instance of the universality of the circular law,
as the random matrices involved can be very sparse and exhibit dependencies among their
entries.

As in all previous works, a key element in the proof of the circular law for d-regular
digraphs is to transport the problem of the limiting spectral distribution to the singular
values distribution, which is much easier to study. This method – called the Hermitization
technique – goes back to Girko [68] and exploits a close relation between the log-potential
functions of the spectral and singular values distributions. Following Girko, this idea was
used in various papers dealing with non-Hermitian random matrices, and we refer to [31] for
a detailed exposition.

The singular values distribution of an n× n random matrix B is the random probability
measure on R given by

νB :=
1

n

n∑
i=1

δsi ,

where (si)i≤n denote the singular values of B. The logarithmic potential Uµ : C→ (−∞,∞]
of a probability measure µ on C is defined for any z ∈ C by

Uµ(z) := −
∫
C

log |z − λ| dµ(λ).

The logarithmic potential function uniquely determines the underlying measure, that is, if
Uµ = Uµ′ Lebesgue almost everywhere then µ = µ′ (see, in particular, [31, Lemma 4.1]).

Given an n× n matrix B, it is easy to check that

UµB(z) = − 1

n
log |det(B − zId)| = −

∫ ∞
0

log(t) dνB−zId(t).

Therefore, knowing νB−zId for almost all z ∈ C, we can determine UµB , hence µB itself. This
observation lies at the heart of the method. Studying the convergence of the singular value
distribution is a much easier problem as one has access to standard methods such as the
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Stieltjes transform method, and the moment method. In view of the above relation, one
would hope to deduce the convergence of the empirical spectral distribution from that of
the singular value distribution. However, the logarithm has singularities at 0 and ∞ which
would require special treatment. The singularity at ∞ is easily dealt with thanks to the
explicit knowledge of the largest singular value of a d-regular matrix. Showing the uniform
integrability of log at 0 represents a serious challenge and opens the door to interesting
problems such as the invertibility of the adjacency matrix of random regular graphs, as well
as obtaining quantitative bounds on the smallest singular value and on the growth of the
smallish ones.

4.2 Invertibility of adjacency matrices of random reg-

ular digraphs [Y7, Y8, Y13, Y14]

As became clear from the previous section, obtaining lower bounds on the smallest singular
value of the adjacency matrix of a random regular graph is a key ingredient in the proof of
the circular law stated above. Moreover, singularity of random discrete square matrices is a
subject interesting on its own with a long history, many results and applications. Dealing
with discrete distributions in singularity problems carries considerably more challenges than
continuous ones. In a standard setting, when the entries of the n × n matrix are i.i.d.
Bernoulli ±1 random variables, the invertibility problem has been addressed by Komlós in
[83, 84], and later considered in several papers [82, 134, 38]. A long-standing conjecture
asserts that the probability that the Bernoulli matrix is singular is

(
1/2 + o(1)

)n
. This was

very recently proved in an outstanding breakthrough by Tikhomirov [139].
In the absence of independence between the matrix entries, the problem of singularity

involves additional difficulties. Such a problem was considered for the (symmetric) adjacency
matrix Mn of a random (with respect to the uniform probability) undirected d-regular graph
on n vertices. The case d = 1 corresponds to a permutation matrix which is non-singular, and
for d = 2 the graph is a union of cycles and the matrix is almost surely singular. Moreover,
the invertibility of the adjacency matrix of the complementary graph is equivalent to that of
the original one (in fact, the ranks of the adjacency matrices of a d-regular graph and of its
complementary graph are the same). The following conjecture was raised by Costello and
Vu [50, Section 10], and again reiterated in the survey [148, Problem 8.4] as well as in 2014
ICM talks by Frieze [60, Problem 7] and by Vu [149, Conjecture 5.8].

Conjecture 4.2.1. For every 3 ≤ d ≤ n− 3, we have

P
(
Mn non-singular

)
−→
n→∞

1.

It is natural to consider the non-symmetric counterpart to the above conjecture i.e. for
An,d the adjacency matrix of the uniform random d-regular digraph (see, in particular, [46,
Conjecture 1.5]). Cook [46] proved that An,d is asymptotically almost surely non-singular
for ω(log2 n) ≤ d ≤ n − ω(log2 n), where f = f(n) = ω(an) means f/an → ∞ as n → ∞.
We were able to complement this result as to cover all ranges of d→∞.
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Theorem 4.2 ([Y7,Y8]). There are universal constants c, C such that if C ≤ d ≤ cn/ log2 n,
we have

P
(
An,d non-singular

)
≥ 1− C log3 d√

d
.

The above theorem shows the validity of Conjecture 4.2.1 for d→∞ at any rate. Beside
extending the range of d compared to [46], the probability bound obtained above improves
on that of [46]. Moreover, as opposed to [46], Theorem 4.2 sheds the light on a significant
difference between the adjacency matrix of the uniform random d-regular digraph and a
Bernoulli matrix with parameter d/n. Indeed, while the latter is singular with probability
close to 1 when d� log n, our result asserts the invertibility of the uniform d-regular model,
thus highlighting a way in which random regular graphs behave very differently to Erdős-
Renyi graphs.

To illustrate how the special structure of the random regular graph is used, note that
the presence of many common in/out neighbors between vertices comes at the detriment
of a well invertibility. Indeed, the corresponding adjacency matrix will have rows/columns
which almost coincide making it possible to architect a defective vector close to the kernel.
While in the independent case, such scenarios are easy to analyse, this requires a careful
treatment in such a dependent setting and is an instance of the expansion properties enjoyed
by random regular graphs. Let us state one of several graph theoretical results we had to
establish.

Theorem 4.3 ([Y7]). Let 8 ≤ d ≤ n and Dn,d be the uniform random d-regular digraph on
n vertices. For any 2 ≤ k ≤ cn/d, we have

P
(
|N in

G (S)| ≥ d|S|/2 for any S ⊆ [n] of size k
)
≥ 1− exp

(
− ckd log

(
cn/(kd)

))
,

where c is a universal constant and N in
G denotes the set of in-neighbors to S in G.

We refer to [Y7] for a much more refined statement. Let us note that by d-regularity,
one always has |S| ≤ |N in

G (S)| ≤ d|S| and the above captures the extend of expansion in our
model as the neighborhood of sets of size n/d tends to contain almost all vertices. While
such results were known in the undirected case (see e.g. [9] and references therein), the
literature lacks analogue statements for its directed counterpart.

