
RL-AFEC: Adaptive Forward Error Correction for Real-time Video
Communication Based on Reinforcement Learning

Ke Chen
New York University

New York, USA
kc4067@nyu.edu

Han Wang
New York University

New York, USA
hw2435@nyu.edu

Shuwen Fang
New York University

New York, USA
sf3405@nyu.edu

Xiaotian Li
New York University

New York, USA
xl3399@nyu.edu

Minghao Ye
New York University

New York, USA
my1706@nyu.edu

H. Jonathan Chao
New York University

New York, USA
chao@nyu.edu

ABSTRACT
Real-time video communication is profoundly changing people’s
lives, especially in today’s pandemic situation. However, packet loss
during video transmission degrades reconstructed video quality,
thus impairing users’ Quality of Experience (QoE). Forward Error
Correction (FEC) techniques are commonly employed in today’s
audio and video conferencing applications, such as Skype and Zoom,
to mitigate the impact of packet loss. FEC helps recover the lost
packets during transmissions at the receiver side, but the additional
bandwidth consumption is also a concern. Since network conditions
are highly dynamic, it is not trivial for FEC tomaintain video quality
with a fixed bandwidth overhead. In this paper, we propose RL-
AFEC, an adaptive FEC scheme based on Reinforcement Learning
(RL) to improve reconstructed video quality with an aim to mitigate
bandwidth consumption for different network conditions. RL-AFEC
learns to select a proper redundancy rate for each video frame,
and then adds redundant packets based on the frame-level Reed-
Solomon (RS) code. We also implement a novel packet-level Video
Quality Assessment (VQA) method based on Video Multimethod
Assessment Fusion (VMAF), which leverages Supervised Learning
(SL) to generate video quality scores in real time by only extracting
information from the packet stream without the need of visual
contents. Extensive evaluations demonstrate the superiority of our
scheme over other baseline FEC methods.

CCS CONCEPTS
• Information systems→Multimedia streaming.

KEYWORDS
Real-time Video Communication, Forward Error Correction, Rein-
forcement Learning, Video Quality Assessment

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MMSys ’22, June 14–17, 2022, Athlone, Ireland
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9283-9/22/06. . . $15.00
https://doi.org/10.1145/3524273.3528184

ACM Reference Format:
KeChen, HanWang, Shuwen Fang, Xiaotian Li,Minghao Ye, andH. Jonathan
Chao. 2022. RL-AFEC: Adaptive Forward Error Correction for Real-time
Video Communication Based on Reinforcement Learning. In 13th ACM Mul-
timedia Systems Conference (MMSys ’22), June 14–17, 2022, Athlone, Ireland.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3524273.3528184

1 INTRODUCTION
Internet video today dominates Internet traffic and is expected
to account for more than 80% of all consumer Internet traffic by
2021 [15]. Starting from early 2020, the unexpected world-wide
pandemic accelerated this trend since more and more people are
relying on video conferencing to work/study remotely. According
to research by Stanford University, work-from-home employees
now account for more than two-thirds of U.S. economic activity [4].
For example, Facebook’s employees can continue working remotely
after the pandemic [3]. Twitter also announced the decision to make
"working from home" a permanent choice [17]. In this situation,
real-time conferencing applications allowed us to stay in touch
with others and became essential in people’s daily lives.

However, packet loss during video transmission can be a poten-
tial threat to video quality. From a recent study, when 1% or more
packets are lost during transmission, video quality degradation
becomes noticeable by video conferencing participants, and the
video quality is generally unacceptable at a 5% packet loss rate [1].
In today’s network, packet loss usually happens due to network
issues like delay/jitter and network congestion [16]. For instance,
if the packets arrive late at the jitter buffer of the receiver, or the
links carry more data than they can handle, packets are discarded
and considered as packet loss. Since the lost packets may contain
useful information (e.g., motion vectors) for a video decoder at the
receiver to reconstruct original videos, it would negatively affect
decoder performance by generating video artifacts and degrading
video quality [7].

To address the above mentioned issue, video-on-demand services
such as YouTube and Netflix adopt Transmission Control Protocol
(TCP) to retransmit lost packets [30] by taking advantage of the fact
that video-on-demand services are delay insensitive and lost pack-
ets can be retransmitted. However, video live-streaming or video
conferencing call applications carried over Real-time Transport Pro-
tocol (RTP) and User Datagram Protocol (UDP) [36] cannot afford
the delay from retransmitting lost packets. Instead, they normally

https://doi.org/10.1145/3524273.3528184
https://doi.org/10.1145/3524273.3528184

MMSys ’22, June 14–17, 2022, Athlone, Ireland Chen et al.

recover lost packets in real time at the receiver using Forward Error
Correction (FEC) techniques.

FEC is commonly used in today’s audio and video conferencing
applications, such as Skype [13] and Zoom [21], to detect and cor-
rect a limited number of errors caused by packet loss. Basically, FEC
adds additional redundant packets that are generated from original
source packets by the FEC encoding process. When source packets
are lost during transmission, the receiver can still reconstruct them
using the redundant packets through the FEC decoding process.
Several heuristic FEC algorithms take historical information as an
estimate of future network condition to determine the redundancy
rates [5], [27], [10]. However, since network conditions are fluctu-
ating and packet loss rates change with time, such estimate could
be inaccurate in dynamic network environments, which may result
in unrecovered packet losses or wasted bandwidth. It is challenging
to devise an effective FEC scheme adaptive to fluctuating packet
loss rates while saving as much bandwidth as possible.

