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These notes are based on a mini-course given by the author at the Lebanese University-
Faculty of Science II- Fanar. They are meant to introduce a general audience to some
concentration inequalities and the problem of estimating the spectral gap of a random graph.
This short course (9 hours) was prepared with the intention to be accessible to first year
master students with very basic knowledge in probability theory and without any prerequisite
in graph theory. It will however get more technical as the course advances.

I would like to thank Pascal Lefèvre for arranging this opportunity for me to share some of
my research interests at the Lebanese University. I also thank Ihab Alam and Georges Habib
for their hospitality and for organizing everything on a very short notice. In preparing these
notes, I have used for the graph theoretical part [5] (thanks to Justin Salez for suggesting
and landing me the book) and [9] (we refer to references in [9] for a more complete exposition
on the topic). I would also like to thank Marwa Banna for many valuable comments which
helped improve these notes.

These notes are organized as follows. In the first part, we establish some concentration
inequalities for sums of independent random variables. We focus on Bennett and Bernstein’s
inequalities which control the deviation from the mean in terms of the variance. We then
give two applications of these inequalities: in the first, we establish structural properties
of random Bernoulli matrices which will be used later; in the second, we apply Bernstein’s
inequality in order to prove the Johnson-Lindenstrauss flattening lemma, which says that
n points in a Hilbert space can be embedded into a lnn-dimensional space while keeping
the distances between these points almost the same. We then introduce basic notions on
d-regular graphs and their adjacency matrices. We consider the edge expansion constant
of a d-regular graph and establish its relation to the spectral properties of the graph. We
present Alon-Milman’s result which asserts that a large gap between the largest and the
second largest eigenvalue implies that the graph has good expansion properties, and vice
versa. Finally, we study the Erdös-Renyi random graph and show that in the dense regime,
it has a large spectral gap with high probability.

Everywhere in the text, we assume that n is a sufficiently large natural number. For a
finite set I, by |I| we denote its cardinality. For any positive integer m, the set {1, 2, . . . ,m}
will be denoted by [m]. We denote by Ic the complement of I in the corresponding set. For
a real number a, bac is the largest integer not exceeding a. For a vector y ∈ Rn, we denote
by supp y the set of indices of its non-zero coordinates i.e. supp y = {i ∈ [n] : yi 6= 0}.
By 〈·, ·〉 we denote the standard inner product in Rn, by ‖ · ‖2 — the standard Euclidean
norm in Rn. The notation a . b (resp. a & b) means that a ≤ c b (resp. a ≥ c b) for some
numerical constant c. Finally, a ∼ b means that a & b and a . b.

1 Concentration inequalities and applications

The concentration of measure phenomenon is a vast topic which has many applications in
different fields. In these notes, we will investigate this phenomenon for a sum of independent
random variables. Let us first illustrate the basic idea of concentration starting with the
normal distribution. Given g ∼ N (0, 1) a standard Gaussian random variable, its density
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function is given by f(x) = 1√
2π

exp(−x2/2):
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We can see that most of the mass is concentrated around the mean while the probability of
being far from the mean decays very fast.

In general, there is no reason for the mass to be concentrated around the mean. Consider
the experience of tossing a coin where one gets head or tail with equal probability 1/2. In
this case, no outcome is privileged. Denote ξ the corresponding standard Bernoulli random
variable i.e. P{ξ = 1} = P{ξ = 0} = 1

2
. Repeating this experience many times, one expects

to get an equal number of head and tail. More precisely, if {ξ = 1} denotes the event that
“we got head” then the number of occurence of head in n experiences is equal to

∑
i≤n ξi

where ξ1, . . . , ξn are independent standard Bernoulli random variables. From the law of large
numbers, we know that

1

n

n∑
i=1

ξi −→
n→∞

E ξ =
1

2
a.s.

Therefore, the more we repeat this experience, the closer the average number of head oc-
curence will be to 1/2 and the phenomenon of concentration will be more apparent. One
of the goals of concentration inequalities is to quantify the above convergence by finding
the correct rate at which the average is approaching the mean. Once this is done, one can
deduce the minimal number of experiences needed in order to get with high probability the
same number of heads and tails.

1.1 Bennett-Bernstein’s inequalities

The moment generating function of a random variable ξ is given by

Mξ(λ) = E eλξ, λ ∈ R,

whenever this expectation exists. We start with the Chernoff bound which is of similar flavor
to Markov and Tchebysheff’s inequalities.
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Lemma 1.1 (Chernoff bound). Let S be a random variable. Then for any t ∈ R

P
{
S ≥ t

}
≤ inf

λ>0
{e−λtMS(λ)}.

Proof. Fix λ > 0 and write

P
{
S ≥ t

}
= P

{
λS ≥ λt

}
= P

{
eλS ≥ eλt

}
,

where we used that the exponential function is increasing. Now, notice that

P
{
eλS ≥ eλt

}
= E1{eλS≥eλt} = e−λt E1{eλS≥eλt} e

λt ≤ e−λtMS(λ).

Since this is the true for any λ > 0, then the lemma follows.

The previous lemma suggests that a good bound on the moment generating function of
a random variable allows to control its tails. In the next lemma, we estimate the moment
generating function of bounded random variables and those having nice moments growth.

Lemma 1.2. Let b ≥ 0 and let ξ be a centered random variable with E ξ2 ≤ σ2 for some
positive number σ. Then we have

1. If |ξ| ≤ b a.s. then Mξ(λ) ≤ exp
(
σ2

b2
(eλb − λb− 1)

)
for any λ > 0.

2. If E ξk ≤ 1
2
k!σ2bk−2 for any k ≥ 3, then Mξ(λ) ≤ exp

(
λ2σ2

2(1−λb)

)
for any λ ∈ (0, 1/b).

Proof. Let λ > 0. From the power series expansion of the exponential function, we can write

Mξ(λ) = 1 + λE ξ +
1

2
λ2E ξ2 +

∑
k≥3

λkE ξk

k!
.

Using that E ξ = 0 and E ξ2 ≤ σ2, we get

Mξ(λ) ≤ 1 +
1

2
λ2σ2 +

∑
k≥3

λkE ξk

k!
. (1)

Now if |ξ| ≤ b a.s. then∑
k≥3

λkE ξk

k!
≤
∑
k≥3

λkbk−2E ξ2

k!
≤ σ2

b2

∑
k≥3

(λb)k

k!
=
σ2

b2
(eλb − λ2b2

2
− λb− 1),

which together with (1) implies that

Mξ(λ) ≤ 1 +
σ2

b2
(eλb − λb− 1) ≤ exp

(
σ2

b2
(eλb − λb− 1)

)
,

and proves the first part of the lemma.
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Now suppose that E ξk ≤ 1
2
k!σ2bk−2 for any k ≥ 3. Injecting this assumption in (1), we

deduce

Mξ(λ) ≤ 1 +
1

2
λ2σ2 +

1

2
λ2σ2

∑
k≥3

(λb)k−2.

When λ < 1/b, the last term of the previous inequality is the sum of a convergent geometric
series. Thus, we get for any 0 < λ < 1/b

Mξ(λ) ≤ 1 +
1

2
λ2σ2 +

1

2
λ2σ2 λb

1− λb
= 1 +

λ2σ2

2(1− λb)
≤ exp

(
λ2σ2

2(1− λb)

)
,

which shows the second part of the lemma.