In view of the problem raised in the previous section, obtaining quantitative invertibil-
ity is crucial in this context. Providing lower bounds on the smallest singular value of a
random matrix is a subject interesting on its own. Beside its connection to the Hermitiza-
tion technique discussed previously, we already saw in the first two chapters its importance
for problems in numerical linear algebra and convex geometry. The literature contains an
enormous amount of work concerned with estimating the smallest singular value of a ran-
dom matrix, ranging from square matrices to rectangular ones, dealing with independent
entries or independent rows/columns. To avoid an extensive list of references, we refer to
[123, 145, 119, 146] for more on this subject. In [Y13], we were able to significantly strengthen
Theorem 4.2 as to obtain a lower bound on the smallest singular value.
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Theorem 4.4 ([Y13]). There are universal constants c, C such that if C ≤ d ≤ cn/ log2 n,
we have

P
(
smin(An,d) ≥ n−6

)
≥ 1− C log2 d√

d
.

Let us note that the above statement also holds for complex shifts of An,d as to fit
its required use for the Hermitization technique. Moreover, the polynomial lower bound
is sufficient for this purpose as we were interested in the behavior of the logarithm of the
smallest singular value. It is natural to wonder what would be the optimal lower bound,
and to this aim one could draw comparisons with standard Wigner matrices leading to
expect a lower bound of order

√
d/n. It is not clear if such a bound would hold and the

current available tools are incapable of reaching such a level of precision. The above advances
serve their need towards establishing the circular law theorem, however leave untreated the
constant d case of conjecture 4.2.1. In an effort to prove the conjecture, we were able to
show the following.

Theorem 4.5 ([Y14]). There exists a universal constant C such that for any fixed integer
d ≥ C the following holds. Let n > d and An,d be the adjacency matrix of the uniform
random d-regular digraph. Then

P
(

rank(An,d) ≥ n− 1
)
≥ 1− C log2 d

log n
.

After our result was published, Conjecture 4.2.1 was solved independently in [78] and
[105] where the key idea is to study the singularity over finite fields, which has the drawback
of not providing quantitative information on the smallest singular value.

A fundamental role in the context of invertibility is played by what is nowadays called
the Littlewood-Offord theory which has been elaborated over the years, leading to a much
better understanding of interrelationship between the singularity probability and arithmetic
structure of potential null vectors (see [137, 123] for more details). Elaborating a related
concept in our setting is essential and understanding the structure of potential null vectors or
eigenvectors in general is of particular importance. Indeed, such structural properties can be
efficiently combined with the simple switching, a standard tool applied first in the context of
regular graph by Mckay [98], in order to estimate event probabilities. The simple switching
is an operation performed on a d-regular graph as to obtain from it a new d-regular graph.
As an illustration, let G be a d-regular digraph on n vertices and let i1 6= i2 and j1 6= j2 be
vertices of G such that (i1, j1) and (i2, j2) are edges of G while (i1, j2) and (i2, j1) are not. The
simple switching illustrated in the Figure 4.1 consists of replacing the edges (i1, j1), (i2, j2)
with (i1, j2) and (i2, j1). Note that the operation does not destroy d-regularity of the graph.
As this operation allows to form each time a new d-regular graph, estimating the probability
of an event boils down to studying its stability under simple switching. Informally, an event
in our context has a large probability if starting from one particular realization satisfying
it, many simple switchings can be performed while staying inside this event; on the other
hand, starting from a realization outside this event, very few simple switchings can keep
this realization outside of this event of large probability. This observation urges the need to
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Figure 4.1: The simple switching.

understand where to operate switchings in the graph in such a way to capture singularity
probabilities. This is where the structure of eigenvectors and of normal vectors to subspaces
spanned by rows of An,d enter into play. Indeed, given a localized vector (say (1, 1, 0 . . . , 0)),
very few switchings on a realization of An,d can change its action on this vector (namely,
such switching should involve one of the first two vertices). On the contrast, when the
vector is delocalized with some additional discrepancy among its coordinates, then many
switching can be operated as to create a rich randomness in the action of the matrix on it.
This naturally leads us to study localization/delocalization of eigenvectors of random regular
graphs, which is the subject of the next section.

4.3 Delocalization of eigenvectors of random regular

digraphs [Y16]

Delocalization properties of eigenvectors for various models have been a focus of active re-
search, especially in the setting of Wigner (and generalized Wigner) matrices. The term
delocalization usually refers to upper bounds on the `∞-norm of a random vector as to as-
sert that no single coordinate of the eigenvector carries a significant mass. Another related
concept called no-gaps delocalization was introduced in [125] and aim at capturing the uni-
formness of the eigenvectors in the sense that its `2 norm is more or less evenly spread
over the coordinates. These notions are motivated by the previously mentioned universality
phenomenon stipulating that the statistics of a random matrix do not depend on the distri-
bution of its entries. Guided by this belief, one anticipate the eigenvectors of a broad class
of random matrices to behave as those of a Gaussian random matrix for instance. The latter
being invariant under orthogonal transformations, its normalized eigenvectors are uniformly
distributed over the unit sphere and are therefore very much delocalized. The notions of
delocalization considered in the literature aim mainly to mimic some characteristics of the
eigenvectors of a Gaussian random matrix. We refer to [124, 125] for more on this concept
and for an extensive list of references on the subject.

As for the eigenvalues distribution, understanding the eigenvectors in the non-Hermitian
setting is significantly more challenging. Moreover, our model exhibit dependencies and high
sparsity making it even more complicated. Nevertheless, we were able to prove the following
in [Y16].
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Theorem 4.6 ([Y16]). There are universal constants c, C > 0 such that the following holds.
Let n ≥ C and C ≤ d ≤ exp(c

√
log n) and let An,d be the adjacency matrix of Dn,d the

uniform random d-regular digraph on n vertices. Then with probability at least 1− 1/n any
eigenvector x of An,d, which is not parallel to (1, 1, . . . , 1), satisfies x∗i ≤ d3(n/i)6x∗bcnc for all

1 ≤ i ≤ bcnc, and, moreover,

∀λ ∈ C
∣∣∣{i ≤ n : |xi − λ| ≤ n−cx∗bcnc

}∣∣∣ ≤ Cn log2 d/ log n,

where (x∗i )i denote the non-increasing rearrangement of (|xi|)i.