Reinforcement Learning (RL) with integration of Deep Learning
(DL) techniques has demonstrated great potential in applications
such as playing games [26], [45], Computer Go [33], adaptive video
streaming [22], and traffic engineering [47], [46]. RL techniques
are capable of learning adaptive policies through interactions with
environments. In a specific task, the trained RL agent will properly
react to the environment dynamics, with a purpose to maximize the
accumulated reward defined in advance. This adaptive characteris-
tic of RL can help to balance the trade-off between the requirements
to recover the fluctuating packet loss and not to waste bandwidth
for over-protection.

In this paper, we first propose a no-reference packet-level video
quality assessment (PL-VQA) model by supervised learning (SL).
After training, the PL-VQA model learns the mapping from some
packet-level features to the corresponding Video Multimethod As-
sessment Fusion (VMAF) scores, a famous quantitative video quality
metrics highly correlated with subjective results. The model can
estimate the VMAF scores precisely without reference to the vi-
sual contents, neither original video nor received video, which is
much faster than most existing video quality metrics and supports
real-time operations. The estimation also serves as QoE metrics
perceived by the client, a key component of the environment for
the RL agent to learn a policy.

With the help of the PL-VQA model, we propose RL-AFEC, an
RL-based approach that learns to select a proper redundancy rate
automatically for each video frame to improve reconstructed video
quality with low bandwidth consumption in dynamic network con-
ditions. Here, the redundancy rate refers to the percentage of redun-
dant packets required to recover the lost packets. RL-AFEC selects
the redundancy rate at the receiver side and sends it back to the
sender. The sender then uses the frame-level Reed-Solomon (RS)
code [31] to generate redundant packets, which are then added to
the source packet stream for transmission. Since it is not trivial to
explore enough to learn a good policy in a very large action space,
we design a discrete action pool with 10 different redundancy rates
(10%, 20%, ..., 100%) to reduce the action space and also accelerate
the convergence. We introduce the idea of critical frames with con-
sideration that packet loss on different video frames do not have
equivalent impact. Thus, the redundancy rates for critical frames

are selected individually while non-critical frames share a same re-
dundancy rate. To train RL-AFEC, we simulate a large video stream
using RTP over the improved Gilbert-Elliot (GE) channel [11], [9].
To cope with video live-streaming/video conferencing call applica-
tions, RL-AFEC uses PL-VQA to estimate received video quality and
determines the redundancy rates accordingly. After getting enough
training in the simulation environment, the RL-AFEC model can
select the appropriate redundancy rates, maximizing the long-term
accumulated reward by balancing between the protection against
packet loss and the waste of bandwidth.

The contributions of this paper are summarized as follows:

• We design an SL-based packet-level VQA method to evalu-
ate received video quality in real time without the need of
reconstructing visual contents.
• We propose an RL-based Adaptive FEC scheme to determine
redundancy rates according to fluctuating network condi-
tions with an aim to mitigate bandwidth consumption.
• We evaluate and compare RL-AFEC with the baseline meth-
ods by conducting extensive experiments on real-world video
datasets. RL-AFEC can achieve good video quality for more
than 95% of 1-second videos with as low as 40% additional
bandwidth consumption, while the baseline models can only
achieve 90% "good" quality videos with more than twice the
bandwidth consumption of RL-AFEC.

The rest of the paper is organized as follows. Some background
information and related works are introduced in Section 2 In Section
3 and Section 4, we discuss the design of our PL-VQA method
and the RL-AFEC scheme, respectively. Section 5 evaluates the
performance of RL-AFEC and presents simulation results. Section
6 concludes the paper.

2 BACKGROUND AND RELATEDWORKS
In this section, we introduce background information and some
related works.

2.1 Video structures
Today’s videos are encoded and decoded using a Group of Pictures
(GoP) frame structure that consists of three frame types known as
I-frames, P-frames, and B-frames. An I-frame is an independently
encoded reference frame. Each GoP only contains one I-frame and
always starts with an I-frame. P-frames use information from the
previous frames and contain only the motion changes relative to
the previously encoded frames. B-frames use both the previous
and following frames as references for encoding. The higher ratio
of P-frames and B-frames used instead of I-frames in a video, the
smaller the encoded video size, and the less required bandwidth
when streaming. Considering packet loss, the impact of packet
loss in an I-frame or a P-frame will propagate within the GoP, and
cause potential distortion for the remaining frames. When there
are packet losses in a B-frame, such impact does not propagate
since B-frames do not provide a reference to any other frames. A
new I-frame of next GoP will remove all the accumulated error in
the current GoP. However, both the encoding and decoding of the
B-frames requires the future frames as reference, leading to extra
delays and is thus not favorable in real-time applications.