Now that we estimated the MGF of bounded random variables, we will use this to
establish the concentration of a sum of independent bounded random variables around their
mean. Define a function H(t) on the positive semi-axis as

H(t) := (1 + t) ln(1 + t)− t. (2)

Note that H(·) is increasing. Moreover, it is easy to check that

H(t) ≥ t2

2(1 + t/3)
for any t ≥ 0. (3)

Theorem 1.3 (Bennett’s inequality). Let n ∈ N and ξ1, . . . , ξn be independent centered
random variables satisfying |ξi| ≤ b and E ξ2i ≤ σ2

i for some positive numbers b and σi,
i = 1, . . . , n. Then for any t ≥ 0, we have

P
{∣∣∑

i≤n

ξi
∣∣ ≥ t

}
≤ 2 exp

(
−σ

2

b2
H
( tb
σ2

))
.

Proof. Let λ > 0 and i ≤ n. Applying the first part of Lemma 1.2, we have

Mξi(λ) ≤ exp

(
σ2
i

b2
(eλb − λb− 1)

)
. (4)

Now denote S =
∑

i≤n ξi and note that

MS(λ) = E eλS = E
n∏
i=1

eλξi =
n∏
i=1

E eλξi ,

where we used the independence of the ξi’s in the last equality. This, together with (4),
implies that

MS(λ) ≤
n∏
i=1

exp

(
σ2
i

b2
(eλb − λb− 1)

)
= exp

(
σ2

b2
(eλb − λb− 1)

)
,
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where σ2 =
∑

i≤n σ
2
i . Using the above estimate together with Lemma 1.1, we get for any

t > 0

P
{∑

i≤n

ξi ≥ t
}
≤ inf

λ>0
exp

(
−λt+

σ2

b2
(eλb − λb− 1)

)
.

The above expression is minimized for λ = 1
b

ln
(
1 + bt/σ2

)
. Replacing this value, we deduce

that

P
{∑

i≤n

ξi ≥ t
}
≤ exp

(
−σ

2

b2
H
( tb
σ2

))
,

where H is the function defined in (2). Now reapplying the above with the random variables
−ξ1, . . . ,−ξn, we get for any t > 0

P
{∑

i≤n

ξi ≤ −t
}
≤ exp

(
−σ

2

b2
H
( tb
σ2

))
.

We finish the proof by using the two previous inequalities together with the fact that for
any t > 0

P
{∣∣∑

i≤n

ξi
∣∣ ≥ t

}
= P

{∑
i≤n

ξi ≥ t
}

+ P
{∑

i≤n

ξi ≤ −t
}
.

Remark 1.4.

• Let us note that if the ξi’s are not centered, one just needs to apply the previous
statement with ξi − E ξi to obtain the same phenomenon of concentration of the sum
of the ξi’s around their expectation.

• Since
∣∣∑

i≤n ξi
∣∣ ≤ nb with probability 1, then the concentration inequality makes

sense whenever t ≤ nb. On the other hand, it has a non-trivial consequence whenever

2 exp
(
−σ2

b2
H
(
tb
σ2

))
≤ 1 meaning for t ≥ σ2

b
H−1

(
b2 ln 2
σ2

)
. This holds when t is larger

than a proportion of b.

• From (3), we get that the concentration inequality exhibits two behaviors depending
on the regime we are interested in. When t ≤ σ2/b, then the probability of deviating
from the mean is bounded by 2 exp

(
− t2/(4σ2)

)
while when t ≥ σ2/b, this probability

is bounded by 2 exp
(
− t/(4b)

)
. Therefore, we have a subgaussian behavior (the tail

inequality is similar to the Gaussian case) in the range where t ≤ σ2/b while in the
other range we have a subexponential behavior.

• Going back to the experience of tossing a coin. Fix ε ∈ (0, 1) and let n ∈ N be the
number of experiences one makes. If one wants to increase chances that the number
of tails and heads differ by at most εn, then one should have

P
{∣∣ n∑

i=1

ξi −
n∑
i=1

(1− ξi)
∣∣ ≤ εn

}
≥ 1

2
.
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This translates to having

P
{∣∣ n∑

i=1

(ξi − E ξi)
∣∣ ≥ εn

2

}
≤ 1

2
,

which can be ensured if

2 exp
(
−n

2
H(ε)

)
≤ 1

2
.

Thus one should repeat the experience at least ln 8/H(ε) times.

In the previous theorem, we only dealt with bounded random variables. We will see that
this assumption can be dropped and replaced by a control on the moments.

Theorem 1.5 (Bernstein’s inequality). Let ξ1, . . . , ξn be independent centered random vari-
ables satisfying

Eξ2i ≤ σ2
i and E|ξi|k ≤

1

2
k!σ2

i b
k−2 for any k ≥ 3,

for some positive numbers b and σi, i = 1, . . . , n. Then for any t > 0

P
{∣∣ n∑

i=1

ξi
∣∣ ≥ t

}
≤ 2 exp

(
− t2

2(σ2 + tb)

)
,

where σ2 =
∑n

i=1 σ
2
i .

Proof. Let λ > 0 and i ≤ n. Applying the second part of Lemma 1.2, we have

Mξi(λ) ≤ exp

(
λ2σ2

i

2(1− λb)

)
(5)

Denote S =
∑

i≤n ξi. Using the independence of the ξi’s together with (5), we get

MS(λ) ≤ exp

(
λ2σ2

2(1− λb)

)
,

where σ2 =
∑

i≤n σ
2
i . This estimate, together with Lemma 1.1, implies that for any t > 0

P
{∑

i≤n

ξi ≥ t
}
≤ inf

λ>0
exp

(
−λt+

λ2σ2

2(1− λb)

)
.

Taking λ := t
σ2+bt

we deduce that

P
{∑

i≤n

ξi ≥ t
}
≤ exp

(
− t2

2(σ2 + tb)

)
.

To finish the proof, one should reapply the above for −ξ1, . . . ,−ξn and conclude in a similar
manner to what is done in Theorem 1.3.
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Let us finish this subsection by a natural question: “Can we see Bennett and Bernstein’s
inequalities as tensorization of single inequalities involving the cumulative distribution func-
tion of each variable?”

More presicely, given positive numbers b, (σi)i≤n and ξ1, . . . , ξn centered random variables
satisfying E ξ2i ≤ σ2

i and

P
{
|ξi| ≥ t

}
≤ 2 exp

(
−σ

2
i

b2
H
( tb
σ2
i

))
,

for any t ≥ 0. Is is true that for any t ≥ 0

P
{
|

n∑
i=1

ξi| ≥ t
}
≤ 2 exp

(
−σ

2

b2
H
( tb
σ2

))
,

where σ2 =
∑

i≤n σ
2
i ?

The same question can be asked for Bernstein’s inequality. Eventhought this formulation
is quite natural, it is not common in the literature. Indeed, we usually work with the moment
generating function, take advantage of the fact that the mgf of a sum of independent random
variables is the product of the individual mgf’s, then use Lemma 1.1 to turn a bound on the
mgf to a control on the cumulative distribution function. It would be interesting to know if
the above question has an affirmative answer.

1.2 Structure of a symmetric Bernoulli matrix

Let d, n ∈ N and ξ be a random variable following the Bernoulli distribution with pa-
rameter d/n i.e. P{ξ = 1} = d/n = 1 − P{ξ = 0}. Let B be an n × n symmetric random
matrix with zero diagonal whose entries above the diagonal are independent copies of ξ i.e.
entries of B above the diagonal are independent random variables following the Bernoulli
distribution with parameter d/n. Our goal in this subsection is to understand the structure
of such matrix. More precisely, we will see that B will inherit some of the structural proper-
ties satisfied by its expectation given by EB = d

n
C, where C denotes the n× n matrix with

zero diagonal and all other entries equal to 1. One of the nice structural properties of EB is
that it is an almost “d- double stochastic” matrix meaning that the entries in each row and
column almost sum up to d (they sum up to d(1− 1/n)). The next proposition shows how
the concentration inequalities we established imply that B is “almost d-double stochastic”
with high probability. Given ε ∈ (0, 1), we will say that an n×n matrix A with nonnegative
entries is ε-almost d-double stochastic matrix if for any 1 ≤ i, j ≤ n

1

d

∣∣∣ n∑
k=1

akj − d
∣∣∣ −→
n→∞

ε and
1

d

∣∣∣ n∑
k=1

aik − d
∣∣∣ −→
n→∞

ε.