The above Theorem is close in spirit to the concept of no-gap delocalization as it implies
weak lower bounds on the Euclidean norm of restrictions of an eigenvector. However, in
addition to that, it also measures cardinalities of sets of almost equal coordinates, thus
giving an additional structural information very important in the context discussed in the
previous section. This result, to our best knowledge, is the first statement which provides
quantitative information on the delocalization for non-Hermitian random matrices with a
constant number of non-zero elements in rows/columns.

Theorem 4.6 asserts for example that a vector in the kernel of An,d necessarily have at least
log n/ log2 d levels of coordinates, where by a level we mean a subset of equal coordinates.
Such a structural information guide our application of the switching technique as to show
for instance that An,d is of rank at least n − 1 with high probability. Informally speaking,
knowing the level structure of a vector in the kernel of An,d, indicate the switchings to be
operated on An,d as to remove this vector from its kernel. We refer to [Y15] for a more
precise and rigorous explanation of this idea.

In [Y16], we developed much more involved structural properties of normal vectors to
rows of An,d. These properties turned out to be essential in understanding the smallest and
intermediate singular values of An,d and its complex shifts. An often employed approach to
estimating the smallest singular value is to split the unit sphere and work separately with
different types of vectors. In this context, the concept of compressible and incompressible
vectors was introduced [89, 122] as the former are of low complexity (close to sparse) and
efficient covering arguments could be used to deal with them, while the latter are spread and
naturally provide access to concentration and anti-concentration inequalities. Building upon
earlier works on the Littlewood–Offord theory, the concept of the least common denominator
(LCD) of a vector was introduced [122], and the Euclidean sphere was partitioned into
subsets according to the magnitude of the LCD. In our model, due to special structure of
the matrices (in particular, due to the lack of independence and sparsity) these concepts
are not sufficient and we developed a tailored splitting of the unit sphere into steep, almost
constant, and gradual vectors. We refer to [Y16] for the exact definitions of these notions, and
only give here an informal description. Steep vectors correspond to vectors containing jumps
in the non-increasing rearrangement of their coordinates. In a similar manner, very steep
vectors are those having a huge drop at the beginning of their coordinates’ non-increasing
rearrangement, thus consisting of “few” large coordinates while the remaining are much
smaller. This notion is related to the notion of compressible vectors, however the distance
to sparse vectors is measured in another metric. Almost constant vectors are those having a
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large set of equal coordinates while all remaining vectors are gradual vectors. Let us state an
informal version of the main result of [Y16] where a more detailed statement is presented.

Theorem 4.7 ([Y16]). There are universal constants c, C > 0 such that the following holds.
Let n ≥ C and C ≤ d ≤ exp(c

√
log n) and let An,d be the adjacency matrix of Dn,d the

uniform random d-regular digraph on n vertices. Let I ⊂ [n] satisfying 0 ≤ |Ic| ≤ n/d3 and
denote AIn,d the restriction of An,d to the rows indexed by I. Then with probability at meast
1 − 1/n every unit vector such that ‖M Ix‖2 ≤ |Ic|3n−6 is either very steep or gradual with
many levels of coordinates.

4.4 perspectives

Conjecture 4.1.1 remains open as of this writing. Solving it will require some additional work
and new ideas need to be injected. For instance, the solution to Conjecture 4.2.1 is not fully
satisfactory as it lacks quantitative estimates. On the other hand, with our quantitative
approach we could only show that the adjacency matrix of the uniform random d-regular
digraph is of rank at least n−1. This comes from a deficiency in our proof techniques which
rely heavily on the structure of potential null vectors. As we explained previously, we use this
structure to guide the application of the switching technique and show that given a singular
adjacency matrix, many switchings make it invertible. Reversely, given a full rank adjacency
matrix, one needs to show that few switchings would make it singular. Since in such a
case, one has no null vector to start working with, we have limited understanding on how to
operate switchings in an efficient way. At the same time, this seems to be the only obstacle
to turning Theorem 4.5 into a proof of a potentially quantitative form of Conjecture 4.2.1.

All current proofs of the circular law in various models rely on the Hermitization tech-
nique. While the latter is clearly motivated by the desire to bridge back the problem to
studying the singular values, it doesn’t provide any qualitative understanding as to the uni-
versality of the circular law. It turns out that the latter minimizes the logarithmic energy
under a second moment constraint (see [31, Remark 4.7]). It would be very interesting to
elaborate a proof of the circular law theorem exploiting this characterization along the lines
of the entropic proof of the central limit theorem.
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Chapter 5

Spectral gap of random graphs

As we already mentioned previously, graph properties such as connectivity, bipartitedness,
graph diameter, and the evolution of various random processes defined on the graph are
closely related to the eigenvalues of its adjacency matrix (see for example [43]). In the
previous chapter, we investigated the global behavior of the eigenvalues of the adjacency
matrix of the uniform random regular graph. In this chapter, we move to a finer scale as
to understand the edge of the limiting spectral distribution and the gap between the two
largest eigenvalues/singular values.

5.1 The spectral gap of random regular graphs [Y11,

Y12]

One of the important properties of a graph is its connectivity. In practice, one would need
to build a network which is well connected for a signal to propagate fast in it. Such network
quality can be measured through the edge isoperimetric constant of a graph G defined by

h(G) := inf
{ |∂S|
|S|

: S ⊂ [n], |S| ≤ n/2
}
,

where ∂S denotes the set of edges connecting a vertex in S to one outside of it. Clearly,
the bigger h(G) is, the better is the connectivity of G. This naturally leads to the notion of
expanders, a family of graphs (Gn)n∈N whose edge expansion constant is bounded away from
0 for any n. Expander graphs play an important role in applications and we refer to [77] for
a detailed treatment of these objects. Controlling the edge expansion constant is therefore of
particular importance, and falls in the category of isoperimetric inequalities as it boils down
to finding a relation between the volume of a set (the number of vertices it contains) and its
surface (captured by the size of its boundary). This is the content of Cheeger’s inequality,
proved by Alon and Milman [8], which asserts that for any undirected d-regular graph G

d− λ2

2
≤ h(G) ≤

√
2d(d− λ2),
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where λ2 stands for the second largest eigenvalue of the adjacency matrix of G. The above
inequalities provide a remarkable connection between the expansion constant of the graph
and its “spectral gap” given by d−λ2. Indeed, recall that for any d-regular graph, the largest
eigenvalue of its adjacency matrix is equal to d. The above asserts, that the bigger the gap is
between the two largest eigenvalues, the better expander the graph is; moreover, the reverse
is also true. Given an undirected d-regular graph G, we denote λ = λ(G) = max(|λ2|, |λn|)
its second largest (in absolute value) eigenvalue. In a similar manner, the expander mixing
lemma [7] controls the pseudo-randomness of the graph in terms of λ. The smaller λ is, the
bigger the spectral gap is and the better are the expansion properties of the graph. This
naturally leads to wonder how small can λ be. The Alon-Boppana bound serves this purpose
and asserts that