RL-AFEC: Adaptive Forward Error Correction for Real-time Video Communication Based on Reinforcement Learning MMSys ’22, June 14–17, 2022, Athlone, Ireland

In this paper, all videos are encoded using H.264 by setting
Frames per Second (FPS) and the GoP size to 30 while disabling
B-frames to minimize the overall delay. The fixed FPS and GoP is to
simulate a general real-time video communication scenario, where
the motion between frames is neither too dynamic nor too stable.

2.2 Video Quality Assessment (VQA)
Objective video quality assessment, which uses statistical models
to approximate subjective user-perceived video quality ratings pro-
vided by users (e.g. Mean Opinion Scores, MOS), can be divided
into two main categories: Full-Reference (FR) and No-Reference
(NR), based on the availability of the reference video.

FR video metrics evaluate video quality by performing frame-by-
frame comparison between the to-be-tested videos and the original
videos. Among all the FR video metrics, Video Multimethod Assess-
ment Fusion (VMAF) developed by Netflix can predict the video
quality score highly correlated with subjective user-perceived rat-
ings, and has been widely adopted in the community and industry
[19]. VMAF extracts spatial and temporal information from the
to-be-tested and the original videos, and predicts a video quality
based on the combination of multiple basic quality metrics. The
idea is that each basic quality metric may have its own strengths
and weaknesses with respect to the source content characteristics,
type of artifacts, and degree of distortion. By integrating the basic
metrics into a more powerful metric with a Support Vector Machine
(SVM) regressor, the fusion metric could preserve all the advantages
of the individual metrics, and hence deliver a more accurate video
quality score.

Although FR metrics like VMAF can measure the video quality
precisely, the additional computational cost and the requirement of
the presence of the original videos make FR metrics impractical for
real-time video communications. This is where NR metrics stands
out. Because of no requirement on the original video as reference,
NR metrics are more feasible but more challenging to obtain when
assessing video quality at the receiver side.

Based on the information required, most existing NR video qual-
ity assessments can be categorized into two types: pixel-based meth-
ods and bitstream-based methods. Pixel-based methods evaluate the
visual content of the decoded video based on pixel information and
video structures. For example, Naturalness Image Quality Evaluator
(NIQE) [24] is based on spatial-specific natural scene statistic fea-
tures that are derived from local image patches. A more advanced
algorithm, Blind/Referenceless Image Spatial Quality Evaluator
(BRISQUE) [23], constructs point-wise features from local normal-
ized luminance signals with the help of a natural image model to
estimate the image naturalness. Both schemes use an image qual-
ity evaluator and compute the average value along the frames to
obtain a video quality score. Alternatively, bitstream-based video
quality assessments use features derived from the information of
the video packet streams, including packet headers, motion vectors,
and quantization parameters [12]. Bitstream-based methods require
neither the original videos nor the decoded videos, thus yielding a
higher computation efficiency compared to pixel-based methods.
For the video applications with the delay as a crucial factor affecting
the QoE of the service (i.e., real-time video conferencing), the extra
delay caused by the computation overhead of a pixel-based NR

video quality metric could undermine the performance. In contrast,
a bitstream-based NR video quality assessment approach could help
reduce the computation delay.

2.3 Forward Error Correction (FEC)
Several proposed FEC schemes are based on a single or multiple
consecutive GoPs. For instance, Baccaglini et al. [2] employs GoP-
level Reed-Solomon (RS) code, where all frames of an entire GoP
are used to generate one RS block. Xiao et al. [41] proposed sub-
GoP level FEC coding, where the length of sub-GoP is dynamically
changed according to network conditions and encoding parameters.
Authors in [42] generate RS parity packets using video packets of
the current frame and the previous frames of the current GoP. The
lost packets can be recovered by jointly solving the combinations
of the parity-check equations, which requires additional computa-
tional overhead. However, these prior works are not applicable in
real time since the receiver must wait for an entire GoP or sub-GoP
to recover a frame, resulting in unacceptable delays.

Some FEC schemes adopt frame-level strategies. For instance,
Yang et al. [43] and Wu et al. [38] explored frame-level FEC by
maximizing the expected number of received frames under a total
FEC bitrate constraint, while Kurdoglu et al. [18] implemented FEC
by maximizing a proposed perceptual video quality model through
jointly adapting the frame rate and FEC. Several papers [35], [40],
[39] employed FEC TCP-based video streaming to mitigate frequent
video playout pausing caused by TCP congestion control, which
regulates transmission rate and thus could exhaust the receiver’s
play-out buffer. Almost all the prior work allocated redundant pack-
ets by optimizing a predefined QoE objective function based on
network statistics such as packet loss rate and delay.

Recently, several schemes using ML to optimize FEC strategies
have emerged. DeepRS [6] can predict the number of packets that
might be lost in the next block by training an LSTM model with
historical loss patterns. However, the model did not take video char-
acteristics (i.e., frame size andmotion estimation) into consideration
when making decisions. On the other hand, these video character-
istics could be important for the ML model to obtain a good result,
since different types of videos and different video frames are not of
equal importance regarding their impact to the video quality. The
authors in [14] proposed a decision tree-based model that considers
network conditions and video content information when applying
FEC. However, it requires the actual video content as part of the
input, which is not feasible in real-time video communications.
Moreover, the model does not consider bandwidth consumption
and the decisions are made based on the coarse-grained six levels of
video quality (i.e., Poor, Bad, Fair, Good, Very good, and Excellent).
To the best of our knowledge, no prior work has studied RL-based
FEC for real-time video communications to improve video quality
and minimize the additional bandwidth used for FEC at the same
time.

