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Abstract—Predicting the future network traffic through big1

data analysis technologies has been one of the important preoccu-2

pations of network design and management. Combining Markov3

chains with tensors to implement predictions has received con-4

siderable attention in the era of big data. However, when dealing5

with multi-order Markov models, the existing approaches includ-6

ing the combination of states and Z-eigen decomposition still face7

some shortcomings. Therefore, this paper focuses on proposing8

a novel multivariate multi-order Markov transition to realize9

multi-modal accurate predictions. First, we put forward two new10

tensor operations including tensor join and unified product (UP).11

Then a general multivariate multi-order (2M) Markov model12

with its UP-based state transition is proposed. Afterwards, we13

develop a multi-step transition tensor for 2M Markov models to14

implement the multi-step state transition. Furthermore, an UP-15

based power method is proposed to calculate the stationary joint16

probability distribution tensor (i.e., stationary joint eigentensor,17

SJE) and realize SJE based multi-modal accurate predictions.18

Finally, a series of experiments under various Markov models on19

real-world network traffic datasets are conducted. Experimental20

results demonstrate that the proposed SJE based approach can21

improve the prediction accuracy for network traffic by highest22

up to 38.47 percentage points compared with the Z-eigen based23

approach.24
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Index Terms—Multivariate multi-order Markov, multi-step 25

transition tensor, unified product, stationary joint eigenten- 26

sor, multi-modal accurate prediction, network traffic prediction, 27

network management. 28

I. INTRODUCTION 29

NOWADAYS, with the rapid development of networking 30

and communications, everything interconnects with the 31

networks [1], [2]. Motivated by the continuous improvement 32

of people’s requirements for effective communications, some 33

neoteric network architectures are proposed, such as Software 34

Defined Networking (SDN), Network Function Virtualization 35

(NFV), etc. [3]. By breaking vertical integration, SDN is a 36

burgeoning paradigm which separates the network’s control 37

planes from the data planes [4]. NFV decouples the soft- 38

ware implementation of network functions from the underlying 39

hardware by taking advantages of virtualization technolo- 40

gies and commercial off-the-shelf programmable hardware [5]. 41

Based on these emerging architectures, clusters of network 42

functions can be improved, such as rapid network analysis, 43

comprehensive network design, and efficient network manage- 44

ment [6], [7]. Owing to the separation between the control 45

layer and data layer, extensive network data are collected in 46

up-to-date network architectures and served for analyzing and 47

managing the network [8], [9]. By exploiting big data analy- 48

sis technologies including artificial intelligence and machine 49

learning [10], [11], [12], we can increase flexibility in traf- 50

fic forwarding, simplify network management, and facilitate 51

network evolution [13]. 52

Predicting the future network traffic has been one of 53

the important preoccupations of network design and man- 54

agement. Accurate traffic prediction can promote people to 55

manage networks and make wise decisions [14]. There are 56

several approaches in traffic prediction, such as multiresolu- 57

tion FIR neural-network-based method [15], naive Bayes [16], 58

deep neural network [17], etc. Besides, another effective 59

prediction approach is to use Markov chains. First-order 60

Markov model and hidden Markov model, due to their well- 61

developed theory, have been extensively utilized in various 62

domains, such as network traffic prediction [18], network 63

traffic modeling [19], as well as trajectory prediction [20], 64

1932-4537 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7813-5894
https://orcid.org/0000-0002-7986-4244


IEE
E P

ro
of

2 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

driver intention prediction [21], gene and protein sequences65

prediction [22], etc.66

Recently, studying Markov chains by combining tensors67

has become an emerging trend in academia. To reflect the68

diversity of states and improve the prediction accuracy, mul-69

tivariate Markov chains have been proposed by exploiting70

tensor-based analysis approaches [23], [24]. In most actual71

systems, the state may have multiple attributes. For instance,72

in the location-aware prediction system, each state in tradi-73

tional first-order Markov chain denotes the point of interest74

(POI). However, the located POI in real life is influenced by75

many factors, such as weather, period of time (e.g., morning,76

afternoon, night), holiday, etc., where the states are consid-77

ered as multivariate. In [24], Wang et al. construct a complex78

human-spatio-temporal multivariate Markov transition model79

based on tensor theory and develop an iterative tensor power80

method to calculate the stationary probability distribution. In81

multivariate Markov chains, the traditional stationary probabil-82

ity distribution vector (e.g., dominant eigenvector) is extended83

to stationary probability distribution tensor (e.g., dominant84

eigentensor). In a Markov chain, the stationary probability dis-85

tribution represents the ultimate occurring probability of each86

state at any time epoch in the future, it can be applied to imple-87

ment future trend prediction when the transition probability88

tensor keeps roughly stable in the short term of the future.89

Based on the stationary probability distribution tensor (e.g.,90

dominant eigentensor), the user’s mobility trajectory pattern91

is predicted in [24] and the experimental results demon-92

strate that the dominant eigentensor based multivariate Markov93

prediction approach exhibits higher prediction accuracy.94

Meanwhile, multi-order (or higher-order) Markov chains95

have paid more attention in different application areas, a96

wealth of examples can be found in [25], [26], [27]. In the97

early stage, the multi-order Markov chains have always been98

processed by approximating them to the first-order Markov99

chains through a linear combination of states at multiple time100

epochs [25], [28], [29]. However, this kind of methods are101

difficult to deal with some complex multivariate Markov mod-102

els, i.e., the human-spatio-temporal Markov transition model103

in [24]. Besides, Gleich et al. construct a transition probabil-104

ity tensor for multi-order Markov chains in [29], but in which105

tensor is just a representation and there are no tensor-based106

operations and calculations.107

Afterwards, immense amounts of research has been car-108

ried out by integrating tensor Z-eigenvector and multi-order109

Markov theories [29], [30], [31]. Tensor Z-eigenvector theory110

is proposed by Qi [32]. Given a transition probability tensor,111

the Z-eigen decomposition for the largest Z-eigenvalue (i.e.,112

1) can be expressed as follows:113

Pxm = x ⇔ P ×2 x×3 x · · · ×n x · · · ×m+1 x = x, (1)114

where ×n is the single-mode product, P is an (m + 1)th-order115

transition probability tensor for an m-order Markov chain, x is116

called dominant Z-eigenvector. In [30], Li and Ng propose an117

iterative higher-order power method to calculate the stationary118

probability distribution vector (i.e., dominant Z-eigenvector)119

for a multi-order Markov chain. Then Gleich et al. [29] and120

Bozorgmanesh and Hajarian [31] further improve the con- 121

vergence conditions and calculation methods to calculate the 122

dominant eigenvector. In these researches, some exploratory 123

conclusions and complete proofs are provided from the math- 124

ematical theory point of view, but there are no applications 125

to implement the future prediction. Furthermore, Kuang et al. 126

propose a tensor-based framework for software defined big 127

data center, and then apply the single-mode (or multi-mode) 128

Z-eigen decomposition for the traffic transition probability 129

tensor to implement the future traffic prediction [23]. 130

However, it is notable that there are two key prob- 131

lems in combining dominant Z-eigenvector (or dominant 132

Z-eigentensor for multivariate models) and multi-order 133

Markov chain to realize the future prediction. On the one 134

hand, the constructed Markov models are multi-order, i.e., the 135

state of current time epoch is determined by multiple states 136

at several previous time epochs, but the stationary probabil- 137

ity distribution (i.e., dominant Z-eigenvector or Z-eigentensor) 138

is first-order. It is not reasonable to realize future prediction 139

for a multi-order Markov chain by simply using a first-order 140

dominant Z-eigenvector (or Z-eigentensor), resulting in the 141

decrease of prediction accuracy. The experimental results in 142

Section VI will confirm this statement. On the other hand, 143

while computing the dominant Z-eigenvector of an (m + 1)th- 144

order transition probability tensor for an m-order Markov chain 145

in Eq. (1), there exists a strict independence assumption that 146

the multiple states’ joint probability at any m consecutive 147

time epochs in multi-order Markov model is the product of 148

each state’s probability (Please see Section III). However, 149

the independence assumption might not be satisfied in many 150

scenarios. 151

According to the existing literatures, multivariate Markov 152

models based on tensor theory are studied to describe more 153

complex transition relationship among multiple spaces [24], 154

but they merely deal with the first-order Markov cases. 155

Meanwhile, combining tensor based Z-eigen decompo- 156

sition and multi-order Markov models has been an 157

alternative approach to handle multi-order Markov mod- 158

els [23], [29], [30], [31], but in which the multivariate 159

cases haven’t been considered, and there exist some problems 160

resulted in the decrease of prediction accuracy. Therefore, there 161

is no a general tensor-based multivariate multi-order Markov 162

transition model with the multi-modal prediction approach. 163

To tackle the aforementioned problems, this paper focuses 164

on proposing a general multivariate multi-order (2M) Markov 165

model and a new transition approach without any assump- 166

tions for realizing accurate multi-modal prediction. Concretely, 167

we first propose two new tensor operations including tensor 168

join and unified product (UP). Then we present a general 169

2M Markov model and a new UP-based transition approach. 170

Afterwards, a multi-step transition approach for 2M Markov 171

models and the multi-step transition tensor are developed. 172

Furthermore, to calculate the stationary joint probability distri- 173

bution tensor (denoted as stationary joint eigentensor, SJE) for 174

2M Markov models, we propose an UP-based iterative algo- 175

rithm with its detailed algorithm analysis. Based on the calcu- 176

lated SJE, we can implement multi-modal predictions. Finally, 177

we conduct a series of experiments on real-world network 178
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traffic datasets to verify the performance of the proposed179