Proposition 1.6. For any ε ∈ (0, 1) and d > 2 ln(2n)/H(ε), B is ε-almost d-double stochas-
tic with probability going to one as n tends to ∞.
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Proof. Let us denote by (εij)1≤i,j≤n the entries of B and ξij = εij − d
n

for any 1 ≤ i 6= j ≤ n.
Clearly for any given i ∈ [n], the random variables (ξij)j 6=i are independent and centered.
Moreover, we have |ξij| ≤ 1 and E ξ2ij ≤ d

n
. Given i ∈ {1, . . . , n}, let us denote by Ei the

following event

Ei =
{

(1− ε− 1/n)d ≤
n∑
k=1

εik ≤ (1 + ε− 1/n)d
}

=
{∣∣∑

k 6=i

ξik
∣∣ ≤ εd

}
.

Fix for a moment i ∈ {1, . . . , n} and apply Theorem 1.3 for the random variables (ξik)k 6=i
(with b = 1, σ2

k = d/n and t = εd) to deduce that

P
{
Ei
}
≥ 1− 2 exp (−dH(ε)) .

Using this, together with the union bound, we get

P
{ ⋂

1≤i≤n

Ei
}

= 1− P
{ ⋃

1≤i≤n

Eci
}

≥ 1− 2n exp (−dH(ε))

≥ 1− 1

2n
,

where in the last inequality we used the assumption on d.

Remark 1.7. Note that when ε is small, we have H(ε) ∼ ε2. This dependence on ε will
appear again in the next section when dealing with the Johnson-Lindenstrauss lemma. Let
us note also that the use of concentration inequality in the above proposition is artificial and
not needed since the sum of independent bernoulli variables has the binomial distribution
which would allow us to compute explicitly the desired probabilities.

Another structural property of the matrix B is that the number of non-zero entries in
a given block is comparable to a fixed proportion of the size of this block. More presicely,
given I, J ⊂ {1, . . . , n}, let us define

e(I, J) =
∣∣∣{(i, j) ∈ I × J : εij 6= 0

}∣∣∣ =
∑

(i,j)∈I×J

εij.

Note that E e(I, J) = d
n
|I| |J |. The next proposition establishes a structural property of B

which will be useful for us later.

Proposition 1.8. Let K ≥ 1 and let E1.8(K) be the event that for all subsets S, T ⊂ [n] at
least one of the following is true:

e(S, T ) ≤ 3
d

n
|S| |T |, (6)

or

e(S, T ) ln

(
e(S, T )
d
n
|S| |T |

)
≤ 3(K + 5) max(|S|, |T |) ln

(
e n

max(|S|, |T |)

)
. (7)

Then we have

P
{
E1.8(K)

}
≥ 1− 1

nK
.
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Proof. We will drop in the proof the symmetry assumption on B, and therefore suppose that
all entries of B are independent (it will be sufficient to imply the statement for the symmetric
case since the proposition is concerned with large deviation of e(S, T )). Let S, T ⊂ [n]. For
every (i, j) ∈ S × T , define ξij = εij − d

n
so that

e(S, T ) =
∑

(i,j)∈S×T

ξij +
d

n
|S| |T |.

Note that the ξij’s are independent and centered. Moreover, we have |ξij| ≤ 1 and E ξ2ij ≤ d
n
.

Let r > 0. Applying Theorem 1.3 with t = r d
n
|S| |T |, we get

P
{∣∣ ∑

(i,j)∈S×T

ξij
∣∣ ≥ r

d

n
|S| |T |

}
≤ 2 exp

(
−d
n
|S| |T |H(r)

)
.

In particular, we deduce that for any S, T ⊂ [n] and any r > 0

P
{
e(S, T ) ≥ (1 + r)

d

n
|S| |T |

}
≤ 2 exp

(
−d
n
|S| |T |H(r)

)
. (8)

Define

r1 = H−1

[
(K + 5) max(|S|, |T |)

d
n
|S| |T |

ln

(
e n

max(|S|, |T |)

)]
,

and
r0 := max(2, r1).

Note that if e(S, T ) ≤ (1 + r0)
d
n
|S| |T | then either (6) or (7) holds. Indeed, if r0 = 2 the first

property clearly holds. Otherwise, if r0 = r1 ≥ 2 then

ln

(
e(S, T )
d
n
|S| |T |

)
≤ ln(1 + r1).

Since ln(1 + r1) > 0, this implies that

e(S, T ) ln

(
(S, T )
d
n
|S| |T |

)
≤ d

n
|S| |T | (1 + r1) ln(1 + r1).

Using that (1 + r) ln(1 + r) ≤ 3H(r) for any r ≥ 2, we deduce that

e(S, T ) ln

(
e(S, T )
d
n
|S| |T |

)
≤ 3

d

n
|S| |T |H(r1) = 3(K + 5) max(|S|, |T |) ln

(
e n

max(|S|, |T |)

)
,

which means that (7) holds. From the above, we deduce that

P{Ec1.8} ≤ P
{
∃S, T ⊂ [n] : e(S, T ) > (1 + r0)

d

n
|S| |T |

}
,
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which after using (8) implies

P{Ec1.8} ≤ 2
n∑

k,`=1

(
n

k

)(
n

`

)
exp

(
−d k `

n
H(r0)

)

≤ 2
n∑

k,`=1

exp

(
k ln

(en
k

)
+ ` ln

(en
`

)
− d k `

n
H(r1)

)

≤ 2
n∑

k,`=1

exp

[
−(K + 3) max(k, `) ln

(
e n

max(k, `)

)]
≤ 2

nK+1
≤ 1

nK
,

where before the last inequality we used that max(k, `) ln
(

e n
max(k,`)

)
≥ lnn.

Remark 1.9. Let us note that (6) is destined to large sets S and T while (7) takes care of the
small ones. Indeed, we know that e(S, T ) is positive with probability equal to 1− (d/n)|S| |T |.
Therefore, if |S| |T | < n/(3d) then (6) fails with probability 1− (d/n)|S| |T |.

1.3 Johnson-Lindenstrauss flattening lemma

Another nice application of the concentration inequalities established above, is the Johnson-
Lindenstrauss lemma. Given m points in a Hilbert space, one can naturally embed these
points in Rm while preserving the Euclidean distances separating them. Our goal is to embed
these points into a smaller dimensional space. It turns out that random projections are good
embeddings, Gaussian operators as well. Using the concentration inequality established be-
fore, we will use Rademacher matrices and show that they allow to reduce the dimension of
the space containing our original set of points.

Lemma 1.10. Let ε1, . . . , εn be independent Rademacher random variables i.e. P{εi =
−1} = P{εi = 1} = 1

2
. Let X := (ε1, . . . , εn) be the n-dimensional random vector whose

coordinates are given by the εi’s. Then for any x ∈ Sn−1, the random variable η = 〈X, x〉2
satisfies

E η = 1 and E ηk ≤ e4kk! for any k ≥ 2.

Proof. Let x ∈ Sn−1. Since the εj’s are independent and centered, we have

E η = E

(
n∑
j=1

εjxj

)2

=
n∑
j=1

x2j + E
∑

1≤j 6=k≤n

εjεkxjxk = 1

Now fix k ≥ 2 and note that

ηk =

(
n∑
i=1

εixi

)2k

=
∑

p1+...+pn=2k

(
2k

p1, . . . , pn

)
εp11 . . . εpnn xp11 . . . xpnn ,
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where the multinomial coefficients are defined by(
2k

p1, . . . , pn

)
=

(2k)!

p1! . . . pn!
.