2.4 Software-Defined Wide Area Network
(SD-WAN)

The emerging SD-WAN technology has benefited enterprises by
reducing costs and improving network performance [44], [37], [29].

MMSys ’22, June 14–17, 2022, Athlone, Ireland Chen et al.

Branch A

Branch B

FPU

SD-WAN Gateway
with Flow Processing
Unit (FPU)

FPU

SD-WAN Gateway
with Flow Processing
Unit (FPU) Headquarters

Internet

Figure 1: Illustration of an SD-WAN architecture.

SD-WAN solutions offer enterprises the flexibility to access multi-
cloud services and to offer new applications and services. By taking
advantages of the fact that various virtual network functions for
network security, traffic engineering, among others, have been
implemented at the SD-WAN gateways, we propose to implement
an effective and efficient Adaptive FEC (AFEC) scheme for real-time
video streams at the gateways. Our proposed AFEC scheme could
determine the redundancy rate for each video clip periodically to
maximize the accumulated reward estimated by VQA for each flow
at the destination gateway. To meet the low-delay requirement
in real-time scenario, we design a Flow Processing Unit (FPU) as
a built-in module at the SD-WAN gateway, as shown in Figure
1. When video flows reach an egress SD-WAN gateway, FPU will
identify each flow and collect the video features (i.e. packet loss
rate per frame, frame size, and motion estimation) from the RTP
stream. The features are used to determine the redundancy rate
based on RL-AFEC algorithm (to be described in Section 4). The
redundancy rate for a certain video flow is then sent back to the
corresponding ingress SD-WAN gateway, which will perform FEC
encoding accordingly for the video flow.

3 PACKET-LEVEL VIDEO QUALITY
ASSESSMENT

In this section, we describe the design of our proposed Packet-Level
Video Quality Assessment (PL-VQA) method, which is one of the
key components in RL-AFEC to perform real-time video quality
assessment.

3.1 PL-VQA Design
In this section, we proposed a packet-level no-reference video qual-
ity assessment method named PL-VQA based on Supervised Learn-
ing (SL). We extracted representative features from a video packet
stream as the input every second. A four-layer deep neural network
is used to learn a mapping between the input packet-level feature to
the ground truth video quality score produced by VMAF algorithm.

The pipeline for generating the training and testing dataset is
shown in Figure 2. For the first step, we took original videos from
our video collection as described in Section 5 and added different
levels of impairment (packet loss) to them to get the degraded videos.
The average packet loss rates are controlled by the Gilbert-Elliot
(GE) channel, which is a widely used, two-state Markov model for
simulating random losses. Each degraded video with reference to

Original
video

Degraded
video

Segment
1

Compare
with

VMAF
score 1

GE channel
with various
loss patterns

Segment
every 1s

Segment
every 1s

Packets
Generate
features

original degraded

Segment
1

···

···

.pcap

1 2 3

···

···Features
1

Segment
2

Compare
with

Segment
2

VMAF
score 2

Features
2

VMAF
score n

Features
n

Segment
n

Compare
with

Segment
n

Figure 2: Overall approach for generating training and testing
data.

the original video represents a received video with the correspond-
ing packet loss rate.

To capture packet-level information, we set up two Virtual Ma-
chines (VMs), one as the sender host and one as the receiver host.
Videos are encoded and sent through two VMs to retrieve the video
packet streams at the receiver side. The protocol that we use to
transmit the video is the RTP, which is broadly used in commu-
nication systems including streaming media, IP telephony, and
video conferencing. Each RTP packet header contains information
including frame types, sequence number, and segmentation identi-
fier. Those statistics are essential for constructing the packet-level
features.

Once we obtained the degraded video with reference to the
original video and the video packet capture, we are able to construct
our training and testing data.

3.1.1 Packet-level Feature Extraction. Video packet headers include
various descriptive data, such as sequence number, video frame
type, payload size, and segmentation identifier. From the feature
design perspective, we must reserve the representative and crucial
properties of each video. Good features should not only reflect
various levels of the degradation but also characterize different
video types. In general, our packet-level feature consists of three
parts: packet loss rate per frame, frame size in bytes, and motion
estimation factor.

Given a 1-second video segment corresponding to our smallest
data point, there are a total of 30 frames. Based on the sequence
number and segmentation identifier, we are able to rule out which
packets forming a frame are lost during transmission. Consequently,
we computed the number of bytes in the lost packets and obtained
the packet loss rate1 within each frame using Equation 1.

