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California is improving disaster preparedness and response 
through wildfire modeling 

 

 
Firefighters during the 2015 Valley Fire in Lake County, California. Photo courtesy of Reuters. 

 

Increased incidences of natural disasters such as wildfires are an expected byproduct of climate 
change [1]. Wetter winters, drier summers, and hotter temperatures are predicted for North 
America’s west coast in coming years, with recent atmospheric rivers putting California in even 
further danger of a worsened wildfire season [2]. In preparation for a major fire disaster, 
California must leverage modern technologies such as wildfire spread models. 

High-intensity fires as seen in recent years have innumerable consequences beyond 
environmental destruction. In addition to potential burns and injuries, wildfires severely impact 
pulmonary function and strain cardiac conditions [3]. Wildfire smoke can also endanger 
pregnancies and lead to pre-term birth and low birth weight [4]. Aerosols due to biomass burning 
can even affect atmospheric chemistry, with a recent study [5] showing chemical processes in the 
atmosphere involving wildfire smoke contribute to mid-latitude ozone depletion. 

Smoke can be transported on continental scales to areas far removed from wildfire 
activity, further magnifying harmful effects [6]. The long-range transport of wildfire smoke 
points to the critical coupling of wildfires with the atmosphere, where both the spread of the fire 
and the state of the atmosphere have a strong influence on one another. Large wildfires can also 
lead to atmospheric phenomena such as firestorms, where heat from a wildfire can create its own 
wind system.  
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The importance of forecasting wildfire behavior has led to the creation of a wide array of 
computational models for predicting the course of a fire. These wildfire models range from 
simple models for fire spread to complex models which consider coupling to the atmosphere [7]. 
For these models to be useful, they must be both accurate and efficient enough to use in real-
time, without relying on large computational resources.  

One popular wildfire spread model is the coupled atmosphere-wildfire model WRF-SFIRE. It 
combines the Weather Research and Forecasting Model (WRF) with SFIRE, a fire spread model 
based on the semi-empirical fire spread rate formula introduced by Richard C. Rothermel in 
1972 [8]. The fire spread model SFIRE accounts for terrain, fuel parameters, and environmental 
conditions, allowing it to predict wildfire spread for a range of conditions. WRF-SFIRE 
can further be coupled [9] to the atmospheric chemistry model WRF-Chem, which allows for 
more complex simulations of smoke dispersion and atmospheric chemistry, critical for air quality 
considerations [10]. 

The coupled atmosphere-wildfire model WRF-SFIRE [11] uses surface winds from the 
atmospheric model, along with terrain and fuel information, to drive fire spread. The model then 
captures the output of heat from the fire to the atmosphere. The heat released by the fire 
influences the state of the atmosphere, which then feeds back into the fire spread model through 
the altered surface winds. Smoke adds yet another variable to be considered.  

 
Snapshot of WRF-SFIRE simulation with green representing unburnt areas and black representing burnt areas. 

Smoke tracers are displayed in grey. Photo courtesy of Bryan Shaddy. 

Over the last decade, WRF-SFIRE has been refined with the addition of features expanding its 
applicability to real-world cases, including advances such as the ability to initialize 
simulations from a perimeter [12] rather than a single ignition point. Remote sensing of wildfires 
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in the form of satellite measurements has also improved immensely in both quality and 
availability. Satellite detections of active fire locations are collected approximately four times a 
day by the Visible Infrared Imaging Radiometer Suite (VIIRS) [13] aboard the Suomi-NPP and 
NOAA-20 weather satellites, with additional detections coming from its predecessor MODIS and 
geostationary satellites from the GOES program.  

With the availability of satellite measurements of wildfires, there is significant interest in 
incorporating these measurements into wildfire models. One recent application uses a machine 
learning method, known as a support vector machine (SVM), along with satellite detections to 
predict the times a wildfire front arrived at any given location over the course of a fire, known as 
the fire arrival times. These fire arrival times contain information about the history of wildfire 
spread for a given fire. By providing this information to WRF-SFIRE, the model can initiate 
forecasts [14] from the current state of a wildfire and produce forecasts of future wildfire spread, 
consistent with measurements.  

While the SVM method provides a way to infer fire arrival times from satellite measurements, it 
does not explicitly account for the physical processes inherent in the fire-spread process, or the 
randomness associated with wildfire systems. Earlier this year, University of Southern California 
(USC) Mechanical Engineering Ph.D. student Bryan Shaddy presented work on "Deep-Learning 
Based Estimation of the Initial Atmospheric State for Wildfire Prediction" [15] at the American 
Meteorological Society’s 103rd Annual Meeting, completed alongside colleagues at USC, San 
Jose State University, University of Colorado Denver, University of Utah, and the Colorado 
State University Cooperative Institute for Research in the Atmosphere. 

This work aims to improve upon the SVM method for determining fire arrival times from 
satellite measurements by accounting for the probabilistic relationship between measurements 
and true fire states, in addition to incorporating some physics into the predictions via the training 
data used. This method utilizes ideas from probabilistic deep learning, in particular conditional 
Wasserstein Generative Adversarial Networks (cWGAN). The aim is to improve the accuracy of 
predictions of fire arrival times, in addition to providing insights into prediction uncertainty.  

As work continues to improve wildfire modeling capabilities, the ability to produce robust and 
reliable emergency plans should only improve. Currently, Los Angeles County is ranked "very 
high" in wildfire risk, expected annual loss (EAL), and social vulnerability by the Federal 
Emergency Management Agency (FEMA) National Risk Index [16] while community resilience 
(which rates preparation, adaptability, and recovery from natural hazards) ranks "very low." 
Additionally, the Los Angeles Emergency Operations Plan’s Brush Fire Hazard Specific 
Annex [17] has not been updated since March 2018. 

In this semester’s NYU Global Health Disaster Preparedness & Response cohort, Joanna 
Horvath, Victoria Sevilla, Hyacinth Burrowes, and Gangao Chen are working on a Wildfire 
Outbreak Emergency Operations Plan for Los Angeles County.  

by Bryan Shaddy and Victoria Sevilla 
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