approach under various 2M Markov models. Experimental180

results demonstrate that the proposed SJE based approach181

can improve the prediction accuracy by highest up to 38.47182

percentage points compared with the Z-eigen based approach.183

To summarize, the major contributions of this paper are184

listed as follows.185

• Put forward two new tensor operations including tensor186

join and unified product.187

• Present a general multivariate multi-order Markov model188

with its UP-based state transition.189

• Develop a multi-step transition tensor for 2M Markov190

models to implement the multi-step state transition.191

• Propose an UP-based power method to calculate the sta-192

tionary joint eigentensor for 2M Markov models and193

further implement multi-modal accurate predictions.194

The rest of the paper is organized as follows. Section II195

briefly recalls the relative preliminaries of tensor operations196

and Markov models. Section III describes the problem state-197

ment. In Section IV, 2M Markov models are proposed in198

detail, as well as the multi-step transition tensor. In Section V,199

the calculation of SJE is discussed in detail. Section VI com-200

pares the experimental results, and Section VII concludes the201

paper.202

II. PRELIMINARIES203

A. Tensor Operations204

In an Nth-order tensor X ∈ RI1×I2×···×IN , N is the order205

of the tensor and In (1 ≤ n ≤ N ) is the dimensionality206

of the nth order. In tensor-based data analysis, some ten-207

sor operations play significant roles, such as mode-n product,208

single-mode product, multiple-mode product, Einstein prod-209

uct, etc. For more concrete definition about tensor operations,210

please refer to [33], [34]. Therein, Einstein product is involved211

in this paper and defined as follows.212

Definition 1 (Einstein Product [35]): Given two ten-213

sors A ∈ RI1×I2×···×IM×K1×K2×···×KP and B ∈214

RK1×K2×···×KP×J1×J2×···×JN with the same dimensionality215

on P common orders K1,K2, . . . ,KP , the Einstein prod-216

uct of two tensors A and B yields a new tensor C ∈217

RI1×I2×···×IM×J1×J2×···×JN with entry ci1,i2,...,iM ,j1,j2,...,jN218

=
∑

k1,k2,...,kP
ai1,i2,...,iM ,k1,k2,...,kP bk1,k2,...,kP ,j1,j2,...,jN ,219

which can be represented as C = A∗PB .220

Especially, if the common orders are not consecutive, we221

can represent Einstein product as C = A ∗n···qm···p B (Im =222

Jn , . . . , Ip = Jq ).223

B. Multivariate Markov Chain224

Suppose {Xt , t = 0, 1, 2, . . .} is a stochastic process and S225

denotes the finite unary state set226

S ≡ {1, 2, . . . , I }.227

In a first-order Markov chain, the state at the current time228

epoch is only determined by the state at the previous time229

epoch.230

Pr(Xt = i |Xt−1 = j ,Xt−2 = it−2, . . . ,X0 = i0)231

= Pr(Xt = i |Xt−1 = j ) = pij , (2)232

where i , j , it−2, . . . , i0 ∈ S . Based on Eq. (2), we construct 233

a transition probability matrix P for the first-order Markov 234

chain. 235

P =
(
pij
)
, P ∈ RI×I , i , j ∈ S , 236

pij ≥ 0 and
I∑

i=1

pij = 1, j = 1, 2, . . . , I . (3) 237

The probability transition principle in a first-order Markov 238

chain can be represented as follows: 239

Pr(Xt = xt ) =
∑

xt−1

Pr(Xt = xt ,Xt−1 = xt−1) 240

=
∑

xt−1

Pr(Xt = xt |Xt−1 = xt−1) 241

× Pr(Xt−1 = xt−1). (4) 242

It can be easily found that the function in Eq. (4) can exactly 243

be realized by matrix-vector multiplication, i.e., xt = Pxt−1, 244

where xt and xt−1 denote the probability distribution vector 245

of states. Therefore, calculating the stationary probability dis- 246

tribution vector for a first-order Markov chain is equivalent 247

to calculating the dominant eigenvector of the transition prob- 248

ability matrix P associated with the largest eigenvalue [36], 249

i.e., λv = Pv (λ = 1), where v ∈ RI . Then it is further con- 250

verted to a fix-point problem and solved through the power 251

method [30]. 252

However, the state in real life may be influenced by many 253

attributes. For instance, the state in the network traffic system 254

can be jointly determined by {Holiday, TimePeriod, . . ., 255

Traffic}. Therefore the traditional first-order Markov model 256

is extended to multivariate first-order Markov model in which 257

the state is multi-attribute. Suppose each state in a multivariate 258

Markov model is determined by k attributes and each dimen- 259

sionality is Ii (i = 1, 2, . . . , k). The finite multivariate state 260

set can be represented as: 261

S ′ ≡ {(1, 1, . . . , 1), (1, 1, . . . , 2), . . . , (I1, I2, . . . , Ik )}. (5) 262

Let Pr(Xt ,1,Xt ,2, . . . ,Xt ,k = i1, i2, . . . , ik | 263

Xt−1,1,Xt−1,2, . . . ,Xt−1,k = j1, j2, . . . , jk ) = 264

p′i1,i2,...,ik ,j1,j2,...,jk
, where i1, i2, . . . , ik and j1, j2, . . . , jk ∈ 265

S ′. Then the transition probability matrix is transformed to a 266

transition probability tensor. 267

P ′ ∈ R(I1×I2×···×Ik )×(I1×I2×···×Ik ), p′
i1,i2,...,ik ,j1,j2,...,jk

> 0, 268

I1,I2,...,Ik∑

i1,i2,...,ik=1

p′
i1,i2,...,ik ,j1,j2,...,jk

= 1, ∀ j1, j2, . . . , jk ∈ S ′. 269

(6) 270

Accordingly, the dominant eigenvector problem is extended 271

to dominant eigentensor problem for the transition proba- 272

bility tensor P ′, i.e., λT ′ = P ′ ∗k T ′ (λ = 1), where 273

∗ denotes Einstein product and T ′ ∈ RI1×I2×···×Ik . The 274

dominant eigentensor can be calculated by exploiting tensor 275

power method [24]. Finally, based on the dominant eigenten- 276

sor, we can realize multi-modal accurate prediction according 277

to different attributes, e.g., the network traffic prediction under 278

various time periods (e.g., morning or afternoon or night) and 279

different days (e.g., working day or holiday). 280
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C. Irreducible Tensor281