𝑝𝑎𝑐𝑘𝑒𝑡 𝑙𝑜𝑠𝑠 𝑟𝑎𝑡𝑒 =
𝑜 𝑓 𝑏𝑦𝑡𝑒𝑠 𝑙𝑜𝑠𝑡 𝑝𝑒𝑟 𝑓 𝑟𝑎𝑚𝑒
𝑜 𝑓 𝑡𝑜𝑡𝑎𝑙 𝑏𝑦𝑡𝑒𝑠 𝑝𝑒𝑟 𝑓 𝑟𝑎𝑚𝑒

(1)

For each frame, we will get a real number in the range from 0 to
1. For the 1-second video, we will get a feature vector with a size of
30 as the first part since the videos are encoded in 30 frames per
second.

For the second part, the number of bytes within each frame can
be easily obtained from the RTP header as well. The denotation is

1We use byte loss rate to approximate packet loss rate since most packets are of the
same size.

RL-AFEC: Adaptive Forward Error Correction for Real-time Video Communication Based on Reinforcement Learning MMSys ’22, June 14–17, 2022, Athlone, Ireland

Fr
am

e
siz

e
(K

B)

10

20

30

40

50

0

Frame index
0 50 100 150 200 250 300

I-frame

P-frame

(a) Akiyo

0 50 100 150 200 250 300
Frame index

10
20
30
40
50

0

60
70

Fr
am

e
siz

e
(K

B)

I-frame

P-frame

(b) Hall

Figure 3: Comparison of frame size between two video se-
quences: Akiyo and Hall.

shown in Equation 2. We then normalized the frame size in bytes to
the range from 0 to 1, and the size of the feature vectors is also 30.

𝑓 𝑟𝑎𝑚𝑒 𝑠𝑖𝑧𝑒 = # 𝑜 𝑓 𝑡𝑜𝑡𝑎𝑙 𝑏𝑦𝑡𝑒𝑠 𝑝𝑒𝑟 𝑓 𝑟𝑎𝑚𝑒 (2)
For the last part, we proposed a motion estimation factor to

measure how much motion is within each GoP, as shown in Equa-
tion 3. We came up with this equation from the observation of the
size of frames in different video sequences. For example, Figure
3 shows the size of each frame in two videos named Akiyo and
Hall. Akiyo is a slow-motion video with one newscaster reporting
news in front of a static background. In contrast, Hall is a relatively
high-motion video which comes from a hall monitor with random
people walking in and out of office. From the figure, we can see that
the slow-motion videos usually contain a smaller size of P frames
compared with high-motion videos. Therefore, we use the ratio of
P-frame size to I-frame size to estimate the motion.

𝑚𝑜𝑡𝑖𝑜𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑓 𝑎𝑐𝑡𝑜𝑟 =
𝑃-𝑓 𝑟𝑎𝑚𝑒 𝑠𝑖𝑧𝑒
𝐼 -𝑓 𝑟𝑎𝑚𝑒 𝑠𝑖𝑧𝑒

(3)

To conclude the packet-level feature extraction, we concatenated
all three parts of the features: packet loss rate per frame, frame size,
and motion estimation factor. In total, we will get a feature vector
of size 90 as input to the PL-VQA for one GoP that is corresponding
to a 1-second video segment. The values in each dimension of the
feature vector are in the range (0,1]. The packet-level features can
capture different levels of distortion and indicate the characteristics
of different video types.

3.1.2 VMAF Score Collection. Both the degraded and the original
video are divided into video segments with a length of 1 second. We
then took the pairs of segments as the input to the VMAF model

to get the VMAF score. In this step, we access VMAF using the
FFmpeg tool [34]. Note that the finest granularity of VMAF is the
per-frame score; therefore, the VMAF scores for the 1-second video
segments are derived by taking the per-frame scores and applying
a temporal pooling to get the per-second scores.

3.1.3 Video Quality Score Prediction. We adopted SL regression
method to train a mapping from the packet-level feature to the
ground truth VMAF. For the regressor model, we used a four-layer
fully-connected deep neural network. The input layer size is set to
(90,) to match our packet-level feature vector size. Subsequently,
we attached two fully-connected hidden layers with the number of
hidden nodes in both layers set to 180. From the output, we obtain
the predicted video quality score.

3.2 Evaluation
The evaluations of our PL-VQA model include two parts. First,
we evaluate the performance of our model in terms of prediction
accuracy with respect to the ground truth VMAF scores. Second,
we evaluate the computation time of our video quality assessment
method compared to other full-reference and no-reference video
quality assessment method.

3.2.1 Prediction Accuracy. To take an overall look at the prediction
accuracy performance, we adopted two evaluation metrics called
Mean Absolute Error (MSE) and Mean Percentage Error (MPE), as
shown in the following equations:

𝑀𝑆𝐸 =
1
𝑁

𝑁∑︁
𝑖=1
(𝑦𝑖 − 𝑦𝑖)2 (4)

𝑀𝑃𝐸 =
100%
𝑁

𝑁∑︁
𝑖=1

𝑦𝑖 − 𝑦𝑖
𝑦𝑖

(5)

where 𝑦𝑖 and 𝑦𝑖 refer to predicted VMAF scores and ground truth
VMAF scores separately. Table 1 shows the performance in both the
training dataset and testing dataset. From this table, we can see that
the prediction accuracy in terms of MSE and MPE is satisfactory in
both datasets.