Now since the εi’s are independent, centered and εpi = εi if p is odd and εpi = 1 if p is even
then

E ηk =
∑

k1+...+kn=k

(
2k

2k1, . . . , 2kn

)
x2k11 . . . x2knn , (9)

where we only kept the even powers compared to the first equality. Using that (p/e)p ≤ p! ≤
pp for any integer p, we have(

2k

2k1, . . . , 2kn

)
≤ e4k

(
k

k1, . . . , kn

)2

≤ e4kk!

(
k

k1, . . . , kn

)
.

Plugging this in (9), we deduce that

E ηk ≤ e4kk!
∑

k1+...+kn=k

(
k

k1, . . . , kn

)
(x21)

k1 . . . (x2n)kn = e4kk!

(
n∑
i=1

x2i

)k

= e4kk!,

where the last equality follows follows from the fact that x ∈ Sn−1.

We are now ready to state and prove the main result of this subsection.

Theorem 1.11 (Johnson-Lindenstrauss’s flattening lemma). Let m,n ∈ N and ε ∈ (0, 1).
There exists N = N(m, ε) satisfying N ≤ 1 + be9ε−2 ln(2m2)c such that the following holds.
There exists a linear map A from Rn into RN such that for any set T of m points in Rn and
any x, y ∈ T , we have

(1− ε)‖x− y‖2 ≤ ‖Ax− Ay‖2 ≤ (1 + ε)‖x− y‖2.

Proof. Let N ∈ N to be specified later. Let B be the N × n random matrix whose entries
are independent Rademacher random variables. Let u ∈ Sn−1, we write

‖Bu‖22 =
N∑
i=1

〈rowi(B), u〉2,

where rowi(B) denotes the ith-row of B. For any i ≤ N , denote ηi = 〈rowi(B), u〉2, ξi = ηi−1
and note that the ξi’s are independent and |ξi| ≤ max(1, ηi) for any i ≤ N . It follows from
Lemma 1.10 that for any i ≤ N

E ηi = 1 and E ηki ≤ e4kk! for any k ≥ 2.

Therefore, the random variables (ξi)i≤N are centered and satisfy

E |ξi|k ≤ 1 + E ηki ≤ 1 + e4kk!
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Thus, denoting σ2
i := e9 and b := e4, a short calculation shows that for any i ≤ N

E ξ2i ≤ σ2
i and E |ξi|k ≤

1

2
k!σ2

i b
k−2 for any k ≥ 3.

Therefore, applying Theorem 1.5 with the random variables ξi’s and noting that
∑

i≤N ξi =
‖Bu‖22 −N , we deduce that for any u ∈ Sn−1 and any t > 0

P
{∣∣‖Bu‖22 −N ∣∣ ≥ t

}
≤ 2 exp

(
− t2

2(Ne9 + te4)

)
.

Let x, y ∈ T and ε ∈ (0, 1) and apply the above with u = (x − y)/‖x − y‖2 ∈ Sn−1 and
t = 2εN to get

P
{∣∣∣‖Bx−By‖22 −N‖x− y‖22∣∣∣ ≥ 2εN‖x− y‖22

}
≤ 2 exp

(
−ε

2N

e9

)
,

where we used that 2εe4 ≤ e9. For any x, y ∈ T , if we denote Ex,y the event

Ex,y =
{

(1− ε)‖x− y‖2 ≤
1√
N
‖Bx−By‖2 ≤ (1 + ε)‖x− y‖2

}
then the above implies that P{Ecx,y} ≤ 2 exp (−ε2Ne−9). Therefore

P
{ ⋂

(x,y)∈T×T

Ex,y
}

= 1− P
{ ⋃

(x,y)∈T×T

Ecx,y
}
≥ 1− 2|T |2 exp

(
−ε2Ne−9

)
.

The above probability is positive whenever N > e9ε−2 ln(2m2) in which case there exists
ω ∈

⋂
(x,y)∈T×T Ex,y and a corresponding linear map Bω for which the conclusion of the

Theorem holds.

Remark 1.12. Rademacher matrices are a special case of subgaussian random matrices
(matrices whose entries are iid subgaussian); these matrices are also good embeddings for
the Johnson-Lindenstrauss lemma. To avoid defining subgaussian random variables and
their properties (since this is not the subject of this course), we took a different route and
used Bernstein’s inequality eventhought it is not the ideal way to attack the above problem
in this case. Our goal was to give another application of Bernstein’s inequality.

2 Regular graphs

2.1 Introduction and definitions

A graph G is a pair of sets (V,E), where V denotes the set of vertices and E the set of
edges, formed by pairs of vertices. In these notes, we will only consider simple graphs i.e.
graphs in which there is at most one edge connecting two vertices (the general case is refered
to as a multi-graph). Moreover, we will only consider undirected graphs i.e. the set of edges

13



E is a set of unordered couples. Loops are not allowed meaning that we cannot have an edge
connecting a vertex to itself. Therefore, in what follows, all graphs are supposed to be
undirected, simple and without loops. We will always label vertices from 1 to n and
take V = {1, . . . , n}. Therefore, two vertices i and j are connected by an edge if (i, j) ∈ E.

Given S ⊂ [n], we define its (edge) boundary ∂S as the set of edges connecting S to [n]\S
i.e.

∂S = {(i, j) ∈ E : i ∈ S and j 6∈ S}.
The edge expanding constant, or edge isoperimetric constant of G, is defined by

h(G) = inf
{ |∂S|
|S|

: S ⊂ [n], |S| ≤ n/2
}
.

The edge isoperimetric constant measures the “quality” of G as a network: if h(G) is large,
then many edges connect any subset of vertices to its complementary meaning that the
information transmitted from each vertex propagates well through the network.

To illustrate this, let us first consider the complete graph G1 on n vertices i.e. the graph
where each vertex is connected to all others. Then for any S ⊂ [n], we have |∂S| = |S|(n−|S|)
which implies that h(G1) = n − bn/2c ∼ n/2. Now consider the cycle G2 on n vertices i.e.
the graph where each vertex i is connected to the (i+ 1)th vertex for any 1 ≤ i ≤ n− 1 and
the nth vertex connected to the first one. Then taking S = [n/2], we have |∂S| = 2 which
implies that h(G2) ≤ 2

bn/2c ∼
4
n
. Therefore, we see that h(·) captures the connectivity of the

graph. This leads us to the definition of expanders, a family of graphs where an information
propagates quickly through the graph.

Definition 2.1. A family of graphs Gn = ([n], En) is a family of expanders if there exists
δ > 0 such that h(G) ≥ δ for every n ∈ N.

Following this definition, we see that a sequence of complete graphs is a family of ex-
panders while a sequence of cycles is not. In the construction of a “good” network, one
should try to achieve a good connectivity while keeping the number of edges as low as pos-
sible. To this aim, we will unify the number of edges at any particular vertex and define the
following class of graphs.

Definition 2.2. Given d, n ∈ N with d ≤ n. A graph G = ([n], E) is d-regular if for every
vertex i ∈ [n], the set {j ∈ [n] : (i, j) ∈ E} is of cardinality d.

Informally speaking, an undirected graph is k regular if each vertex has exactly k neigh-
bors (counting possibly the vertex itself in case of a loop). With this definition, the complete
graph on n vertices is (n− 1)-regular and the cycle is 2-regular.

To every graph G on n vertices, we can naturally associate an n × n matrix A, called
Adjacency matrix of G, defined by

aij = 1 if (i, j) ∈ E and 0 otherwise.

Note that A completely determines the graph G. Moreover, since the graph G is undirected
and without loops, then A is symmetric with zero diagonal. For example, the adjacency
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matrix of the complete graph is the n × n matrix whose all entries are equal to one except
those on the diagonal which are equal to zero. Note that G is d regular if its adjacency
matrix is d-double stochastic.