In a first-order Markov model, concerning Pv = v, if the282

transition probability matrix P is irreducible, v will be positive283

and unique [30]. However, in multi-order Markov chains, the284

definition of irreducibility needs to be extended to irreducible285

tensor accordingly.286

Definition 2 (Irreducible Tensor [25], [30]): Given an287

(m + 1)th-order I-dimensional transition probability tensor288

Q for an m-order Markov chain, in which qi1,i2,...,im+1 =289

Pr(Xt = i1|Xt−1 = i2,Xt−2 = i3, . . . ,Xt−m = im+1).290

Tensor Q is called reducible if there exists a nonempty proper291

index subset J ⊂ {1, 2, . . . , I } and292

qi1,i2,...,im+1 = 0, ∀i1 ∈ J , ∀i2, . . . , im+1 /∈ J .293

If Q is not reducible, then we call Q irreducible.294

III. PROBLEM STATEMENT295

For the convenience of expression, we simplify some296

expressions in the following sections of the paper.297

Notation 1: Simplified probability notation:298

Pr(Xt = xt )⇔ Pr(Xt ),
∑

xt

Pr(Xt = xt )⇔
∑

t

Pr(Xt ).299

Notation 2: Simplified k-variate state notation:300

Xt ,1,Xt ,2, . . . ,Xt ,k ⇔ Xt , it ,1, it ,2, . . . , it ,k ⇔ it .301

To illustrate multi-order Markov chains, we take a second-302

order Markov chain as an example and have303

Pr(Xt = i |Xt−1 = j ,Xt−2 = k ,Xt−3 = it−3, . . . ,X0 = i0)304

= Pr(Xt = i |Xt−1 = j ,Xt−2 = k) = p′′ijk . (7)305

Based on Eq. (7), we construct a transition probability tensor306

P ′′ for the second-order Markov chain as follows:307

P ′′ =
(
p′′ijk

)
, P ′′ ∈ RI×I×I , i , j , k ∈ S ,308

p′′ijk ≥ 0 and
I∑

i=1

p′′ijk = 1, j , k = 1, 2, . . . , I . (8)309

To calculate the stationary probability distribution vector310

of the second-order Markov chain, combining Z-eigenvector311

theory and Markov theory is extensively adopted. The domi-312

nant Z-eigenvector v′ ∈ RI of P ′′ associated with the largest313

Z-eigenvalue (λ = 1) can be described as follows:314

v′ = P ′′×2 v′ ×3 v′. (9)315

In fact, Eq. (9) is equivalent to the following representation:316

v′ = P ′′ ∗2
(
v′ ◦ v′

)
, (10)317

where ◦ denotes outer product. The Z-eigen based state318

transition is depicted in Fig. 1.319

From the perspective of probability theory, the nature of320

Eq. (10) is to perform the following operations:321

Pr(Xt ) =
∑

t−1,t−2

Pr(XtXt−1Xt−2)322

=
∑

t−1,t−2

Pr(Xt |Xt−1Xt−2)Pr(Xt−1Xt−2). (11)323

Fig. 1. Illustration of Z-eigen based state transition for a second-order
Markov model.

Therefore, if we calculate the stationary probability distri- 324

bution vector by achieving the dominant Z-eigenvector in 325

Eq. (9) through some iterative approaches, there implies an 326

independent assumption: 327

Pr(Xt−1Xt−2) = Pr(Xt−1)P(Xt−2). (12) 328

The assumption means that any two consecutive states in the 329

second-order Markov model must be independent. 330

Therefore, it can be easily found that there exist two 331

problems directly by using Z-eigen based approach to deal 332

with the multi-order Markov model: (1) The assumption may 333

not be true in most scenarios. (2) The prediction accuracy 334

will decrease if the dominant Z-eigenvector/Z-eigentensor are 335

directly exploited to implement future predictions in multi- 336

order Markov models. Because the next state in a multi-order 337

Markov model is jointly determined by multiple previous 338

states. The future state should be predicted according to the 339

multi-order stationary joint probability distribution, not the 340

first-order stationary probability distribution. Therefore, we 341

shall resolve these concrete problems in the following sections: 342

(1) How to propose a general 2M Markov model and further 343

implement the state transition without any assumption? 344

(2) How to obtain the stationary joint probability distribution 345

(i.e., stationary joint eigentensor) for a 2M Markov model? 346

(3) How to implement the multi-modal accurate prediction 347

based on the stationary joint eigentensor? 348

IV. MULTIVARIATE MULTI-ORDER MARKOV MODEL 349

This section first presents two new tensor operations, and 350

then proposes a general 2M Markov model with its state 351

transition, as well as a multi-step transition tensor. 352

A. Proposed Tensor Operations 353

To establish a general 2M Markov model, we need to seek 354

for an operation to satisfy the following two requirements. 355

(1) Each transition operation must follow the probability tran- 356

sition principle. (2) The transition operation can be consecu- 357

tively implemented without any other assumptions. Therefore, 358

we define two new operations as follow. 359

Definition 3 (Tensor Join): Given two ten- 360

sors A ∈ RI1×I2×···×IM×K1×K2×···×KQ and 361

B ∈ RK1×K2×···×KQ×J1×J2×···×JN with Q 362

common modes K1,K2, . . . ,KQ , tensor join of 363

tensors A and B generates a new tensor C ∈ 364

RI1×I2×···×IM×J1×J2×···×JN×K1×K2×···×KQ with entries 365

ci1,i2,...,iM ,j1,j2,...,jN ,k1,k2,...,kQ = ai1,i2,...,iM ,k1,k2,...,kQ 366

bk1,k2,...,kQ ,j1j2,...,jN , which can be represented 367

as C = A �Q B . If the common orders are 368
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Fig. 2. An example of tensor join C = A �Time
Time B .

Fig. 3. An example of unified product C = A�
Contract
Contract ;

Time
Time B .

not consecutive, it can also be represented as369

C = A �s···v
r ···u B(Ir = Js , . . . , Iu = Jv ).370

Generally, tensor join can integrate two tensors according371

to their common orders, which can be used to implement data372

fusion. Fig. 2 depicts a simple example of tensor join for two373

tensors A ∈ RIX×ITime and B ∈ RITime×IY ×IZ with the374

same Time order.375

Definition 4 (Unified Product): Given two tensors376

A ∈ RI1×I2×···×IM×L1×L2×···×LP×K1×K2×···×KQ and377

B ∈ RL1×L2×···×LP×K1×K2×···×KQ×J1×J2×···×JN with378

two groups of common modes including P common modes379

for contraction L1,L2, . . . ,LP and Q common modes for join380

K1,K2, . . . ,KQ , the unified product of tensors A and B will381

yield a new tensor C ∈ RI1×···×IM×J1×···×JN×K1×···×KQ382

with entry383

ci1,...,iM ,j1,...,jN ,k1,...,kQ384

=
∑

l1,...,lP

ai1,...,iM ,l1,...,lP ,k1,...,kQ bl1,...,lP ,k1,...,kQ ,j1,...,jN .385

Unified product of two tensors can be represented as C =386

A �P ,Q B . And if the common orders are not consecutive,387

it can also be represented as C = A�
n···q
m···p ;s···vr ···u B (Im =388

Jn , . . . , Ip = Jq ; Ir = Js , . . . , Iu = Jv ).389

Fig. 3 gives an example of the unified product for390

two tensors A ∈ RIX×IContract×ITime and B ∈391

RIContract×ITime×IY ×IZ with the same Contract order to392

contract and the same Time order to join. According to393

Def. 4 and Fig. 3, we can divide all orders in unified prod-394

uct into three parts. The first part is the contracted orders,395

e.g., L1,L2, . . . ,LP , these common orders will be contracted396

and disappear. The second part is the join orders, e.g.,397

K1,K2, . . . ,KQ , these common orders will be merged to one398

part. The third part is the expanded orders, e.g., I1, I2, . . . , IM399

and J1, J2, . . . , JN , these orders will be expanded, which is400

similar to outer product.401

Unified product is a general and useful operation, it can402

cover many tensor operations and meet various scenarios when403

P, Q, M, N are set to different values. We summarize various404

cases of unified product and illustrate them in Table I. Some405

important cases are illustrated as follows:406

TABLE I
DIFFERENT CASES OF UNIFIED PRODUCT

1) Unified product will convert to tensor join if P = 0. 407

Further, it will be outer product if P, Q = 0. Thus outer product 408

is a special case of tensor join, and tensor join can also be 409

considered as multi-mode outer product. 410

2) It will convert to Einstein product (or multi-mode prod- 411

uct) if Q = 0. Further, it will be single-mode product if P = 1. 412

Besides, other operations can be obtainted when M and N are 413

set to different values, such as tensor time matrix (or mode-n 414

product) if M > 1 and N = 1, matrix product if M = N = 1, 415

tensor time vector if M > 1 and N = 0, and matrix time vector 416

if M = 1 and N = 0. 417

3) It will convert to Hadamard Product if P, M, N = 0. 418

4) It will convert to inner product if Q, M, N = 0. Further, 419

if Q �= 0, we call it multi-mode inner product. 420

B. Multivariate Multi-Order Markov Model 421

In a stochastic process, if the state has k attributes, we call 422

the state k-variate; if the state at the current time epoch is 423

determined by the states at previous m time epochs, we call 424

the Markov chain m-order. Therefore, the multivariate multi- 425

order Markov model is also called k-variate m-order Markov 426

model. 427

1) First-Variate Second-Order Markov Transition: We take 428

a second-order Markov model as an example to illustrate the 429

unified product based (UP-based) multi-order Markov transi- 430

tion. Suppose the settings of the second-order Markov stochas- 431

tic process are the same as that in Section III and the transition 432

probability tensor is P ′′ satisfying Eq. (8). Suppose the joint 433

probability distribution matrix is represented as M ∈ RI×I , 434

in which each entry mij = Pr(Xt = i ,Xt−1 = j ). According 435

to the probability transition principle of second-order Markov 436

models, we can obtain the following equations: 437

Pr(XtXt−1Xt−2) = Pr(Xt |Xt−1Xt−2)Pr(Xt−1Xt−2), 438

Pr(XtXt−1) =
∑

t−2

Pr(XtXt−1Xt−2). (13) 439

By combining Def. 4 and Eq. (13), we can find that the 440

proposed unified product can be directly exploited to realize 441

the function in Eq. (13). Therefore, the one-step transition for 442

a second-order Markov chain can be represented as follows: 443

M (t ,t−1) = P ′′
�

Xt−2

Xt−2
;Xt−1

Xt−1
M (t−1,t−2). (14) 444
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Fig. 4. UP-based state transition for a first-variate second-order Markov
model.