λ(G) ≥ 2
√
d− 1

(
1− C log2 d

log2 n

)
,

for some universal constant C. A graph satisfying µ ≤ 2
√
d− 1 is called Ramanujan and in

view of the above, a family of Ramanujan graphs can be considered as the optimal spectral
expanders. Showing the existence and providing constructions of Ramanujan graphs was
subject of several research investigations [90, 96, 92]. Attention naturally turns to random
graphs, as one wonders when picking a d-regular undirected graph uniformly at random,
whether it is almost Ramanujan or not. It was conjectured by Alon [6] and proved in a
breakthrough by Friedman [58] (see [28] for an alternative proof), that whenever d is fixed,
one has λ(G) = 2

√
d− 1 + on(1) with probability going to one as n tends to infinity. One

may wonder if such a phenomenon still holds as d → ∞, and the proof of [58, 28] which
relies on the configuration model only extends to values of d growing at a slow rate. This
leads to the following conjecture made by Vu [148] (see also conjectures 7.3 and 7.4 in [149]).

Conjecture 5.1.1. Let Gn,d be the uniform random undirected d-regular graph on n vertices.
Then for any d ≤ n/2 growing to infinity with n, we have

λ(Gn,d) ≤
(
2 + o(1)

)√
d(1− d/n),

with probability going to 1 with n.

In addition to its graph theoretical meaning described previously, the above conjecture
asserts that, apart from the largest eigenvalue equal to d, there should be no other outliers
to the limiting spectral distribution. Indeed, as we mentioned in the previous chapter, it was
shown in [140] that the limiting spectral distribution of the properly normalized adjacency
matrix of the uniform random undirected d-regular graph is the semi-circular distribution.
Since the variance of each entry of this matrix is d

n
(1 − d/n), then this suggests that most

of the spectrum lies between −2
√
d(1− d/n) and 2

√
d(1− d/n). The above conjecture

predicts that all eigenvalues asymptotically live in this window, and there are no outliers as
the second largest (in absolute value) eigenvalue should asymptotically stick to the boundary
of the support of the limiting measure.

In [40], it was shown that λ .
√
d for any d = o(

√
n) with probability going to one in n.

Later on, this result was extended in [48] to cover the range d . n2/3. In [Y12], we further
extend this range to answer the isomorphic version of Vu’s conjecture.
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Theorem 5.1 ([Y12]). Let n1/4 ≤ d ≤ n/2 and Gn,d be the uniform random undirected

d-regular graph on n vertices. Then λ(Gn,d) .
√
d, with probability at least 1− 1/n.

Together with the previous results, this covers all ranges of degree d going to infinity and
answers up to a constant the conjecture. The above statement can also be interpreted as a
concentration result for the adjacency matrix around its expectation. Indeed, let A denote
the adjacency matrix of Gn,d and note that EA = d

n
11t, where 1 denotes the n-dimensional

vector with all entries equal to 1. Now recall that 1 is the eigenvector associated with the
largest eigenvalue equal to d so that by the spectral theorem, we can write

A− EA = λ2v2v
t
2 + . . .+ λnvnv

t
n,

where we denoted λ2 ≥ . . . ≥ λn the eigenvalues of A and v2, . . . , vn the associated eigen-
vectors. Therefore, we see that λ(Gn,d) = ‖A − EA‖ and the above result states that A
concentrates well around its expectation, where the concentration is measured in terms of
the operator norm.

Those results extend to the directed case. Indeed, a directed version of Friedman’s
theorem was elaborated in [49] following the approad introduced in [28]. In [Y12], we also
proved a directed version of the above theorem.

Theorem 5.2 ([Y12]). Let n1/4 ≤ d ≤ n/2, let D̃n,d be the uniform random directed d-regular

graph on n vertices and An,d its adjacency matrix. Then s2(An,d) .
√
d, with probability at

least 1− 1/n, were s2(Ã) stands for the second largest singular value of An,d.

In fact, the above statements are proved in a more general setting as to cover random
graphs with predefined degree sequences satisfying some assumptions. Interestingly, we show
that it is possible to deduce Theorem 5.1 from Theorem 5.2. Indeed, in [Y11], we developed
a sort of “de-symmetrization” allowing to relate the spectral gap of an undirected graph
to that of the spectral gap of some directed sub-graph of it. The procedure which is quite
general and interesting on its own, allows to estimate the norm of an n× n random matrix
with jointly exchangeable entries in terms of the norm of its n/2×n/2 submatrix located in
the top right corner (we refer to [Y11] for more details).

The proof of Theorem 5.2 uses standard ideas originated in Geometric Functional Anal-
ysis. Indeed, one starts using the Courant-Fisher formula and the singular value decompo-
sition to write

s2(An,d) = sup
x∈Sn−1,x⊥1,y∈Sn−1

〈An,dx, y〉,

and aim at showing that the supremum is controlled (up to a constant) by
√
d with high

probability. The standard approach consists in three steps which can be summarized as
follows:

1. Fix x, y ∈ Sn−1 with x ⊥ 1. Show that 〈An,dx, y〉 .
√
d with high probability.

2. Discretize the sphere with a finite net, and elaborate an approximation argument to
reduce the supremum over the sphere to a supremum over the net.
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3. Combine the two steps through a union bound over the net.

While the last two steps are rather standard, the difficulty lies in establishing individual
probability bounds strong enough to compensate the size of the net which is exponential
in the dimension. Given x, y ∈ Sn−1 and denoting aij the entries of An,d, notice that
〈An,dx, y〉 =

∑
1≤i,j≤n aijxjyi is a sum of bounded random variables. When these are inde-

pendent, standard concentration inequalities such as Bennett and Bernstein’s inequality are
available to deal with such quantity. It is therefore essential to develop matching concentra-
tion inequalities in dependent settings such as the one encountered here. This will be the
subject of the next chapter. To finish this section, let us note that the above three step strat-
egy is insufficient in this case, as it is not possible to obtain strong concentration inequalities
for localized vectors x and y. Instead, such inequalities are used only for delocalized vectors,
and one exploits the expansion properties of the graph when dealing with localized vectors.
This approach was introduced by Kahn and Szemerédi [59] and used subsequently for similar
problems.