The spectrum of a graph G is the spectrum of its adjacency matrix. We will list these
eigenvalues in the non-increasing order

λ1 ≥ λ2 ≥ . . . ≥ λn.

We will see how the expansion properties of the graph are related to some of its spectral
properties. Let us first start with a basic property of the spectrum of a d-regular graph.

Proposition 2.3. Let G be a d-regular graph on n vertices. Then

λ1 = d ≥ λ2 ≥ . . . ≥ λn ≥ −d.

Proof. Let A be the adjacency matrix of G. First we show that |λ| ≤ d for any eigenvalue
λ. Let x be an eigenvector associated with the eigenvalue λ i.e. Ax = λx. Let i0 ∈ [n] be
such that |xi0 | = ‖x‖∞. Then, we can write

|λxi0| =
∣∣ n∑
j=1

Ai0jxj
∣∣ ≤ max

1≤j≤n
|xj|

∣∣ n∑
j=1

Ai0j
∣∣ = d |xi0 |,

which implies that |λ| ≤ d.
Now note that A1 = d1 where 1 is the n-dimensional vector with all coordinates equal

to 1. Therefore, 1 is an eigenvector of A associated with the eigenvalue d. This, together
with the above, implies that λ1 = d.

2.2 Edge expansion and the spectral gap

The isoperimetric problem started with Elissar (also known as Dido), the Phoenician
queen of Carthage. When she arrived in 814BC on the coast of Tunisia, she asked for a
piece of land. Her request was satisfied provided that the land could be encompassed by an
ox-hide. She sliced the hide into very thin strips, tied them together, and was able to enclose
a sizable area which became the city of Carthage.

The problem was to find, among all figures with the same perimeter, the one which
maximizes the area. More generally, it is about establishing inequalities between the area
and the perimeter, or the volume and the surface. In the graph setting, we consider a subset
of vertices. One can see the number of vertices a set S contains as its volume. Then, one
could define the boundary of S as being the vertices which are connected to its complement.
Instead, we will look at the “edge boundary” which is the set of edges connecting S to its
complement. Then finding a relation between the volume of S and its boundary reduces
to estimating the edge expansion constant we introduced above. In this subsection, we will
give upper and lower bounds on h(G) in terms of the spectrum of G. These inequalities are
sometimes referred to as isoperimetric inequalities.
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Lemma 2.4. Let G = ([n], E) be a d-regular graph on n vertices. Then for any S ⊂ [n] with
|S| ≤ n/2, we have

|∂S|
|S|
≥ (d− λ2)(1−

|S|
n

).

Proof. Let S ⊂ [n] be such that |S| ≤ n/2. Denote 1S the n-dimensional vectors whose
coordinates indexed by S are equal to 1 and the remaining are zero. With this notation, we
have 1Sc = 1 − 1S, where 1 is the n-dimensional vector with all coordinates equal to one.
Now notice that

|∂S| = |EG(S, Sc)| =
∑

i∈S,j∈Sc
aij,

where (aij)i,j≤n denote the entries of the adjacency matrix A of G. Therefore, we can write

|∂S| = 〈A1Sc ,1S〉 = 〈A1,1S〉 − 〈A1S,1S〉 = d|S| − 〈A1S,1S〉, (10)

where in the last equality we used that 1 is an eigenvector associated with the eigenvalue d
and that 〈1,1S〉 = |S|. It follows from the spectral theorem (and that λ1 = d established
in Proposition 2.3) that A = d

n
11t + λ2 v2v

t
2 + . . . + λn vnv

t
n, where (vi)2≤i≤n denote the

normalized eigenvectors associated with the eigenvalues (λi)2≤i≤n. Plugging this back in
(10), we get

|∂S| = d|S| − d

n
|S|2 −

n∑
i=2

λi〈1S, vi〉2 ≥ d|S| − d

n
|S|2 − λ2

n∑
i=2

〈1S, vi〉2.

Since 1√
n
1, v2, . . . , vn form an orthonormal basis of Rn, then

|S| = ‖1S‖22 =
1

n
〈1,1S〉2 +

n∑
i=2

〈1S, vi〉2 =
|S|2

n
+

n∑
i=2

〈1S, vi〉2.

Therefore, we deduce that

|∂S| ≥ d|S| − d

n
|S|2 − λ2|S|+

λ2
n
|S|2.

This implies that
|∂S|
|S|
≥ (d− λ2)−

d− λ2
n
|S|,

and finishes the proof.

The next theorem shows the relation between the expansion properties of a d-regular
graph (captured by h(·)) and its spectrum. It shows that whenever the gap between the
largest eigenvalue (which is equal to d) and the second largest eigenvalue is big, then the
edge expansion constant is big which means the graph tends to be a good expander. Inversely,
whenever this gap gets smaller, the edge expansion constant decreases. For instance, the
adjacency matrix of the complete graph has one eigenvalue equal to n− 1 and all others are
equal to −1. This means that the gap between the two largest eigenvalues is big, and we
already saw that its edge expansion constant is large as well.

16



Theorem 2.5 (Alon-Milman). Let G = ([n], E) be a d-regular graph on n vertices. Then

d− λ2
2
≤ h(G) ≤

√
2d(d− λ2).

Proof. The first inequality follows easily from Lemma 2.4. To prove the second inequality,
we will show the existence of a set S with |S| ≤ n/2 such that

|∂S|
|S|
≤
√

2d(d− λ2). (11)

Let v2 be the eigenvector associated with the eigenvalue λ2. Let u be the n-dimensional
vector whose positive coordinates coincide with those of v2 and the remaining are zero.
Without loss of generality, we may assume that ‖u‖∞ = 1 and |suppu| ≤ n/2 (otherwise we
renormalize v2 for the first assumption, and replace v2 by −v2 for the second assumption).

Let γ be a random variable uniformly distributed on [0, 1]. We consider the random set

S := {i ∈ suppu : u2i ≥ γ}.

We will show that there exists a realization of S satisfying (11). First note that |S| ≤ n/2
by construction.

|∂S| =
∑

(i,j)∈S×Sc
aij =

∑
i,j∈suppu

aijχ{i∈S,j 6∈S},

where χ denotes the indicator function. Therefore,

E|∂S| =
∑

i,j∈suppu

aij P{i ∈ S and j 6∈ S} =
∑

i,j∈suppu
uj≤ui

aij P{u2j ≤ γ ≤ u2i }.

Now, using that P{u2j ≤ γ ≤ u2i } = u2i − u2j , we get

E|∂S| =
∑

i,j∈suppu
uj≤ui

aij (u2i − u2j) =
1

2

∑
i,j∈suppu
uj≤ui

aij (u2i − u2j) +
1

2

∑
i,j∈suppu
ui≤uj

aji (u
2
j − u2i ).

Since A is symmetric, we deduce from the above that

E|∂S| = 1

2

∑
i,j∈suppu
uj≤ui

aij |u2i − u2j |+
1

2

∑
i,j∈suppu
ui≤uj

aij |u2j − u2i | =
1

2

∑
i,j∈suppu

aij |u2i − u2j |.

Writing that |u2i − u2j | = |ui − uj| |ui + uj| then using Cauchy-Schwarz inequality and that
a2ij = aij, we can write

E|∂S| ≤ 1

2

( ∑
i,j∈suppu

aij (ui − uj)2
) 1

2
( ∑
i,j∈suppu

aij (ui + uj)
2

) 1
2

. (12)
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Using that A is d-double stochastic, we have∑
i,j∈suppu

aij u
2
i ≤ d‖u‖22. (13)

Moreover,

〈Au, u〉 = 〈A(u− v2), u〉+ 〈Av2, u〉 = 〈A(u− v2), u〉+ λ2〈v2, u〉 = 〈A(u− v2), u〉+ λ2‖u‖22.