The implementation process is illustrated in Fig. 4.445

By integrating the definition of unified product in Def. 4 and446

Eq. (13), we give the detailed analysis about Eq. (14) from the447

probability transition point of view as follows:448

(
M (t,t−1)

)

(i,j)
= mij = Pr(Xt = i ,Xt−1 = j )449

=
∑

t−2

Pr(Xt = i |Xt−1 = j ,Xt−2 = k)

Pr(Xt−1 = j ,Xt−2 = k)
450

=
∑

k

p′′
ijkmjk =

(
P ′′ ÷×t−2

t−2;t−1
t−1 M (t−1,t−2)

)

(i,j)
.451

(15)452

From Eq. (15), we notice that the UP-based transition can453

be consecutively implemented without any other assumptions.454

2) k-Variate Second-Order Markov Transition: Further, if455

the state is k-variate, then the k-variate second-order Markov456

transition can be accordingly realized based on the proposed457

transition principle in Section IV-B1. Suppose the transition458

probability tensor P ′′′ ∈ R(I1×···×Ik )×(I1×···×Ik )×(I1×···×Ik )
459

in which p′′′i1,1···i1,k i2,1···i2,k i3,1···i3,k
≥ 0 and

∑I1,...,Ik
i1,1,...,i1,k=1460

p′′′i1,1···i1,k i2,1···i2,k i3,1···i3,k
= 1, ∀ij ,1 · · · ij ,k ∈ S ′(j = 2, 3)461

and the joint probability distribution tensor is expressed as462

M ′ ∈ R(I1×···×Ik )×(I1×···×Ik ) in which each entry is greater463

than or equal to 0 and the summation of all entries is 1.464

Then the k-variate second-order Markov transition can be465

expressed as follows:466

M
′(t ,t−1) = P ′′′

� M
′(t−1,t−2),467

� := �k ,k

(
or�

Xt−2,1,...,Xt−2,k

Xt−2,1,...,Xt−2,k
;Xt−1,1,...,Xt−1,k

Xt−1,1,...,Xt−1,k

)
.468

(16)469

The illustration is depicted in Fig. 5. The derivation can be470

easily achieved through the similar method in Section IV-B1.471

The difference is that each state in multivariate models is472

determined by k tensor orders in UP-based transition.473

3) k-Variate m-Order Markov Transition: First, we define474

a k-variate m-order Markov chain as follows.475

Definition 5 (k-Variate m-Order Markov Chain): Suppose476

the finite k-variate state set is S ′ defined in Eq. (5). Then a k-477

variate m-order Markov chain is formed when there is a fixed478

probability independent of the time epoch such that479

Pr
(
Xt = it |Xt−1 = it−1,Xt−2 = it−2, . . . ,X0 = i0

)
480

= Pr
(
Xt = it |Xt−1 = it−1,Xt−2 = it−2, . . . ,Xt−m = it−m

)
,481

(17)482

where Xt ,Xt−1, . . . ,X0 and it , it−1, . . . , i0 are same as that483

in Notation 2, and il ∈ S ′ (l = t , t − 1, . . . , 0).484

Suppose the probability in Eq. (17) is represented as485

pi1,1,...,i1,k ,i2,1,...,i2,k ,...,im+1,1,...,im+1,k
. Then we can construct486

Fig. 5. UP-based state transition for a k-variate second-order Markov model.

a k∗(m + 1)th-order transition probability tensor P for the 487

k-variate m-order Markov model as follows. 488

P ∈ R(I1,1×···×I1,k)×(I2,1×···×I2,k)×···×(Im+1,1×···×Im+1,k), 489

0 ≤ pi1,1,...,i1,k ,i2,1,...,i2,k ,...,im+1,1,...,im+1,k
≤ 1, 490

I1,...,Ik∑

i1,1,...,i1,k=1

pi1,1,...,i1,k ,i2,1,...,i2,k ,...,im+1,1,...,im+1,k
= 1. 491

(18) 492

Suppose the joint probability distribution is represented as 493

a (k∗m)th-order tensor M and defined as follows, in which 494

each entry denotes the probability of joint states. 495

M ∈ R(I1,1×···×I1,k )×(I2,1×···×I2,k )×···×(Im,1×···×Im,k ), 496

mi1,1,i1,2,...,i1,k ,...,im,1,im,2,...,im,k
497

= Pr
(
X1,1,X1,2, . . . ,X1,k = i1,1, i1,2, . . . , i1,k , · · · , 498

Xm,1,Xm,2, . . . ,Xm,k = im,1, im,2, . . . , im,k

) ≥ 0, 499
∑

M = 1. (19) 500

According to the probability transition principle of the 501

m-order Markov model, we can obtain: 502

Pr(XtXt−1 · · ·Xt−m+1) =
∑

t−m

Pr(XtXt−1 · · ·Xt−m ) 503

=
∑

t−m

Pr(Xt |Xt−1Xt−2 · · ·Xt−m ) 504

× Pr(Xt−1Xt−2 · · ·Xt−m ). (20) 505

Next, we implement the UP-based transition for a k-variate 506

m-order Markov model and give two theorems. Note that the 507

expressions of multivariate state and probability representation 508

follow Notations 1 and 2 in the following section. 509

Theorem 1: Given a k-variate m-order Markov chain, the 510

one-step transition by exploiting the proposed unified product 511

can be implemented as follows: 512

M (t,t−1,...,t−m+1) = P � M (t−1,t−2,...,t−m), 513

� := �k ,(m−1)k or 514

�
Xt−m,1,...,Xt−m,k
Xt−m,1,...,Xt−m,k

;
Xt−1,1,...,Xt−1,k ,...,Xt−m+1,1,...,Xt−m+1,k
Xt−1,1,...,Xt−1,k ,...,Xt−m+1,1,...,Xt−m+1,k

. 515

(21) 516

Proof: According to Eqs. (20) and (21) and the definition 517

of unified product defined in Def. 4, we have 518

(
M (t ,t−1,...,t−m+1)

)

i1,i2,...,im
519

= Pr(Xt = i1,Xt−1 = i2, . . . ,Xt−m+1 = im) 520

=
∑

t−m

Pr(Xt = i1,Xt−1 = i2, . . . ,Xt−m = im+1) 521
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Fig. 6. UP-based transition for a k-variate m-order Markov model.