5.2 Phase transition for the spectral gap of Erdős-Renyi

graphs [Y15, Y18]

In this section, we move to the study of another famous random graph model. The Erdős-
Renyi graph G(n, pn), which we mentioned previously, is the random undirected graph on n
vertices where each edge is drawn independently with probability pn. Its adjacency matrix
is a symmetric n× n matrix whose entries are independent (up to the symmetry) Bernoulli
random variables with probability of success pn. As for the uniform model, understanding
the spectrum of the Erdős-Renyi graph is of interest from a graph theoretical point of view
and from a random matrix one. If Bn denotes the adjacency matrix of G(n, pn) then it is
known that the limiting spectral distribution of Bn/

√
npn is the semi-circular distribution

as long as npn → ∞. When npn is constant, the behavior of the limiting measure is more
involved and has been subject to several investigations (we refer to [54] and references therein
for more on this regime which will not be investigated here). In the sequel, the focus will
be on the regime where npn → ∞ and on trying to understand the spectral gap of the
Erdős-Renyi graph in it.

It follows from the limiting spectral distribution that the leading eigenvalues of Bn are
asymptotically larger than 2

√
npn. As previously, understanding the exact location of these

eigenvalues is our aim. In [85], it is shown that the largest eigenvalue of Bn almost surely
satisfies

λ1(Bn) =
(
1 + o(1)

)
max

(√
maxi≤n deg(i), npn

)
,

where o(1) tends to 0 as max
(√

maxi≤n deg(i), npn
)

tends to infinity, and deg(i) is the degree
of the i-th vertex of G(n, pn).

When npn
logn
→ ∞, standard concentration inequalities for sums of independent random

variables (or just binomial tail estimates) ensure that all degrees in the graph are around
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their average npn. This implies that in this regime, the Erdős-Renyi graph is almost npn-
regular. The above expression for λ1 shows that it coincides asymptotically with npn. One
may naturally wonder if as for the uniform random regular graph, the Erdős-Renyi graph is
almost Ramanujan. This was shown to be true by Fıuredi and J. Komlòs for npn & log8 n, by
Vu [147] for npn & log4 n. For the general case, it was shown independently by Bordenave,
Benaych-Georges and Knowles [25] and in our work [Y15]. More precisely, we proved the
following:

Theorem 5.3 ([Y15]). Let G(n, pn) be the Erdős-Renyi random graph and Bn its adjacency
matrix. Then

P
(
λ(Bn) ≤ 2

(
1 + 3

√
C log n/(npn)

)√
npn

)
−→
n→∞

1,

where C is a universal constant.

While the results of [25] improve on the error term given by the cubic root above, our
result extends to inhomogeneous graphs without any restriction on the sequence of connection
probabilities (we refer to [Y15] for more details). It is natural at this stage to question the
restriction npn

logn
→ ∞ and its necessity for the graph to be almost Ramanujan. Let us

note that as in the previous section, one can interpret the above as a concentration of the
adjacency matrix around its expectation.

It is not difficult to see that if npn → ∞ very slowly, vertices of degree higher than the
average start emerging in the graph creating hubs and preventing expansion. This suggests
that as npn

logn
→ 0, the above Ramanujan property breaks down. This was for instance

studied in [56, 87] where procedures were developed as to clean up the graph from these
anomalies and recover the concentration of the adjacency matrix around its expectation. It
was observed that reducing the degrees of the vertices as to make them all bounded by twice
the average reinstaure the concentration in the graph. As we will see in the sequel, we will
show that such a bound on the degrees is in fact necessary for optimal concentration. In
[24], the exact value of λ(Bn) was captured in this regime. More precisely, it is shown that if
npn
logn
→ 0, then λ(Bn) concentrates around

√
maxi≤n deg(i) with probability going to 1 with

n. In view of the estimate on λ1, this means that the first two eigenvalues are asymptotically
glued together and the graph is no longer an “optimal” expander.

It is known that log n is the threshold of connectivity in the sense that the graph is
connected when npn exceeds log n and disconnects when it drops below this threshold. We
are lead to wonder if in a similar manner, there is a phase transition happening in the window
around log n and if there is a particular connectivity probability above which the graph is an
optimal expander and below which it no longer is. We answer this in the following theorem.

Theorem 5.4 ([Y18]). Let G(n, pn) be the Erdős-Renyi random graph and Bn its adjacency
matrix. Assume that pn → 0 and npn →∞. Then, we have the following dichotomy:

• (optimal expander) If lim inf npn
logn
≥ 1

log(4/e)
then λ(Bn)

2
√
npn

converges to 1 in probability.

• (non-optimal expander) If lim sup npn
logn

< 1
log(4/e)

then there is ε > 0 such that

lim
n→∞

P
( λ(Bn)

2
√
npn

> 1 + ε
)

= 1.
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Figure 5.1: The value of limn(ρn/
√
npn) (vertical axis) for the adjacency matrix of the Erdős–Renyi

graph, viewed as a function of limn(npn/ log n) (horizontal axis). The phase transition happens at
1

log(4/e) ≈ 2.59.

The threshold 1
log(4/e)

has a particular significance, it is also the connectivity probability
below which vertices with degree larger than twice the average start emerging in the graph.
This nicely complement the work of [56, 87], and rigorously relates the concentration of the
graph to the presence or not of vertices with degree higher than twice the average degree.
We mention that shortly after our result was posted on arxiv, this phase transition was
independently (and with different techniques) captured in [2]. Moreover, the work of [2]
further strengthens the above by showing that the emergence of each vertex of degree larger
than twice the average, result in a new eigenvalue getting above 2

√
npn asymptotically.

The above result is a consequence of the characterization of the norm of sparse random
matrices which were discussed in Chapter 3. More precisely, we are able to show a completely
explicit asymptotic expression for λ(Bn). Indeed, setting

ρn := θn +
npn
θn

, θn :=

√
max

(
enpn exp

[
W0

( log n− npn
enpn

)]
− npn, npn

)
,

we have that λ(Bn)
ρn

converges to one in probability. The functionW0 denotes the main branch

of the Lambert function defined by z = W0(z)eW0(z). The presence of this function comes
from the expression of the maximum degree in the Erdős-Renyi graph as it can be shown
that

maxi≤n deg(i)

enpn exp
[
W0

(
logn−npn
enpn

)] P−→
n→∞

1.