Table 1: Prediction Accuracy Evaluation

MSE MPE(%)
Training Dataset 5.27 7.42%
Testing Dataset 6.04 8.17%

To get a better sense about our PL-VQA model’s performance
and to get a more straightforward look, we use the plot in Figure 4
to demonstrate the correlation between the predicted scores and
the ground truth scores. The x-axis represents the ground truth
VMAF quality scores, while the y-axis represents the predicted
video quality scores from PL-VQA. The red line across the plot
denotes the optimal situation where the predicted scores equal to
the ground truth scores. Meanwhile, each point corresponds to
a per-video score located by the ground truth and the predicted
value. Different colors of points represent different original videos
as the reference. Different points sharing the same color represent
the different levels of distortion. From this plot, we can see that

MMSys ’22, June 14–17, 2022, Athlone, Ireland Chen et al.

Figure 4: Correlation between Predicted Score and Ground
Truth Score.

our data points are closely distributed around the optimal line. We
also compute the Pearson linear correlation coefficient (PLCC), a
measurement of linear correlation between two sets of data ranges
from -1 to 1. PLCC equals 1 would mean a perfect linear correlation.
The closer it is to 1, the better the linear correlation they share. In
our case, the PLCC is 0.951, which implies an excellent correlation
for the PL-VQA model.

Table 2: Computational Time for a 1-second Video Clip

Model Inference Time
PL-VQA (Ours) 5ms
BRISQUE (Pixel-based NR VQA) >1s
VMAF (FR Video Quality Metric) >20s

3.2.2 Computation Cost. For the second part of the evaluation, we
focus on the actual computation time for our proposed PL-VQA and
other video quality assessment methods. Computation complexity
is crucial for monitoring QoS and QoE for many real-time video ap-
plications. Generally speaking, the additional computational delay
caused by most existing video quality assessment methods would
make them unsuitable for the task. Table 2 shows the computa-
tional time to obtain a video quality score for a 1-second video
segment using different video quality assessment methods. We can
see that our proposed method demonstrates huge advantages in
terms of computation cost, making it the only feasible video quality
assessment method for real-time video applications. This is because
we implemented our PL-VQA model with reduced input size and
complexity, making it much more computationally efficient.

4 RL-AFEC DESIGN
In this section, we provide the details of designing the RL-AFEC
model. We discuss the design of three components in reinforcement
learning: state, action, and reward, followed by the description of
the model architecture and the loss function.

t
0 1 2 3 4 5 6 7 8 9 𝑡0 − 5 𝑡0 𝑡0 + 1

state action state action

RL-AFEC agent RL-AFEC agent

Figure 5: The general idea of state design. Each state contains
information of video frames from the past 5 seconds.

4.1 State
In every second, the RL agent takes a state as input, which contains
video information of the past adjacent 5 seconds, and outputs an
action (i.e., FEC redundancy rate) to be applied to the video trans-
mission in the next second. As shown in Figure 5, the action selected
for performing FEC encoding from 𝑡0 to 𝑡0 + 1 is based on informa-
tion from 𝑡0−5 to 𝑡0. In every second, three types of information are
extracted: packet loss rate per frame, frame size, and motion estima-
tion, which are the same as the input of the PL-VQA model. Similar
to PL-VQA, every second’s feature is a 90-dimensional vector. Every
five consecutive feature vectors are combined into a 90 × 5 matrix
and used as an input state.

4.2 Action
The action of our model is to select a redundancy rate to be used
for each frame to add corresponding redundant packets. The main
challenge for this is the huge action space, which may cause the
convergence of the model to be impaired [8].

To address this issue, first we predefine an action pool that con-
tains 10 different redundancy rates (10%, 20%, ..., 100%), instead
of using the continuous action space. In every second, the agent
receives an input state, and selects one of the 10 redundancy rates
for each of the 30 frames. For example, if a frame is carried by
10 source packets and the agent chooses a 20% redundancy rate
for this frame, then 2 more redundant packets will be added. We
employ per-frame Reed-Solomon (RS) code to perform FEC where
all packets belonging to the same frame serve as a block.

Even with the much smaller discrete action space, the agent still
needs to select a redundancy rate for each of the 30 frames out
of the 10 different redundancy rates every second, leading to an
action space as large as 1030. To keep on reducing the action space,
we take video structure into account. As explained in Section 2,
any error in a frame will be propagated to the end of the GoP. The
earlier the corrupted frame is, the greater the impact would be. As
a result, the model should pay more attention to a certain number
(i.e. 𝐾) of frames in the front of a GoP. We call them critical frames.

Through extensive action refinement, the RL-AFEC model now
chooses one of the 10 redundancy rates (10%, 20%, . . . , 100%) for
each of the 𝐾 critical frames individually and selects a redundancy
rate for all the remaining non-critical frames. Figure 6 provides an
illustrative example to explain the idea. Assuming that the first 4
frames are critical frames and the remaining 26 frames are non-
critical frames, the agent selects different redundancy rates (50%,
30%, 40%, and 60%) for each of the critical frames but uses a fixed
redundancy rate (20%) for all non-critical frames. Given 𝐾 critical

RL-AFEC: Adaptive Forward Error Correction for Real-time Video Communication Based on Reinforcement Learning MMSys ’22, June 14–17, 2022, Athlone, Ireland

I P P P …P P

Critical frames Non-critical frames

50% 30% 40% 60% 20%

Figure 6: An example of action design with critical frames.

frames, the action space is now reduced to 10𝐾+1. We will discuss
how to determine the value of 𝐾 in Section 5.