=
∑

t−m

Pr(Xt = i1|Xt−1 = i2, . . . ,Xt−m = im+1)
× Pr(Xt−1 = i2, . . . ,Xt−m = im+1)

522

=
I1,...,Ik∑

im+1=1

pi1,i2,...,im+1mi2,...,im+1523

=
(
P ÷× M (t−1,t−2,...,t−m)

)

i1,i2,...,im
.524

It is clear that the UP-based transition in Eq. (21) exactly525

follows the probability transition principle of a k-variate m-526

order Markov model.527

The graphical representation of UP-based one-step transi-528

tion is illustrated in Fig. 6. Therefore, we notice that the529

consecutive transitions can be implemented through the joint530

probability distribution tensor in UP-based transition for a531

multivariate multi-order Markov model.532

Theorem 2: The sum of the joint probability distribution533

tensor remains 1 after implementing the UP-based transition534

in a k-variate m-order Markov model.535

Proof: By combining Eq. (20), we can obtain:536

∑

t ,t−1,...,t−m+1

Pr(XtXt−1 · · ·Xt−m+1)537

=
∑

t ,t−1,...,t−m+1

∑

t−m

Pr(Xt |Xt−1Xt−2 · · ·Xt−m)
× Pr(Xt−1Xt−2 · · ·Xt−m)538

=
∑

t−1,t−2,...,t−m

Pr(Xt−1Xt−2 · · ·Xt−m)
×∑t Pr(Xt |Xt−1Xt−2 · · ·Xt−m).539

(22)540

Based on Eq. (18), we have
∑

t Pr(Xt |Xt−1541

Xt−2 · · ·Xt−m) = 1, then substitute it to Eq. (22) and542

exploit
∑

M t−1,t−2,...,t−m = 1 in Eq. (19), we can obtain:543

∑

t ,t−1,...,t−m+1

Pr(XtXt−1 · · ·Xt−m+1)544

=
∑

t−1,t−2,...,t−m

Pr(Xt−1Xt−2 · · ·Xt−m) = 1.545

546

Besides, based on the joint probability distribution tensor547

M at m consecutive time epochs, i.e., t , t − 1, . . . , t −m + 1,548

we can calculate the probability distribution tensor X at the549

tth time epoch.550

X ∈ RI1×···×Ik ,X (t) =
∑

˜Xt,1,...,Xt,k

M (t ,t−1,...,t−m+1),551

(23)552

where ˜Xt ,1, . . . ,Xt ,k represents all orders of tensor M except 553

for these Xt ,1, . . . ,Xt ,k orders. In fact, Eq. (23) can be 554

inferred from the following probability equation: 555

Pr(Xt ) =
∑

t−1,...,t−m+1

Pr(XtXt−1 · · ·Xt−m+1). 556

C. Multivariate Multi-Order Markov Multi-Step Transition 557

In the traditional first-order Markov, if the transition prob- 558

ability matrix is P defined in Eq. (3), and the probability 559

distribution of states at the tth time epoch is v(t), we can 560

obtain the probability distribution v(t+q) of states after q-step 561

transitions as follows: 562

v(t+q) = P ×
(
P × · · · ×

(
P × v(t)

))
563

= P ×n−1
n−1

(
P ×n−1

n−1 · · · ×n−1
n−1

(
P ×n−1

n−1 v(t)
))

. (24) 564

On the other hand, Eq. (24) is equivalent to the following 565

form. 566

v(t+q) =
(
P ×n

n−1 P ×n
n−1 · · · ×n

n−1 P
)×n−1

n−1 v(t)
567

= Pq
×n

n−1
×n−1

n−1 v(t). (25) 568

In general, Pq is called q-step transition probability matrix. 569

Note that the two single-mode product operations in Pq and 570

Eq. (24) are different in nature. 571

Next, we generalize the idea of the q-step transition prob- 572

ability matrix to 2M Markov model and compute the q-step 573

transition probability tensor. 574

Theorem 3: Given a k-variate m-order Markov model, 575

suppose the transition probability tensor is P satisfying 576

Eq. (18), and the current joint probability distribution tensor 577

is M (t ,t−1,...,t−m+1) satisfying Eq. (19). Then the UP- 578

based q-step transition for k-variate m-order Markov model 579

is presented. 580

M (t+q,t+q−1,...,t+q−m+1)
581

= P �

(
P � · · ·�

(
P � M (t ,t−1,...,t−m+1)

))
. (26) 582

Eq. (26) can also be implemented by the following approach. 583

M (t+q,t+q−1,...,t+q−m+1) = Pq
�M (t,t−1,...,t−m+1), (27) 584

Pq = P�P� · · ·�P . (28) 585

The unified product in Eqs. (26) and (27) is the defined oper- 586

ation in Eq. (21), and the unified product in Eq. (28) should 587

be: 588

�
Xt,1,...,Xt,k
Xt−1,1,...,Xt−1,k

;
Xt−1,1,...,Xt−1,k ,...,...,Xt−m+1,1,...,Xt−m+1,k
Xt−2,1,...,Xt−2,k ,...,...,Xt−m,1,...,Xt−m,k

. 589

(29) 590

Pq in Eq. (28) is called the UP-based q-step transition 591

probability tensor. 592

Proof: According to the principle of conditional probability 593

and the definition of k-variate m-order Markov chain in Def. 5, 594

we have 595

Pr
(
Xt+q−1Xt+q−2 · · ·Xt |Xt−1Xt−2 · · ·Xt−m

)
596

=
Pr
(
Xt+q−1Xt+q−2 · · ·XtXt−1Xt−2 · · ·Xt−m

)

Pr(Xt−1Xt−2 · · ·Xt−m)
597
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=
Pr
(
Xt+q−1Xt+q−2 · · ·XtXt−1Xt−2 · · ·Xt−m

)

Pr
(
Xt+q−2Xt+q−3 · · ·Xt−m

)598

× Pr
(
Xt+q−2Xt+q−3 · · ·Xt−m

)

Pr
(
Xt+q−3Xt+q−4 · · ·Xt−m

) · · ·599

× Pr(XtXt−1 · · ·Xt−m)
Pr(Xt−1Xt−2 · · ·Xt−m)

600

= Pr
(
Xt+q−1|Xt+q−2 · · ·Xt−m

)
601

× Pr
(
Xt+q−2|Xt+q−3 · · ·Xt−m

) · · ·602

× Pr(Xt |Xt−1 · · ·Xt−m)603

= Pr
(
Xt+q−1|Xt+q−2 · · ·Xt+q+m−2

)
604

× Pr
(
Xt+q−2|Xt+q−3 · · ·Xt+q+m−3

) · · ·605

× Pr(Xt |Xt−1 · · ·Xt−m). (30)606

We know that each entry in Pq denotes a q-step transition607

probability. By combining Eq. (30), we have608

Pr
(
Xt+q−1|Xt−1Xt−2 · · ·Xt−m

)
609

=
∑

t+q−2,...,t

Pr
(
Xt+q−1Xt+q−2 · · ·Xt |Xt−1 · · ·Xt−m

)
610

=
∑

t+q−2,...,t

Pr
(
Xt+q−1|Xt+q−2 · · ·Xt+q+m−2

)

Pr
(
Xt+q−2|Xt+q−3 · · ·Xt+q+m−3

)

· · ·Pr(Xt |Xt−1 · · ·Xt−m)
611

=
∑

t+q−2

Pr
(
Xt+q−1|Xt+q−2 · · ·Xt+q+m−2

)
612

×
⎛

⎝
∑

t+q−3

Pr
(
Xt+q−2|Xt+q−3 · · ·Xt+q+m−2

)
613

×
(

· · ·
(
∑

t

Pr(Xt+1|Xt · · ·Xt−m+1)614

× Pr(Xt |Xt−1 · · ·Xt−m)

))⎞

⎠ (31)615

According to the definition of unified product in Def. 4,616

we can infer that the operations in Eqs. (27) and (31) are617

equivalent.618

Furthermore, if we expect to calculate the probability dis-619

tribution tensor X (t+q) at the (t + q)th time epoch, the620

implementation approach can be represented as follows by621

integrating Eqs. (23) and (27).622

X (t+q) = Pq ∗M (t ,t−1,...,t−m+1)
623

∗ := ∗Xt−1,1,...,Xt−1,k ,...,...,Xt−m,1,...,Xt−m,k

Xt−1,1,...,Xt−1,k ,...,...,Xt−m,1,...,Xt−m,k
. (32)624

V. MULTIVARIATE MULTI-ORDER MARKOV PREDICTION625

In this section, we propose an iterative algorithm to calculate626

the stationary joint probability distribution for a 2M Markov627

model and then present a multi-modal prediction approach.628

A. Stationary Joint Probability Distribution Tensor629

In general, the stationary distribution in Markov models630

can be used to implement future predictions. Motivated by631

the idea of power method in PageRank [29] and dominant632

Z-eigenvector [30], we propose an iterative UP-based power633

Algorithm 1: Algorithm of UP-PM for Calculating the
Stationary Joint Eigentensor for a 2M Markov Model

Input:
A k∗(m + 1)th-order transition probability tensor P

in Eq. (18) and the convergence threshold ε.
Output:

A stationary joint eigentensor M satisfying Eq. (19)
and a stationary eigentensor X in Eq. (23).