We refer to [Y18] for more details, and note here that the above formula for λ(Bn) can be
formulated in terms of the maximum degree in the graph englobing for instance the previous
results obtained when npn

logn
→ 0 or∞. Thanks to these expressions, we illustrate in Figure 5.1

the phase transition captured in Theorem 5.4.
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5.3 Perspectives

Conjecture 5.1.1 remains open as of this writing. The methods we use originating in Geo-
metric Functional Analysis can never lead to a solution to this conjecture as they naturally
lead to sub-optimal constants. Reaching such a level of precision is usually done through
the moment method which was used in the proof of results in Chapter 3. This method relies
heavily on independence and finding a way to go beyond such a setting remains a challenge.
While for small values of d, the uniform model can be studied through the configuration
model which exhibits an independence structure, this is no longer the case when d grows
relatively fast to infinity. From this perspective, it would be very interesting to bring a new
insight into the moment method through the study of this problem.

In the previous section, we were able to establish a phase transition for the appearance
of outliers in the spectrum of the Erdős-Renyi random graph. Moreover, we were able
to relate these outliers to the emergence of high degree vertices in the graph. Naturally,
these emerging hubs make the corresponding eigenvectors localized on them. Therefore, one
expects a phase transition in the localization/delocalization of eigenvectors in accordance
to the phenomenon captured in this chapter. This problem was recently studied in [74]
where it was observed that the transition from delocalization to localization takes place in
the window of connectivity around log n/n. It would be interesting to capture the exact
transition similarly to what is done in this chapter.
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Chapter 6

Matrix concentration inequalities

The laws of large number assert that a sum of random variables is asymptotically close to
its expectation. Concentration inequalities aim to quantify this standard fact and provide
a probabilistic illustration of a high dimensional phenomena: a random variable measurable
with respect to a large number of independent random variables and depending little on
each individually, is almost constant with high probability. Concentration inequalities are
versatile tools which found use in areas across Mathematics, and deriving such inequalities
can be of great use to several pure and applied problems. We refer to [32] for more on
concentration inequalities.

In the previous chapter, we encountered the need to elaborate concentration inequalities
in a dependent setting. In this chapter, we will investigate some generalized concentration
inequalities as to implement special types of dependence on one hand, and to consider non-
commutative random variables on the other hand.

6.1 Bennett-Bernstein inequalities in a dependent set-

ting [Y12]

Among all concentration inequalities, perhaps the most famous ones are Hoeffding, Bern-
stein and Bennett’s inequality [32]. While Hoeffding’s inequality deals with sub-Gaussian
random variables, Bernstein’s with sub-exponential random variables, these inequalities are
commonly used to deal with a sum of independent bounded random variables. In such a
setting, Bennett’s inequality offers the most satisfactory results as it takes full account of
the law of the variables in addition to their boundness assumption.

Bennett’s inequality asserts that given ξ1, . . . , ξN independent random variables satisfying
|ξi − E ξi| ≤ K almost surely for every i ≤ N , then for any t > 0 we have

P
( N∑
i=1

(ξi − E ξi) ≥ t
)
≤ exp

(
− σ2

K2
H
(Kt
σ2

))
,

where σ2 =
∑N

i=1 Var(ξi) and H(x) = (1 + x) log(1 + x)− x. The above inequality combines
a Gaussian tail behavior in the small deviation regime and a Poisson-like tail behavior in the
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large deviation one. The function H in the above deviation bound is quite natural in this
context. It implicitly appears in the classical inequality of Bennett for sums of independent
variables (see, [26, Formula 8b]), and later in the well known paper of Freedman [57] where
he extends BennettÕs inequality to martingales. The latter work offers a lot of flexibility
as to derive concentration inequalities in a dependent setting as long as one can construct
a martingale adapted to the problem. One of the main challenges lies in understanding the
quadratic variations of the corresponding martingale as this determines the quality of the
concentration inequality to be obtained.

Motivated by estimating the spectral gap of the uniform random regular graph discussed
in the previous chapter, we developed a concentration inequality in this context. Let Dn,d
be the random uniform directed d-regular graph on n vertices and denote ED the (random)
set of directed edges of Dn,d. Given an n × n matrix Q = (qij)1≤i,j≤n, our aim is to study
the random variable

ξ =
∑

(i,j)∈ED

qij =
N∑

i,j=1

qij1(i,j)∈ED ,

which is a sum of dependent random variables, where the dependence is dictated by the
d-regularity of the graph. Each of these random variables is bounded above by maxi,j |qij| :=
‖Q‖∞ and we have

E ξ =
d

n

N∑
i,j=1

qij and
N∑

i,j=1

E [q2
ij1(i,j)∈ED ] =

d

n
‖Q‖2

HS.

With these observations in mind, let us state a soft incomplete version of the Bennett’s
inequality we obtained in this context.

Theorem 6.1 ([Y12]). With the above notations we have that for any t > 0

P
(∣∣∣ ∑

(i,j)∈ED

qij −
d

n

N∑
i,j=1

qij

∣∣∣ ≥ t | E
)
≤ 2 exp

(
− d‖Q‖2

HS

n‖Q‖2
∞
H
(tn‖Q‖∞
d‖Q‖2

HS

))
,

where E is an event holding with probability at least 1− 1/n.

In view of the calculations made above, the probability bound obtained is in accordance
with Bennett’s inequality. The previous theorem can be extended to cover random graphs
with predefined degree sequences under some additional assumptions. Perhaps the only
drawback of this result is the presence of the event E which we did not specify here. This
comes from technical obstacles in implementing the martingale based proof and we refer to
[Y12] for a clear definition of it and a detailed statement. Let us note that many arguments
can be usually carried under conditioning before getting rid of it once the whole argument is
completed. This is for instance the case of our application to the study of the spectral gap
discussed in the previous chapter and the above theorem serves its need as to deal with the
first of the three steps strategy described there. Let us end this section by emphasizing the
importance of such concentration inequalities. Indeed, Theorem 6.1 provides for instance

46



bounds on edge count statistics in Dn,d. Given two sets of vertices S and T in [n], take Q to
be the 0/1 matrix with entries in the block S×T equal to 1. Then applying Theorem 6.1 one
obtains that the number of edges heading from S to T is concentrated around its expectation
d
n
|S| · |T | in accordance with the pseudo-randomness property of these graphs.