Since 〈A(u− v2), u〉 ≥ 0 (which follows from the fact that all coordinates of u− v2 and u are
non negative), the above implies that∑

i,j∈suppu

aijuiuj = 〈Au, u〉 ≥ λ2‖u‖22. (14)

Putting together (12), (13), (14) and using that 〈Au, u〉 ≤ d‖u‖22, we deduce that

E|∂S| ≤
√

2d(d− λ2) ‖u‖22.

Now notice that

E |S| =
∑

i∈suppu

P{i ∈ S} =
∑

i∈suppu

P{γ ≤ u2i } =
∑

i∈suppu

u2i = ‖u‖22.

Therefore, we have
E|∂S| ≤

√
2d(d− λ2)E |S|,

which implies the existence of a set S of size at most n/2 satisfying (11).

It follows from the previous statement that the graph is connected if and only if λ2 < d.
Indeed, G is disconnected if and only if there exists S ⊂ [n] such that EG(S, Sc) = ∅ which
means that h(G) = 0 and thus equivalent to λ2 = d by Theorem 2.5. The previous theorem
suggests that if one want a graph to have good expansion, it needs to have a large spectral
gap. The next theorem shows how big can a spectral gap be. Let us define

λ := λ(G) = max(|λ2|, |λn|).

Theorem 2.6 (Alon-Boppana). There exists a positive constant C such that the following
holds. For any d-regular graph on n vertices, we have

λ ≥ 2
√
d− 1

(
1− C ln2 d

ln2 n

)
.

We will not give a proof of the above theorem here (see [9]). Instead, we state and prove
a weaker version.

Proposition 2.7. For any d-regular graph on n vertices, we have

λ ≥
√
d
(

1− d− 1

n− 1

)
.
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Proof. Using that A is d-double stochastic, it is easy to see that

Tr(A2) =
∑

1≤i,j≤n

a2ij =
∑

1≤i,j≤n

aij = nd.

On the other hand, since (λ2i )i≤n are the eigenvalues of A2, we can write

Tr(A2) =
n∑
i=1

λ2i = d2 +
n∑
i=2

λ2i ≤ d2 + (n− 1)λ2.

Therefore, we deduce that

λ2 ≥ d(n− d)

n− 1
,

and finish the proof.

We saw in Theorem 2.5 that a large spectral gap implies good expansion properties for
the corrsponding graph. On the other hand, Theorem 2.6 indicates how big can the spectral
gap be, meaning how good of an expander a graph can be. This motivates the following
definition.

Definition 2.8 (Ramanujan graphs). A d-regular graph on n vertices is called Ramanujan,
if

λ ≤ 2
√
d− 1.

A family of Ramanujan graphs is of course a family of expanders. By the remark above,
these are the best expanders. An important line of research is to construct such families.
However, only recently the existence of Ramanujan graphs of all degrees was established [8].
This will not be the subject of this course, instead we will investigate random graphs.

2.3 Random regular graphs

As we mentioned above, constructing Ramanujan graphs is not an easy task. We turn our
attention to random graphs and see if they are suitable candidates for being good expanders.
There are several ways to introduce randomness in a graph. The model which will be
considered in this course is the Erdös-Renyi graph G(n, p) where we decide to put an edge
between two different vertices independently with the same probability p. We will write
p = d/n for some d ≤ n. The corresponding adjacency matrix to G(n, p) is an n × n
symmetric matrix with zero diagonal whose entries above the diagonal are independent
Bernoulli variables with parameter d/n.

We saw in Proposition 1.6 that such a symmetric Bernoulli matrix is almost d-double
stochastic with high probability, provided that d & lnn. Therefore, whenever d & lnn, the
Erdös-Renyi graph is almost d-regular with high probability. We may therefore investigate
if it is almost Ramanujan by studying its spectral gap i.e. the gap between the largest and
the second largest (in absolute value) eigenvalue. This will be the target of this subsection,
but first let us note that when d . lnn the graph cannot be a good expander as it contains
isolated vertices i.e. vertices with no edges on them.
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Proposition 2.9. Let ε ∈ (0, 1) and suppose that d . ln(εn). Then

P
{
∃ an isolated vertex in G(n, d/n)

}
≥ 1− ε.

Proof. For any i ≤ n, define Ei = {vertex i is isolated}. Clearly, we have

P{Ei} =
(

1− d

n

)n−1
.

Moreover, for any i, j ∈ [n], it is not difficult to see that

P
{
Ei ∩ Ej

}
=
(

1− d

n

)2n−3
.

Let η denote the number of isolated vertices. We have

η =
∑
i≤n

χi,

where χi denotes the indicator function of the event Ei. From the above, we have

E η = n
(

1− d

n

)n−1
and E η2 = n

(
1− d

n

)n−1
+ n(n− 1)

(
1− d

n

)2n−3
. (15)

Now the Paley-Zygmund inequality implies that for any θ ∈ (0, 1), we have

P
{
η ≥ θE η

}
≥ (1− θ)2 (E η)2

E η2
.

This, together with (15) implies

P
{
η ≥ θn

(
1− d

n

)n−1}
≥ (1− θ)2

n
(

1− d
n

)n−1
1 + (n− 1)

(
1− d

n

)n−2 .
Now if ε ∈ (0, 1) and d . ln(εn), one can check that

P
{
η & θ/ε

}
≥ (1− θ)2(1− ε).

Choosing θ of the correct order finishes the proof.

In the remaining, we will consider the case where d & lnn and show that in this setting
G(n, d/n) has a large spectral gap. We denote by B its adjacency matrix which is a symmetric
n × n matrix having independent Bernoulli entries with parameter d/n on and above the
diagonal. The main theorem in this subsection is the following.

Theorem 2.10. For any K > 0, there exists C = C(K) such that the following holds. Let
d, n ∈ N. Denote λ the second largest (in absolute value) eigenvalue of G(n, d/n). Then

P
{
λ ≥ C

√
d
}
≤ 1

nK
.
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Let us start first by characterizing the second largest (in absolute value) eigenvalue. The
following is a special case of the courant-Fisher formula.

Proposition 2.11. Let A be an n×n symmetric matrix and let λ denotes its second largest
(in absolute value) eigenvalue. Then

λ = min
z∈Sn−1

max
x∈Sn−1∩z⊥

‖Ax‖2 = min
z∈Sn−1

max
x,y∈Sn−1

x⊥z

〈Ax, y〉.

Proof. Let (λi)i≤n be the eigenvalues of A and suppose that |λ1| ≥ |λ2| ≥ . . . ≥ |λn|. From
the spectral theorem, we can write A =

∑n
i=1 λiviv

t
i where vi are the normalized eigenvectors

corresponding to the eigenvalues (λi)i≤n. Let z ∈ Sn−1 and x ∈ z⊥ ∩ span{v1, v2} ∩ Sn−1
(the latter is non-empty since z⊥ is of dimension n− 1 and span{v1, v2} is of dimension 2).
Then using that x is orthogonal to all but v1 and v2, we get

‖Ax‖22 = ‖
∑
i≤n

λi〈x, vi〉vi‖22 = λ21〈x, v1〉2 + λ22〈x, v2〉2 ≥ λ22.

Since shows that
|λ2| ≤ min

z∈Sn−1
max

x∈Sn−1∩z⊥
‖Ax‖2.

On the other hand, taking z = v1 one gets the reverse inequality.

Having in mind that Ramanujan graphs have their second largest eigenvalue of order√
d, we will try to show that with high probability the same holds for G(n, d/n). Using

Proposition 2.11, and choosing z = 1 the n-dimensional vector whose all coordinates are
equal to one, it is sufficient to show that

P
{

max
x,y∈Sn−1

x⊥1

〈Bx, y〉 &
√
d
}
−→
n→∞

0.