1 begin
2 Select an initial random tensor M 0 satisfying

Eq. (19);
3 j ← 0;
4 repeat
5 j ← j + 1 ;
6 Execute M j = αP � M j−1 + (1− α)E ;
7 until

∥
∥M j −M j−1

∥
∥ < ε;

8 M ← M j ;
9 Compute stationary eigentensor X based on

stationary joint eigentensor M according to Eq. (23);
10 return M and X .

method (UP-PM) to calculate the stationary joint probability 634

distribution tensor for a 2M Markov model, i.e., stationary 635

joint eigentensor (SJE). Specifically, to guarantee that the UP- 636

PM is convergent, one attempt is to ensure the transition 637

probability tensor should be aperiodic and irreducible, i.e., 638

P ′ = αP +(1−α)A, where A is an adjustment transition ten- 639

sor satisfying Eq. (18), whose entry is equal to 1
(I1I2···Ik )m

. By 640

combining Eq. (21), another equivalent approach is to perform 641

the following stochastic and primitivity adjustment. 642

M = αP � M + (1− α)E . (33) 643

Therein, � is the unified product in Eq. (21), E is an adjust- 644

ment joint distribution tensor satisfying Eq. (19), whose entry 645

is equal to 1
(I1I2···Ik )m

. 0 < α < 1 is an adjustment parameter 646

and will affect the convergence speed. The pseudocode of UP- 647

PM is illustrated in Algorithm 1. On line 7 of Algorithm 1, 648

‖•‖ represents the norm and we can select a suitable norm 649

type according to practical situations. 650

B. Algorithm Analysis 651

In this section, we shall analyze the existence, uniqueness, 652

and convergence of UP-PM, as well as its time complexity. 653

1) Existence: We first prove the existence of UP-PM. 654

Theorem 4: Let P be a transition probability tensor for a 655

2M Markov model satisfying Eq. (18), then there exists a 656

nonzero non-negative tensor M̂ satisfied Eq. (19) such that 657

M̂ = αP � M̂ + (1 − α)E and
∑

M̂ = 1. M̂ is called 658

stationary joint eigentensor. 659

Proof: The problem can be considered as a fixed point 660

problem. Based on the properties in Eq. (19), let Ω = 661

{mi1,1,i1,2,...,i1,k ,...,im,1,im,2,...,im,k
}. It is clear that Ω is a 662

closed and convex set. We define the following nonlinear map 663

Ψ(M ) = αP � M + (1− α)E . (34) 664
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We can see that Ψ is well-defined and continuous. According665

to the Brouwer Fixed Point Theorem [30], there exists M̂ ∈ Ω666

such that Ψ(M̂ ) = M̂ .667

According to Eqs. (18) and (19), every entry in tensors P668

and M is greater than or equal to 0, and every entry in tensor669

E is 1
(I1I2···Ik )m

which is greater than 0, hence, every entry670

in αP � M + (1 − α)E is greater than 0, i.e., tensor M̂ is671

nonzero and non-negative. Besides, according to Theorem 2,672

it is clear that
∑

M̂ = 1.673

2) Uniqueness: The uniqueness of the solution in Eq. (33)674

is proved in the following theorem.675

Theorem 5: Let P be a transition probability tensor for a676

2M Markov model satisfying Eq. (18), then there exists a677

unique solution in Eq. (33) when 0 < α < 1.678

Proof: We shall prove the theorem by using reduction to679

absurdity. Assume there are two distinct stationary solution680

M̂ 1 and M̂ 2 in Eq. (33), then we can obtain681

M̂ 1 = αP � M̂ 1 + (1− α)E ,682

M̂ 2 = αP � M̂ 2 + (1− α)E .683

Then, by subtracting these two equations, we get684
∥
∥
∥M̂ 1 − M̂ 2

∥
∥
∥ = α

∥
∥
∥P �

(
M̂ 1 − M̂ 2

)∥
∥
∥. (35)685

According to the definition of unified product in Def. 4 and686

the property (the sum is 1) of transition probability tensor P in687

Eq. (18), by combining 0 < α < 1, the right side of Eq. (35)688

can be converted to689

α
∥
∥
∥P �

(
M̂ 1 − M̂ 2

)∥
∥
∥ = α

∥
∥
∥M̂ 1 − M̂ 2

∥
∥
∥ <

∥
∥
∥M̂ 1 − M̂ 2

∥
∥
∥.690

(36)691

By integrating Eqs. (35) and (36), we can infer692
∥
∥
∥M̂ 1 − M̂ 2

∥
∥
∥ <

∥
∥
∥M̂ 1 − M̂ 2

∥
∥
∥. (37)693

It is clear that Eq. (37) is a contradiction. Therefore, the694

theorem is proved.695

3) Convergence: The following theorem is to prove the696

convergence of UP-PM.697

Theorem 6: Let P be a transition probability tensor for a698

2M Markov model satisfying Eq. (18) and M (0,−1,...,−m+1)
699

be an any initial tensor satisfying Eq. (19). If 0 < α < 1, then700

the fixed-point iteration701

M (t,t−1,...,t−m+1) = αP � M (t−1,t−2,...,t−m) + (1− α)E .702

(38)703

will converge to a unique solution in Theorem 5.704

Proof: Suppose the unique solution in Theorem 5 is M̂705

which satisfies Eq. (19), we have706

M̂ = αP � M̂ + (1− α)E . (39)707

According to the definition of unified product in Def. 4 and708

the property (the sum is 1) of transition probability tensor P709

in Eq. (18), by subtracting Eqs. (38) and (39), we have710
∥
∥
∥M (t ,t−1,...,t−m+1) − M̂

∥
∥
∥711

= α
∥
∥
∥P �

(
M (t−1,t−2,...,t−m) − M̂

)∥
∥
∥712

= α
∥
∥
∥M (t−1,t−2,...,t−m) − M̂

∥
∥
∥.713

Further, we can obtain 714
∥
∥
∥M (t,t−1,...,t−m+1)−M̂

∥
∥
∥ = α

∥
∥
∥M (t−1,t−2,...,t−m)−M̂

∥
∥
∥ 715

= α2
∥
∥
∥M (t−2,t−3,...,t−m−1)−M̂

∥
∥
∥ 716

= · · · = αt
∥
∥
∥M (0,−1,...,−m+1)−M̂

∥
∥
∥. 717

Since 0 < α < 1, then lim
t→∞αt = 0. Thus, for an arbitrary 718

tensor M (0,−1,...,−m+1), we can obtain 719

lim
t→∞

∥
∥
∥M (t ,t−1,...,t−m+1) − M̂

∥
∥
∥ = 0. 720

Therefore, the fixed-point iteration in Eq. (38) can converge to 721

M̂ and the convergence speed is determined by the adjustment 722

parameter α. 723

4) Time Complexity: In Algorithm 1, the time complex- 724

ity is mainly determined by the execution of unified product 725

on line 6. Without loss of generality, for a k-variate m-order 726

Markov model, suppose I = max{I1, I2, . . . , Ik}. According 727

to Def. 4 and Fig. 6, the time complexity of one-step transi- 728

tion in Eq. (21) is O(I k(m+1)), thus the time complexity of 729

UP-PM is 730

Time = O
(
N ∗ I k(m+1)

)
, (40) 731

where N is the iterative number. 732

C. Stationary Joint Eigentensor Based Multi-Modal 733

Prediction 734

1) Multi-Modal Prediction Approaches: In the SJE based 735

approach, the stationary joint distribution is used to imple- 736

ment future predictions. For a first-order Markov model, there 737

is no joint probabilities. And if the model is first-variate, the 738

SJE degrades to a vector and the Top-K predicted values can 739

be directly used to perform predictions. If the model is mul- 740

tivariate, take the traffic prediction as an example, we need 741

to first extract the Traffic fiber from the SJE by specifying 742

all orders except Traffic according to the given state attributes, 743

then we can use the Top-K predicted values in the Traffic fiber 744

to perform predictions. Therefore, the prediction results will 745

be distinct under different state attributes, we call it multi- 746

modal prediction. However, when it comes to a multi-order 747

Markov model, previous states should be jointly taken into 748

consideration when implementing future predictions. For a k- 749

variate m-order Markov model, we need to first specify the 750

values of all states at m-1 past time epochs according to prac- 751

tical scenarios and then extract the kth-order tensor from the 752

SJE, which represents the stationary probability distribution 753

of states at next time epoch when recent m-1 states are given. 754

Afterwards, we can exploit the aforementioned multi-modal 755

prediction approach to implement future predictions based on 756

the extracted kth-order tensor. 757

To verify whether the assumption in Z-eigen based approach 758

is reasonable, we expect to analyze the impact of the station- 759

ary eigentensors generated from Z-eigen based and SJE based 760

approaches on the prediction accuracy. Therefore, we can cal- 761

culate the stationary eigentensor (SE) according to Eq. (23) 762

after obtaining the stationary joint eigentensor. It is obtained 763

by performing summations over all states at m-1 past time 764
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Fig. 7. Examples of network traffic predictions in SJE based and SE based
approaches.