6.2 Non-commutative Khintchine inequality and ma-

trix covariance estimation [Y3, Y15]

Concentration inequalities for a sum of independent random variables is intimately related
to the study of their moments. Classical Khintchine inequalities study the moments of a
sum of independent sub-Gaussian random variables. Extending these inequalities to cover
series with matrix coefficients is of particular importance due to the numerous applications
in applied mathematics (see for instance [142]). The non-commutative Khintchine inequality
was first obtained by Lust-Piquard [91] and later extended and extensively studied (see for
example [113] and references therein). In its simplified form, it states that given A1, . . . , AN
a sequence of n× n deterministic matrices and ε1, . . . , εN independent Rademacher random
variables, one has for any p ∈ N∗[

ETr
(( N∑

i=1

εiAi
)2p
)] 1

2p
.
√
p
[
Tr
( N∑
i=1

A2
i

)p] 1
2p
.

Let us note that taking p large enough (say of order log n), one obtains bounds on the
operator norm of X since the latter is approximated by the p-Schatten norm when p is large.
The above inequality can be strengthened as to deal with Gaussian series. Indeed, using
that E|g| =

√
2/π, we can write[

ETr
( m∑
i=1

εiAi

)2p] 1
2p

=

√
π

2

[
ETr

( m∑
i=1

εiE|gi|Ai
)2p] 1

2p
,

where (gi)i≤m are independent standard Gaussians, independent of the sequence of Rademach-
ers (εi)i≤n. Now combining this with Jensen’s inequality, we deduce[

ETr
( m∑
i=1

εiAi

)2p] 1
2p ≤

√
π

2

[
ETr

( m∑
i=1

εi|gi|Ai
)2p] 1

2p
.

Finally, using that εi|gi| has the same distribution as gi, we conclude that having a non-
commutative Khintchine inequality for Gaussian series imply its Rademacher counterpart.
Denoting X =

∑N
i=1 giAi, the non-commutative Khintchine then states[

ETr(X2p)
] 1

2p
.
√
p
[
Tr
( N∑
i=1

A2
i

)p] 1
2p
,

and since EX2 =
∑N

i=1A
2
i , the above inequality can be formulated entirely in terms of X.

Of particular interest is the study of the optimality of the above inequality. Taking Ai to be
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the diagonal matrix with its i-th entry equal to 1, we see that the above inequality describes
precisely the moments of X which is in this case just a diagonal matrix formed by Gaussian
random variables. However, taking Ai to be n×n matrix having only the (1, i), and (i, 1)-th
entries equal to 1 and the remaining 0, one can check that the non-commutative Khintchine
inaccurately describes the reality.

This optimality question seems intractable in its full generality. In [Y15], we investigate
an important special case given by X =

∑
1≤i≤j≤n gijAij where Aij is the n × n matrix

with all its entries equal to zero except the (i, j) and (j, i)-th ones which are equal to
some non-negative scalar aij. In other terms, X is an n × n inhomogeneous Gaussian
matrix represented as a Gaussian series. In this context, we show that the non-commutative
Khintchine inequality can be sharpened and obtain the following.

Theorem 6.2 ([Y15]). Let X =
∑

1≤i≤j≤n gijAij be as above. Then for any p ≥ 1

[
ETr(X2p)

] 1
2p �

[
Tr
( ∑

1≤i≤j≤N

A2
ij

)p] 1
2p

+
√
p
[
Tr
( ∑

1≤i≤j≤N

A2p
ij

)] 1
2p
.

A nice application of the non-commutative Khintchine inequality is to the problem of
covariance estimation. In its classical form, we are given a centered random vector Y in Rn

and we aim at approximating its covariance matrix by the empirical covariance estimator
given by 1

N

∑N
i=1 YiY

t
i , where the Yi’s are independent copies of Y . The goal being to provide

such an approximation with the least possible number of copies. The link to the non-
commutative Khintchine inequality was made by Rudelson [118] who used symmetrization
and Jensen’s inequality to write

E
∥∥∥ 1

N

N∑
i=1

YiY
t
i − EY Y t

∥∥∥ ≤ 2E
∥∥∥ 1

N

N∑
i=1

εiYiY
t
i

∥∥∥,
where the εi’s are independent Rademacher random variables (independent from the Yi’s).
One then conditions on the realization of the Yi’s and uses the non-commutative Khintchine
inequality to estimate the right-hand side. Such an approach implies that if ‖Y ‖2 = O(

√
n)

almost surely, then taking N = O(n log n) copies suffices to accurately approximate the
covariance matrix of Y . This result is very general as it requires no assumption on the actual
distribution of Y . Nevertheless, it is also known that for sufficiently regular distributions
the logarithmic oversampling factor is not needed. Covariance estimation problems are
extensively studied in high-dimensional statistics, we refer to [146, Chapter 4] to avoid an
extensive list of references.

In [Y2], we were interested in the above problem when additional regularity assumptions
are made.

Theorem 6.3 ([Y2]). Let B be an n × n positive semi-definite random matrix satisfying
EB = Id and

P
(
‖PBP‖ ≥ t

)
≤ c

t1+η
, ∀t ≥ crank(P ) and for any orthogonal projection P ,
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for some c and η > 0. Then for every ε ∈ (0, 1), taking N & n/ε2+2η−1
we have

E
∥∥∥ 1

N

N∑
i=1

Bi − Id
∥∥∥ ≤ ε,

where B1, . . . , BN are independent copies of B.

As opposed to applying the non-commutative Khintchine inequality, the above result
saves a logarithmic term in its estimate on the number of copies N . The assumption made
on B is not too restrictive as there are several examples of random matrices satisfying it. For
instance if B = UDU t is the spectral decomposition of B with U and D being independent
and the diagonal entries of D have a finite (2 + ε) moment, then the above theorem applies.
Moreover, taking B = Y Y t, one recovers the results of Srivastava and Vershynin [131] who
studied the classical covariance estimation problem of a random vector with few regularity
assumption. We should note that the above theorem and its proof are very much inspired
by the work [131].