4.3 Reward
Our goal is tomaintain high video qualitywithminimumbandwidth
consumption. Therefore, there are two factors considered in the
reward function. One is video quality estimated in VMAF score
based on our PL-VQA model, as elaborated in Section 3; the other
is bandwidth wasted, which is defined as follows.

𝐵𝑊𝑤𝑎𝑠𝑡𝑒𝑑 (𝑖) =
{
𝑝𝑘𝑡𝑎𝑑𝑑 (𝑖) − 𝑝𝑘𝑡𝑙𝑜𝑠𝑡 (𝑖), if loss recovered

𝑝𝑘𝑡𝑎𝑑𝑑 (𝑖), otherwise
(6)

Here, 𝑝𝑘𝑡𝑎𝑑𝑑 (𝑖) refers to the number of redundant packets added
to the i-th frame, whereas 𝑝𝑘𝑡𝑙𝑜𝑠𝑡 (𝑖) refers to the number of lost
packets in the i-th frame. We designed the reward function based on
the property of the RS code. For 𝑅𝑆 (𝑛, 𝑘), if 𝑛−𝑘 redundant packets
are added to 𝑘 source packets, then as long as the receiver receives
𝑘 packets (regardless source packets and redundant packets), the
original 𝑘 source packets can be recovered. In other words, if the
lost packets can be recovered, the number of redundant packets
should not be lower than the number of lost packets. Therefore,
the redundant packets that are not used for RS decoding can be
considered aswasted packets. If the lost packets cannot be recovered
due to lack of redundant packets, then all the added redundant
packets are useless and the bandwidth is wasted. For example, if
one frame is carried by five packets, we use 𝑅𝑆 (7, 5) to perform FEC
encoding so that two more redundant packets are added. During
transmission, if one of the source packets is lost, it can be recovered
since we have provided enough redundancy packets. In this case,
the bandwidth wasted is 2− 1 = 1 packet. However, if 3 packets are
lost during transmission, it is not sufficient to recover the lost ones
with two redundant packets. As a result, the bandwidth wasted
would be two packets. When the number of added packets is exactly
the same as the number of lost packets in the future, the bandwidth
wasted would be zero.

The reason we consider bandwidth wasted instead of the total
amount of bandwidth consumed is that we want the model to re-
cover the lost packets with the minimum additional bandwidth.
The lost packets can always be recovered if we add 100% redun-
dancy rate all the time. However, if the loss rate is relatively low, a
high redundancy rate would lead to unnecessary bandwidth waste.
Therefore, it is important to determine how to limit additional band-
width at a proper amount such that the redundant packets can be
used to recover the lost packets without bandwidth wasted.

The general form of the reward function is:

𝑟 = 𝑉𝑀𝐴𝐹 − 𝛼 ·
30∑︁
𝑖=1

𝐵𝑊𝑤𝑎𝑠𝑡𝑒𝑑 (𝑖), (7)

where 𝛼 is a scaling factor controlling the weight of the penalty
term. Basically, models with a small alpha tend to consume more
bandwidth compared to models with a large alpha.

The general form of the reward function above implies the rela-
tionship between video quality and consumed bandwidth. However,
it cannot provide performance guarantee to achieve good video
quality. In our design, we first ensure that the video quality score
is above a preset target score regardless of bandwidth consump-
tion. Once the target score can be achieved, we then consider con-
straining the bandwidth consumption. Thus, we refine the reward
function into a piece-wise function as shown below.

𝑟 =

𝑉𝑀𝐴𝐹 −𝑉𝑀𝐴𝐹𝑡𝑎𝑟𝑔𝑒𝑡 , if 𝑉𝑀𝐴𝐹 < 𝑉𝑀𝐴𝐹𝑡𝑎𝑟𝑔𝑒𝑡

𝑉𝑀𝐴𝐹𝑡𝑎𝑟𝑔𝑒𝑡 − 𝛼 ·
30∑︁
𝑖=1

𝐵𝑊𝑤𝑎𝑠𝑡𝑒𝑑 (𝑖), otherwise
(8)

When the 𝑉𝑀𝐴𝐹 score is smaller than the 𝑉𝑀𝐴𝐹𝑡𝑎𝑟𝑔𝑒𝑡 , the
reward is negative and solely relies on the 𝑉𝑀𝐴𝐹 score. The closer
to the target, the higher the reward. Once the VMAF score reaches
the target, the reward becomes positive with an increasing penalty
on bandwidthwasted, which is no longer dependent on VMAF score.
We set the target score 𝑉𝑀𝐴𝐹𝑡𝑎𝑟𝑔𝑒𝑡 equal to 80, which indicates
‘good’ video quality according to Netflix [20].