Let us denote

Sn−10 = 1⊥ ∩ Sn−1 = {x ∈ Sn−1 :
n∑
i=1

xi = 0}

and for any (x, y) ∈ Sn−10 × Sn−1 the event

Ex,y =
{
〈Bx, y〉 &

√
d
}
.

Then our task is to show that

P
{ ⋃

(x,y)∈Sn−1
0 ×Sn−1

Ex,y
}
−→
n→∞

0.

Similarly to previous arguments in these notes, we would like to estimate P{Ex,y} for a fixed
(x, y) then use a union bound argument to bound the above quantity. This motivates us to
try to discretize the sphere and show that controlling 〈Bx, y〉, for x, y in some discrete set,
is sufficient in order to bound it for all other vectors of the sphere.
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Definition 2.12 (ε-Net). Given ε > 0 and S ⊂ Sn−1, we say that N ⊂ S is an ε-net of S
if for any x ∈ S, there exists y ∈ N such that ‖x− y‖2 ≤ ε.

In the next lemma, we will show that there always exists an ε-net of suitable cardinality.

Lemma 2.13 (Net construction). Given ε > 0 and S ⊂ Sn−1, there exists an ε-net N of S
satisfying

|N | ≤ (1 + 2/ε)n.

Proof. Let N = {y1, . . . , ys} ⊂ S be an ε-separated set of maximal size i.e.

‖yi − yj‖2 > ε ∀i 6= j,

and the above property is violated if one adds an element to N . Therefore, for any x ∈ S,
the set S ∪ {x} is not ε-separated. Thus, there exists i ≤ s such that ‖x − yi‖2 ≤ ε. This
implies that N is an ε-net of S.

Let us now estimate its cardinality. Note that since the yi’s are ε-separated, then the
Euclidean balls B(yi, ε/2) of center yi and radius ε/2 are disjoint. Moreover, since the yi’s
belong to the sphere then

s⋃
i=1

B(yi, ε/2) ⊆ B(0, 1 + ε/2).

Therefore, using that B(yi, ε/2) (i = 1, . . . , s) are disjoint, we get

Vol
( s⋃
i=1

B(yi, ε/2)
)

=
s∑
i=1

Vol
(
B(yi, ε/2)

)
≤ Vol

(
B(0, 1 + ε/2)

)
.

This implies that

s
(ε

2

)n
≤
(

1 +
ε

2

)n
,

which after rearrangement finishes the proof.

Now that we saw how to construct a net, we need to check that controlling the quantity
〈Bx, y〉 for vectors from the net implies a control for all other vectors. This is done in the
next lemma.

Lemma 2.14. Let ε ∈ (0, 1/2), Nε an ε-net of Sn−1, N 0
ε an ε-net of Sn−10 , and A be an

n × n matrix. If |〈Ax, y〉| ≤ β for all (x, y) ∈ Nε ×N 0
ε , then |〈Ax, y〉| ≤ β/(1 − 2ε) for all

(x, y) ∈ Sn−1 × Sn−10 .

Proof. Let (x0, y0) ∈ Sn−1 × Sn−10 be such that a := sup(x,y)∈Sn−1×Sn−1
0
〈Ax, y〉 = 〈Ax0, y0〉.

By the definition of Nε and N 0
ε , there exist (x′0, y

′
0) ∈ Nε × N 0

ε such that ‖x0 − x′0‖2 ≤ ε
and ‖y0 − y′0‖ ≤ ε. Using this, together with the fact that the normalized difference of two
elements in Sn−10 remains in Sn−10 , we get

〈Ax0, y0〉 = 〈A(x0 − x′0), y0〉+ 〈Ax′0, y0 − y′0〉+ 〈Ax′0, y′0〉
≤ a‖x0 − x′0‖2 + a‖y0 − y′0‖2 + sup

(x,y)∈Nε×N 0
ε

|〈Ax, y〉|.
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This, together with the hypothesis of the lemma, implies that

a ≤ 2ε a+ β,

which gives that a ≤ β/(1− 2ε).
Now let (x, y) ∈ Sn−1 × Sn−10 . By the definition of Nε and N 0

ε , there exist (x′, y′) ∈
Nε ×N 0

ε such that ‖x− x′‖2 ≤ ε and ‖y − y′‖ ≤ ε. One can easily check that

〈Ax, y〉 = 〈A(x− x′), y〉+ 〈Ax′, y − y′〉+ 〈Ax′, y′〉 ≤ 2εa+ β ≤ β

1− 2ε
,

and finish the proof.

Once the net is constructed, we can focus on estimating the probability of Ex,y for fixed
(x, y) ∈ Sn−10 × Sn−1. Let us try describing the strategy of the proof. First note that

〈Bx, y〉 =
∑

1≤i<j≤n

εijxjyi +
∑

1≤j<i≤n

εijxjyi,

which implies that

P
{
〈Bx, y〉 ≥ 2C

√
d
}
≤ P

{ ∑
1≤i<j≤n

εijxjyi ≥ C
√
d
}

+ P
{ ∑

1≤j<i≤n

εijxjyi ≥ C
√
d
}
,

where C is a universal constant. We may then focus on estimating one of the terms above as
the second could be treated in a similar manner. The main advantage is that when i < j the
random variables εij are independent and we may therefore use the concentration inequality
established at the beginning of these notes in order to control the large deviation of a sum
of independent random variables. Let us denote αij = εijxjyi for any i, j ∈ [n]. Then
|αij| ≤ ‖x‖∞ ‖y‖∞ and

Eαij =
d

n
xjyi and Eα2

ij =
d

n
x2jy

2
i .

We can therefore use Theorem 1.3 (with b = ‖x‖∞ ‖y‖∞, σ2
ij = d

n
x2jy

2
i and t ∼

√
d) to deduce

that

P
{∣∣ ∑

1≤i<j≤n

(
εij −

d

n

)
xjyi

∣∣ & √d} ≤ 2 exp

(
− d

n‖x‖2∞‖y‖2∞
H
( n√

d
‖x‖∞‖y‖∞

))
.

It is easy to check that when ‖x‖∞‖y‖∞ &
√
d/n then the probability estimate above is al-

ways smaller than exp(−n). Having in mind the union bound argument over the constructed
net of size ∼ exp(n), this suggests that the strategy will fail when ‖x‖∞‖y‖∞ &

√
d/n. This

motivates the following splitting of the vectors x and y depending on the order of magnitude
of their coordinates. Given (x, y) ∈ Sn−10 × Sn−1, let us define

L(x, y) :=
{

(i, j) ∈ [n]2 : |xjyi| ≤
√
d/n
}

and H(x, y) :=
{

(i, j) ∈ [n]2 : |xjyi| >
√
d/n
}
.

The notation L(x, y) stands for light couples whileH(x, y) refers to heavy couples. From what
is described above, we will be able to deal with the light part using Bennett’s inequality.
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Lemma 2.15. Let (x, y) ∈ Sn−10 × Sn−1. Then for any t > 0 we have

P
{∣∣∣ ∑

(i,j)∈L(x,y)

xjyiεij

∣∣∣ ≥ (1 + 2t)
√
d
}
≤ 4 exp

(
− nH(t)

)
.

Proof. Let (x, y) ∈ Sn−10 × Sn−1. First notice that for any t > 0

P
{∣∣∣ ∑

(i,j)∈L(x,y)

xjyi
(
εij − E εij

)∣∣∣ ≥ 2t
√
d
}
≤ P

{∣∣∣ ∑
(i,j)∈L(x,y), i<j

xjyi
(
εij − E εij

)∣∣∣ ≥ t
√
d
}

+ P
{∣∣∣ ∑

(i,j)∈L(x,y), i>j

xjyi
(
εij − E εij

)∣∣∣ ≥ t
√
d
}
.