6.3 Bernstein inequality in a matrix/dependent setting

[Y6]

In the first section of this chapter, we investigated concentration inequalities in a dependent
setting while in the previous section we studied non-commutative extensions. In this final
section, we look at concentration inequalities in a matrix dependent setting. In recent
years, there has been an increased interest into matrix concentration inequalities. Extending
classical inequalities such as Hoeffding, Bernstein and Bennett to a matrix setting was subject
to several investigations. We refer to the excellent monograph of Tropp [142] who greatly
contributed to this field.

One of the consequences of the scalar Bernstein’s inequality states that if ξ1, . . . , ξN are
independent centered random variables uniformly bounded by K, then for any t > 0

P
( N∑
i=1

ξi ≥ t
)
≤ exp

(
− t2

2(σ2 +Kt/3)

)
,

where σ2 = Var
(∑N

i=1 ξi
)

=
∑N

i=1 E ξ2
i . There have been several approaches as to extend

such inequality to a matrix setting. The aim being to control the largest eigenvalue of a
sum of bounded self adjoint matrices. Perhaps the most standard approach is the Laplace
transform method which was generalized by Ahlswede and Winder [5]. The independence
structure is heavily used as to exploit tensorization properties of the Laplace transform.
Going beyond the independent setting remains a challenging and technical task. In [Y6],
we aimed at such extension and considered the sum of self-adjoint, centered, geometrically
absolutely regular random matrices.

We let (Xi)i>1 be a family of n×n self-adjoint random matrices whose entries are defined
on a probability space (Ω,A,P), and that are geometrically absolutely regular in the following
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sense. Let

β0 = 1 and βk = sup
j>1

β(σ(Xi , i ≤ j), σ(Xi , i > j + k)) , for any k ≥ 1,

where

β(A,B) =
1

2
sup

{∑
i∈I

∑
j∈J

|P(Ai ∩Bj)− P(Ai)P(Bj)|
}
,

the maximum being taken over all finite partitions (Ai)i∈I and (Bi)i∈J of Ω respectively with
elements in A and B. The (βk)k>0 are usually called the coefficients of absolute regularity
and we shall assume that they decrease geometrically in the sense that there exists c > 0
such that for any integer k > 1,

βk = sup
j>1

β(σ(Xi , i ≤ j), σ(Xi , i > j + k)) ≤ e−c(k−1) .

We refer to [Y6] and references therein for more on these coefficients. Informally, the above
assumption relaxes the independence hypothesis usually made and stipulates that matrices
far apart in time (indexation) become more and more independent. The degree of indepen-
dence is captured by these coefficients which decrease exponentially in time.

Theorem 6.4 ( [Y6]). Let (Xi)i>1 be a family of self-adjoint random matrices of size n
satisfying the above assumption on the coefficient of absolute regularity. Moreover, assume
that

EXi = 0 and λmax(Xi) ≤ 1 almost surely.

Then there exists a universal positive constant C such that for any t > 0,

P
(
λmax

( n∑
i=1

Xi

)
≥ t
)
≤ n exp

(
− Ct2

v2 + t log2 n

)
,

where
v2 = sup

K⊆{1,...,n}

n

CardK
λmax

(
E
(∑
i∈K

Xi

)2
)
.

When the Xi’s are independent, then the term v2 corresponds to the variance term usually
present in Bernstein’s inequality. Let us note that the logarithmic term present above was
shown to be necessary in [1]. This result extends to the matrix setting its scalar version
obtained in [100] and we refer to [Y6] for examples of applications of it.

6.4 Perspectives

The optimality of the non-commutative Khintchine inequality is a fascinating question. Our
solution to a particular case of it (Theorem 6.2) is already highly non-trivial. Moreover, it is
not completely clear what would be a suitable conjecture. In view of what we were able to
prove, it is tempting to conjecture the validity of Theorem 6.2 beyond the example considered
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there. At this stage, it would be interesting to confirm this conjecture on other examples
having some exploitable structure in them. For instance, even the case of a sequence of rank
one matrices is not understood, band matrices, etc..

Establishing concentration inequalities in a matrix dependent setting remains a subject
to be explored. A particularly interesting problem is to study matrix weighted sums of
negatively associated random variables. Strong Rayleigh distributions emerged as a suitable
candidate towards a theory of negative dependence (see [110, 27]). Following [111] where
concentration inequalities for Lipschitz functions of strong Rayleigh distributions were es-
tablished, these results were strengthened in [75] as to establish corresponding modified
log-sobolev inequalities, known to imply such concentration bounds. It would be very inter-
esting to extend these to a matrix setting as beyond the result itself, this would lead to a
better understanding of matrix concentration inequalities. Indeed, as we already mentioned,
there was an enormous amount of work devoted to extend all approaches of concentration
in the real case to the matrix setting. The very elegant entropy based approach present
challenges in its extension and only partial results were obtained in this direction [42]. It
would be of great interest to efficiently elaborate an entropy approach to matrix concentra-
tion inequalities which would extend in a friendly way to dependent settings such as strong
Rayleigh distributions.
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[82] J. Kahn, J. Komlós and E. Szemerédi, On the probability that a random ±1-matrix is
singular, J. Amer. Math. Soc. 8 (1995), no. 1, 223–240.

[83] J. Komlós, On the determinant of (0, 1) matrices, Studia Sci. Math. Hungar 2 (1967),
7–21.

[84] J. Komlós, Circulated Manuscript, Available online at http://math.rutgers.edu/

~komlos/01short.pdf.

[85] M. Krivelevich, B. Sudakov, The largest eigenvalue of sparse random graphs, Combin
Probab Comput,12:61–72, 2003.

[86] R. Lata la, Some estimates of norms of random matrices, Proc. Amer. Math. Soc.,
133(5):1273–1282 (electronic), 2005.

[87] C. Le, E. Levina, and R. Vershynin, Concentration and regularization of random graphs,
Random Structures and Algorithms, 51(3):538–561, 2017.

[88] M. Ledoux, The Concentration of Measure Phenomenon, American Mathematical So-
ciety, Providence, RI

57

http://math.rutgers.edu/~komlos/01short.pdf
http://math.rutgers.edu/~komlos/01short.pdf


[89] A.E. Litvak, A. Pajor, M. Rudelson, and N. Tomczak-Jaegermann, Smallest singular
value of random matrices and geometry of random polytopes, Adv. Math., 195 (2005),
491–523.

[90] A. Lubotzky, R. Phillips, and P. Sarnak, Ramanujan graphs, Combinatorica, 8(3): 261–
277,1988.
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