epochs. The result will be a stationary probability distribu-765

tion vector (or tensor for multivariate). Therefore, the result766

form is similar to that in SJE based approach under first-order767

Markov models, and we can use the same approach to imple-768

ment future predictions. We represent the prediction approach769

as SE based approach.770

2) Multi-Modal Prediction Examples: We take a second-771

order Markov model for network traffic as an example to illus-772

trate the prediction details of the two approaches. Suppose the773

state is Traffic in the first-variate model and it is (TimePeriod,774

Traffic) in the second-variate model. First, we introduce the775

first-variate situation, which is depicted in Fig. 7(a). For the776

SJE based approach, each entry in SJE denotes the station-777

ary joint probability of traffic states at two consecutive time778

epochs, illustrated in the left part of Fig. 7(a). To predict next779

traffic state, we should first determine the current traffic state,780

such as Tr t−1 = C . Then, we can extract the Traffic fiber [(A:781

0.0106), (B: 0.0646), (C: 0.0470)], which represents the prob-782

ability distribution of traffic states at next time epoch. After783

sorting the Traffic fiber in descending order like [B, C, A], we784

can apply its Top-K predicted values to predict the next traffic785

state. If Top-2 predicted values are used, we expect that the786

next traffic state should lay in the prediction set {B, C}. For787

the SE based approach, the resulting vector by summing the788

values on Tr t−1 is illustrated in the right part of Fig. 7(a).789

To predict the network traffic, we can only directly use the790

Top-K predicted values from the sorted vector [B, A, C]. We791

can see from Fig. 7(a) that the prediction results are different792

by using SJE based and SE based approaches.793

Then, the second-variate situation is discussed as follows.794

For the SJE based prediction approach, the generated SJE is795

a 4th-order tensor, depicted in the upper part of Fig. 7(b).796

Differing from the first-variate second-order Markov model,797

each state in this SJE is determined by two orders (TimePeriod,798

Traffic), i.e., (TP, Tr) in Fig. 7(b). To predict the next traffic799

state, first we need to specify the current state (TimePeriod,800

Traffic), such as (TP t−1,Tr t−1) = (1,A). In this way, we801

can obtain a matrix containing the probability distribution of802

next state. Suppose the TimePeriod of next state is 1 (i.e.,803

TP t = 1), then we can extract the Traffic fiber [(A: 0.0958),804

(B: 0.0455), (C: 0.0060)] for the next state. After that, we can805

choose the Top-K predicted values from sorted fiber [A, B,806

C] to build a prediction set and perform traffic predictions.807

Besides, the lower part of Fig. 7(b) depicts a matrix obtained 808

by SE based approach, which represents the stationary prob- 809

ability distribution of next states (TimePeriod, Traffic). Given 810

the value of TimePeriod of next state (e.g., TP t = 1), the 811

Traffic fiber [(A: 0.1662), (B: 0.2878), (C: 0.0402)] can be 812

extracted from the matrix, and we can further predict the 813

traffic according to the Top-K predicted values in the sorted 814

fiber [B, A, C]. 815

VI. EXPERIMENTS 816

In this section, a series of experiments are conducted 817

using real-world network traffic data to verify the prediction 818

performance of the proposed SJE based approach. We com- 819

pare the prediction accuracy of SJE based approach and other 820

state-of-the-art approaches under various 2M Markov models. 821

Furthermore, the influence of different variates and orders on 822

prediction accuracy is discussed. 823

A. Metric 824

To evaluate the prediction performance, the prediction 825

accuracy measure is applied and defined as follows. 826

Definition 6 (Prediction Accuracy): Suppose the predicted 827

Top-K traffic values constitute a prediction set PSTop−K = 828

{PV1,PV2, . . . ,PVK }. Given a testing traffic sequence 829

TS = {Tf1,Tf2, . . . ,Tfi , . . . ,TfN }. For every entry in TS, 830

if Tfi ∈ PSTop−K , we call it one time of hit, namely, 831

Hit
(
Tfi ,PSTop−K

)
=
{

1, Tfi ∈ PSTop−K
0, Tfi /∈ PSTop−K

832

Then, the prediction accuracy is calculated as follows: 833

Accuracy =
∑N

i=1 Hit
(
Tfi ,PSTop−K

)

N
. 834

B. Experimental Design 835

The experiments are implemented through NumPy package 836

in Python. All experiments are executed on a cloud platform 837

which configures an Intel’s 16-core Xeon E5-2630 processor 838

with 2.4 GHZ and a 125 GB memory. 839

1) Datasets: The real-world network traffic data is col- 840

lected from FiberHome packet transport network device 841

deployed in telecommunication operator. FiberHome is a 842

leading network solution provider in the telecommunications 843

equipment manufacturing industry of China. The traffic data 844

totally contains 11196 network flow records generated from 845

four different ports, which is collected for a consecutive 846

time of 30 days. After analyzing the raw data, we construct 847

two datasets from 640 MSK XGE Port 1 (dataset 1) and 848

640 XSK XGE Port 1 (dataset 2), and each dataset con- 849

tains 2801 network traffic records. The average network traffic 850

is stored in a record for every 15 minutes, e.g., “2018/6/5 851

00:00-00:15 17.588Mbps · · · ”. Then we remove irrelevant data 852

fields and preprocess these data according to the experimental 853

requirements. 854

2) Parameters Settings: Based on these two preprocessed 855

datasets, we set three variates for each state in 2M Markov 856

models, i.e., Holiday, TimePeriod, and Traffic. The value of 857
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Holiday is determined by whether the current day is a holi-858

day (including weekend), if yes, the value is 1, otherwise 0.859

To reflect the regular patterns of network traffic, TimePeriod860

is set to 4 periods for one day, i.e., 0:00-6:00, 6:00-12:00,861

12:00-18:00, and 18:00-24:00. As regards Traffic, the average862

network inflow traffic is adopted. According to the traffic dis-863

tribution of datasets, the traffic of dataset 1 and dataset 2 are864

equally divided into 20 slices and 19 slices, where the interval865

of each slice is 0.3 Mbps and 2 Mbps, respectively. During866

all experiments, the ratio of training to testing data is 8:2, the867

adjustment parameter α is 0.85, the convergence threshold ε868

is 1e-6, and the norm measure is 2-norm.869

3) Markov Model Construction: Based on the preprocessed870

datasets and parameters, we can construct various Markov871

models according to various variate (k = 1, 2, 3) and order872

(m = 1, 2, 3). In the constructed Markov models, the state873

in the first-variate models is Traffic, it becomes (TimePeriod,874

Traffic) in the second-variate models, and it will be (Holiday,875

TimePeriod, Traffic) in the third-variate models. For every876

k-variate m-order Markov model, we first count the total tran-877

sition number for every pair of k-variate states according to878

the definition of k-variate m-order Markov in Def. 5. Then we879

normalize these occurring number and construct the transition880

probability tensor. The concrete construction process can be881

referred to [23], [24].882

4) Baselines: To verify the performance of differ-883

ent prediction approaches for 2M Markov models, three884

approaches are compared, i.e., SJE based, SE based, and885

Z-eigen based approaches. The prediction process of the SJE886

based and SE based approaches have been illustrated in detail887

in Section V-C. In the Z-eigen based approach, a domi-888

nant Z-eigenvector (or Z-eigentensor for multivariate models)889

can be obtained after executing dominant Z-eigen decom-890

position [23], [30], which denotes the stationary probability891

distribution of states. Even though the values of dominant Z-892

eigenvector/Z-eigentensor in the Z-eigen based approach and893

stationary eigenvector/eigentensor in the SE based approach894

are somewhat different, they have similar structures and both895

represent the stationary probability distribution of states. Thus,896

the prediction process of Z-eigen based approach is similar to897

that in SE based approach. In these experiments, other machine898

learning based prediction approaches, such as naive Bayes,899

deep neural network, etc., are not selected as the baselines.900

This is because this paper focuses on studying the prediction901

of Markov models, especially the tensor-based multivariate902

multi-order Markov transition model.903

C. Evaluations of Prediction Accuracy904

1) Comparisons of Prediction Accuracy Among Different905

Prediction Approaches: To verify the advantages of the906

proposed SJE based approach in multi-order Markov mod-907

els, we construct a series of k-variate second-order Markov908

models (k = 1, 2, 3) on dataset 1 and dataset 2, and then com-909

pare their prediction accuracies among SJE based, SE based910

and Z-eigen based approaches. Fig. 8 illustrates the prediction911

accuracy comparisons of the three approaches under different912

second-order models, where the x-axis and y-axis represent913

Fig. 8. Comparisons of prediction accuracy among different approaches
under various Markov models.