Setting αij = xjyi
(
εij−E εij

)
for any (i, j) ∈ L(x, y), we have that |αij| ≤ |xjyi| ≤

√
d/n and

Eα2
ij ≤ d/n. Applying Theorem 1.3 to the independent centered random variables (αij)i<j,

we get

P
{∣∣∣ ∑

(i,j)∈L(x,y), i<j

xjyi
(
εij − E εij

)∣∣∣ ≥ t
√
d
}
≤ 2 exp (−nH(t)) ,

where we used that
∑

i<j Eα2
ij ≤ d/n since x, y ∈ Sn−1. Obviously, the same inequality

holds for (αij)i>j. Therefore, we deduce that

P
{∣∣∣ ∑

(i,j)∈L(x,y)

xjyi
(
εij − E εij

)∣∣∣ ≥ 2t
√
d
}
≤ 4 exp (−nH(t)) . (16)

Since the coordinates of x sum up to zero, we have for any i ≤ n:∣∣∣ ∑
j∈{k: (i,k)∈L(x,y)}

xjyi

∣∣∣ =
∣∣∣ ∑
j∈{k: (i,k)∈H(x,y)}

xjyi

∣∣∣ ≤ ∑
j∈{k: (i,k)∈H(x,y)}

(xjyi)
2

√
d/n

,

where in the last inequality we used that |xjyi| ≥
√
d/n for (i, j) ∈ H(x, y). Summing the

previous inequality over all rows and using the condition ‖x‖ = ‖y‖ = 1, we get∣∣∣ ∑
(i,j)∈L(x,y)

xjyiE εij
∣∣∣ =

d

n

∣∣∣ ∑
(i,j)∈L(x,y)

xjyi

∣∣∣ ≤ √d
This, together with (16), finishes the proof.

For the heavy couples, we will assume the following result of Kahn-Szeméredi [7] who
show that for any matrix having the nice structural properties as in Proposition 1.8, its
action on the heavy couples can be controlled.

Lemma 2.16 (Kahn-Szeméredi). For any K > 0, there exist β depending only on K such
that the following holds. If A ∈ E1.8(K) then for any x, y ∈ Sn−1, we have∣∣∣ ∑

(i,j)∈H(x,y)

xjyiAi,j

∣∣∣ ≤ β
√
d.
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We have now all ingredients in place to prove the main Theorem.

Proof of Theorem 2.10. Let K ≥ 1 and let β be the constant coming from Lemma 2.16.
Moreover let r := H−1(1 + ln 81) and denote

E := {λ ≥ 2(β + r)
√
d}.

From Proposition 2.11, we have

P{E | E1.8} ≤ P
{
∃(x, y) ∈ Sn−10 × Sn−1 such that |〈Bx, y〉| ≥ 2(1 + β + 2r)

√
d | E1.8

}
.

Let N be a 1/4-net of Sn−1 and N0 a 1/4-net of Sn−10 . Using Lemma 2.13 we may take N
and N0 such that max(|N |, |N0|) ≤ 9n. Applying Lemma 2.14, we get

P{E | E1.8} ≤ P
{
∃(x, y) ∈ N0 ×N such that |〈Bx, y〉| ≥ (1 + β + 2r)

√
d | E1.8

}

≤ (81)n max
(x,y)∈Sn−1

0 ×Sn−1
P
{
|〈Bx, y〉| ≥ (1 + β + 2r)

√
d | E1.8

}
. (17)

Now, given (x, y) ∈ Sn−10 × Sn−1, note that

|〈Bx, y〉| ≤
∣∣∣ ∑
(i,j)∈L(x,y)

xjyiεi,j

∣∣∣+
∣∣∣ ∑
(i,j)∈H(x,y)

xjyiεi,j

∣∣∣.
From Lemma 2.16, we have

∣∣∣∑(i,j)∈H(x,y) xjyiεi,j

∣∣∣ ≤ β
√
d whenever B ∈ E1.8. Therefore,

from the above and (17), we get

P{E | E1.8} ≤ (81)n max
(x,y)∈Sn−1

0 ×Sn−1
P
{∣∣∣ ∑

(i,j)∈L(x,y)

xjyiεi,j

∣∣∣ ≥ (1 + 2r)
√
d | E1.8

}
≤ (81)n

P{E1.8}
max

(x,y)∈Sn−1
0 ×Sn−1

P
{∣∣∣ ∑

(i,j)∈L(x,y)

xjyiεi,j

∣∣∣ ≥ (1 + 2r)
√
d
}
,

which after applying Lemma 2.15 (with t = r) implies that

P{E | E1.8} ≤
(81)n

P{E1.8}
4 exp (−nH(r)) ≤ 4e−n

P{E1.8}
,

by the choice of r. To finish the proof, note that

P{E} ≤ P{E | E1.8}P{E1.8}+ P{Ec1.8}

and use the estimate established above together with the one obtained in Proposition 1.8.
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Remark 2.17. In the above subsection, we investigated the homogeneous Erdös-Renyi graph
G(n, d/n) and established the spectral gap in the dense regime. This model is not very
convenient in applications for several reasons. The first one is that people’s connections
tend to be dependent while in this model we supposed their independence. Another reason
is that it is more realist to define an inhomogeneous model where some weight is put on
each edge favoring for example connections among communities. One can therefore define
the model G(n, P ), where P = (pij)1≤i,j≤n is a symmetric double stochastic matrix, where
vertices i and j are connected with probability pij. One can study the expansion properties
of such model in terms of the matrix P .

Another model of interest is by dropping the independence assumption. This can be done
by considering the following model. Let Gn,d the set of all undirected graphs on n vertices.
Then consider G a random graph uniformly distributed on Gn,d. The adjacency matrix is a
symmetric n×n random matrix which is d-double stochastic. The main difficulty here is the
dependence between the entries of this matrix. It was conjectured by Alon [1] and proved by
Friedman [6] (and later by Bordenave [2]) that for d fixed, this model has a largest possible
spectral gap with high probability i.e. it is almost Ramanujan with high probability. It
was later conjectured by Vu [11] that the same phenomenon holds for dense graphs, more
precisely for any d ≤ n/2. Broder, Frieze, Suen and Upfal [3] verified this for d ≤

√
n and

Cook, Goldstein and Johnson [4] for d ≤ n2/3. Very recently, with Konstantin Tikhomirov
[10], we answered this question by bounding the spectral gap for any

√
n ≤ d ≤ n/2. The

proof follows similar analysis to the proof described in this subsection. The only difference
is that Bennett’s inequality is not usable because of the lack of independence. The whole
difficulty is therefore to establish a similar inequality which deals with dependent random
variables, where the dependence is dictated by the uniform model on Gn,d.
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[7] J. Friedman, J. Kahn, E. Szemerédi, On the second eigenvalue of random regular graphs,
Proceedings of the twenty-first annual ACM symposium on Theory of computing (1989),
587–598.

[8] A. Marcus, D. A. Spielman, and N. Srivastava, Interlacing families I: Bipartite Ramanu-
jan graphs of all degrees, Ann. of Math. 182 (2015), 307-325.

[9] S. Hoory, N. Linial, and A. Wigderson, Expander graphs and their application, Bull
Am Math Soc (N.S.) 43(4) (2006), 439-561.

[10] K. Tikhomirov, P. Youssef, The uniform model for d-regular graphs: concentration
inequalities for linear forms and the spectral gap, Preprint.

[11] V. Vu, Random discrete matrices, in Horizons of combinatorics, 257–280, Bolyai Soc.
Math. Stud., 17, Springer, Berlin. MR2432537

Pierre Youssef,

Laboratoire de Probabilités et de Modèles aléatoires, Université Paris Diderot,
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