the Top-K value and prediction accuracy, respectively. It can 914

be seen from Fig. 8 that the SJE based approach gains the 915

highest prediction accuracy among the three approaches for 916

all models. Especially, it exhibits more superiorities when the 917

value of Top-K is smaller. Table II gives the prediction accu- 918

racy of different approaches under various Markov models on 919

dataset 2. Compared with the Z-eigen based approach, the SJE 920

based approach can improve the prediction accuracy by 22.85, 921

24.92, 15.14 percentage points in average when the value of 922

Top-K is 4, 8, 12, respectively, and the highest improvement 923

reaches to 38.47 percentage points. These experimental results 924

show that the SJE based approach is more efficient. They fur- 925

ther confirm our aforementioned analysis in Section III. In 926

multi-order Markov models, the prediction approach based on 927

the stationary joint probability distribution is more reason- 928

able and efficient than on the first-order stationary probability 929

distribution. 930

Meanwhile, we can see from Fig. 8 that SE based approach 931

slightly outperforms Z-eigen based approach under most Top- 932

K values. Table II shows that the SE based approach can 933

improve the prediction accuracy by 2.08, 3.80, and 2.56 per- 934

centage points in average when the value of Top-K is 4, 8, and 935

12, respectively, compared with the Z-eigen based approach. 936

According to the analysis in Section VI-B4, the prediction pro- 937

cess of SE based and Z-eigen based approaches are similar. 938

Therefore, we infer that the difference of prediction accuracy 939

is likely caused by the independence assumption in calculating 940

the stationary probability distribution. Note that if we perform 941

small-scale experiments in [30] by exploiting the SE based 942

and Z-eigen based approaches, we can obtain the same results. 943

Besides, we perform these approaches based on another peo- 944

ple’s trajectory dataset (i.e., GeoLife), the SE based approach 945

also shows its superiority in prediction accuracy. Thus, as 946

we discussed in Section III, we can see that the indepen- 947

dence assumption in Z-eigen based approach is not necessarily 948

satisfied for all scenarios. 949

2) Comparisons of Prediction Accuracy Under Different 950

Variates: To explore the influence of different variates on 951

prediction accuracy in Markov models, we select three 952

k-variate first-order Markov models (i.e., k = 1, 2, 3), i.e., 953

Traffic, TimePeriod-Traffic, and Holiday-TimePeriod-Traffic, 954
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TABLE II
PREDICTION ACCURACY OF DIFFERENT APPROACHES UNDER VARIOUS SECOND-ORDER MARKOV MODELS ON DATASET 2

Fig. 9. Comparisons of prediction accuracy under different variates in first-
order Markov models.

and then compare their prediction accuracies. The reason of955

choosing first-order Markov models is that there is no dif-956

ference among the three prediction approaches in first-order957

models and the general influence of different variates can be958

demonstrated.959

Fig. 9 gives the comparisons and shows that second-variate960

and third-variate models can achieve higher prediction accu-961

racy than first-variate model. These experimental results verify962

the efficiency of multi-modal prediction by comprehensively963

considering the diversity of states. For instance, network traffic964

is not only related to past traffic but also influenced by current965

time and date. However, compared with second-variate model,966

third-variate model does not have distinct superiority. We ana-967

lyze the possible reason is that the influence of holiday on968

network traffic might not be very prominent for the selected969

two datasets.970

3) Comparisons of Prediction Accuracy Under Different971

Orders: To explore the influence of different Markov orders972

on prediction accuracy with three approaches, we conduct six973

groups of experiments under various situations.974

Fig. 10 shows the comparisons of prediction accu-975

racy among various Markov models with different orders976

(m = 1, 2, 3) for every approach. For the SJE based approach,977

the experimental results from Figs. 10(a)(d) depict that second-978

order and third-order models perform better than first-order979

model, while second-order model gains the highest accu-980

racy. It demonstrates that the second-order Markov model is981

more suitable for the network traffic dataset. However, for the982

Z-eigen based and SE based approaches, we can see from983

Figs. 10(b)(e) and Figs. 10(c)(f) that increasing orders has984

negligible influence on prediction accuracy. The results also985

confirm our proposed wondering in Section III, namely, it986

is not reasonable to implement future predictions by directly987

adopting the first-order stationary distribution in multi-order988

Markov models. Instead, the SJE based approach has higher989

prediction accuracy by using stationary joint eigentensor to990

predict network traffic under multi-order Markov models. This991

is because the SJE based approach takes recent states into con-992

sideration during traffic prediction, which is consistent with993

Fig. 10. Comparisons of prediction accuracy under different orders in all
prediction approaches.

TABLE III
NUMBER OF ITERATIONS UNDER VARIOUS α VALUES

the concept of multi-order Markov process. Besides, we can 994

see that second-order models have better performance than 995

third-order models when using the SJE based approach. The 996

possible reason for this phenomenon is that the current state 997

is closely related to previous two states, but not three states 998

in the real-world network traffic datasets. 999

D. Convergence Analysis 1000

To analyze the convergence of UP-PM in the SJE based 1001

approach, we conduct several experiments for two Markov 1002

models on dataset 1. One is a first-variate second-order 1003

Markov model, the size of whose transition probability ten- 1004

sor is 20∗20∗20. Another is a second-variate second-order 1005

Markov model, the size of whose transition probability ten- 1006

sor is 4∗20∗4∗20∗4∗20. Fig. 11 illustrates the convergence 1007

trend of UP-PM when adopting various adjustment factors α. 1008

It shows that the number of iterations will increase as the α 1009

value increases. We can see that the convergence is consistent 1010

with the analysis in Theorem 6. Meanwhile, Table III exhibits 1011

the number of iterations of UP-PM under different α value 1012

for the two Markov models. It shows that the number of itera- 1013

tions will increase slightly as the size of transition probability 1014

tensor increases. For instance, just three more times of iter- 1015

ations are required as the size of transition tensor increases 1016

from 20∗20∗20 to 4∗20∗4∗20∗4∗20 when α = 0.8. 1017

Therefore, from the extensive experimental results, it is clear 1018

that the proposed 2M Markov model and SJE based multi- 1019

modal prediction approach can obtain excellent prediction 1020
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Fig. 11. Convergence trend of UP-PM under various α values.

performance for network traffics, which is conducive to1021

improving the Quality of Service in network management1022

system. The proposed approaches will play a significant role1023

to data-driven network management in the network big data1024

era.1025

VII. CONCLUSION1026

To realize accurate future predictions, this paper proposes1027

a general multivariate multi-order Markov model and a SJE1028

based multi-modal prediction approach. First, we propose1029

two new useful tensor operations including tensor join and1030

unified product, which will play an important role in tensor-1031

based data analysis. Based on the unified product, we develop1032

a general 2M Markov model with its UP-based transition.1033

Meanwhile, the multi-step transition tensor for a 2M Markov1034

model is presented. Afterwards, an UP-based power method is1035

proposed to calculate the stationary joint probability distribu-1036

tion tensor and further implement the SJE based multi-modal1037

prediction. Extensive experimental results based on real-world1038

network traffic datasets demonstrate that the proposed SJE1039

based approach has distinct superiority in prediction accuracy1040

compared with other state-of-the-art approaches. By exploiting1041

the accurate multi-modal prediction approach, we are capable1042

of providing right service in right location at right time. These1043

accurate prediction services can significantly improve the effi-1044

ciency of network traffic management. In fact, the proposed1045

prediction approaches can also be applied to other domains1046

as long as we construct a suitable Markov model accord-1047

ing to practical requirements, e.g., location-aware trajectory1048

prediction, social network application, targeted advertisement1049

delivery, accurate trend prediction, etc.1050

However, there is a trade-off between the prediction accu-1051

racy and storage in the SJE based approach, since the station-1052

ary joint eigentensor will consume more storage space. In the1053

future, we shall study how to improve the computation effi-1054

ciency by adopting sparse representation or exploiting tensor1055

decomposition. Beside, since network data are generated in a1056

streaming way, we shall further study an incremental approach1057

to calculate the stationary joint eigentensor.1058
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