4.4 Model’s Architecture

State, 90x5

Conv_1D

Flatten

Dense layers

Each layer
has 256
nodes

Softmax

Softmax

Softmax

20%

Policy

50%

30%

1𝑠𝑡

2𝑛𝑑

Selected
action

(𝐾 + 1)𝑡ℎ

Output layer
has (K+1) x 10
nodes

0.132 … 0.091 0.136 … 0.287 0.837 … 0.844

0.112 … 0.161 0.362 … 0.153 0.866 … 0.879

0.185 … 0.136 0.495 … 0.230 0.767 … 0.778

0.268 … 0.087 0.106 … 0.381 0.811 … 0.814

0.264 … 0.146 0.527 … 0.512 0.754 … 0.753

1 … 30 31 … 60 61 … 90

Figure 7: The architecture of RL-AFEC model.

We employ a pure policy approach for training RL-AFEC model.
Figure 7 shows the architecture of our model. The state information,
which is a 90 × 5 matrix, would be fed into a 1-D convolutional
layer with 8 filters. After flattening, the intermediate result passes
through 2 dense layers, where each layer has 256 nodes. At the end,
it reaches the output layer. To select a specific redundancy rate for
each critical frame, we implemented the softmax function indepen-
dently on output nodes corresponding to each critical frame. As
shown in Figure 7, different colored boxes represent different criti-
cal frames except the last one, which corresponds to the remaining
non-critical frames. Each box contains 10 nodes that refer to 10
different redundancy rates in the action pool. After the softmax
function, we obtain the policy, which is the probability that the

MMSys ’22, June 14–17, 2022, Athlone, Ireland Chen et al.

model relies on to make decisions. In every second, the agent de-
termines 𝐾 + 1 actions, including 𝐾 actions for the critical frames
and 1 action for the remaining non-critical frames. The reference
time of RL-AFEC is 2.14 ms on average and the selected redun-
dancy accounts for the next whole seconds, which accounts for low
computation overhead and it suitable for real-time operations.

4.5 Loss Function
In this subsection, we describe the loss function used to train the
model. By minimizing the loss function, the goal is to find an op-
timal policy 𝜋 (i.e., the probability of choosing each action). In
Figure 7, there are 𝐾 + 1 different colored boxes corresponding to
different frames, and 𝐾 + 1 actions are determined out of the boxes
accordingly. Therefore, there are two types of loss functions: one is
the loss function for each box (i.e., the loss function for selecting a
single action out of 10 candidates), and the other is the loss function
for the whole system (i.e., the loss function for selecting multiple
actions, in our case 𝐾 + 1 actions each time). We first illustrate the
loss function design for selecting single action, and then extend it
to multiple actions.

Table 3: Notations

𝑁 the size of action pool
𝐾 the number of critical frames
𝑠𝑡 state at time t
𝑎𝑡 action at time t
𝑟𝑡 reward at time t

𝜋 (𝑎𝑡 |𝑠𝑡) probability over all 𝑁 actions in state 𝑠𝑡
𝑏 (𝑠𝑡) baseline for reducing gradient variance

𝐻 (𝜋 (·|𝑠𝑡 ;𝜃)) entropy of the policy

4.5.1 Loss Function for Selecting Single Action. The agent takes a
state 𝑠𝑡 as input and outputs a probability distribution 𝜋 (𝑎𝑡 |𝑠𝑡) over
all possible actions in the action pool. The loss function is defined
as follows:

𝑙𝑜𝑠𝑠 = −
∑︁
𝑡

(log𝜋 (𝑎𝑡𝑖 |𝑠𝑡 ;𝜃) (𝑟𝑡 − 𝑏 (𝑠𝑡))) (9)

A baseline𝑏 (𝑠𝑡) is added to reduce gradient variance and thus speed
up the convergence. In our method, we use the average reward for
each state 𝑠𝑡 as the baseline. (𝑟𝑡 − 𝑏 (𝑠𝑡)) indicates how much bet-
ter a specific action is compared to the "average" for a given state
𝑠𝑡 according to the policy. Intuitively, if (𝑟𝑡 − 𝑏 (𝑠𝑡)) is positive,
𝜋 (𝑎𝑡𝑖 |𝑠𝑡 ;𝜃) (i.e., the probability of choosing action 𝑎𝑡𝑖) is increased
by minimizing the loss function. Otherwise, the probability is de-
creased. The net effect of Equation 9 is to reinforce actions that
lead to higher rewards.

However, the above loss function cannot always lead to good
convergence. If the model hits a good action that results in a posi-
tive reward at the first time, the model might reinforce this action
too much (i.e., increase its probability to near 1). As a result, other
actions will not get a chance to be chosen. It is possible that there
exists another action that can result in a larger reward. This prob-
lem is called the lack of exploration. To ensure that the RL agent
explores the action space adequately during training to discover

good policies, the entropy of policy 𝜋 is added to Equation 9. This
technique improves the exploration by discouraging premature con-
vergence to suboptimal deterministic policies [25]. Then, Equation
9 is modified as follows:

𝑙𝑜𝑠𝑠 = −
∑︁
𝑡

(log𝜋 (𝑎𝑡𝑖 |𝑠𝑡 ;𝜃) (𝑟𝑡 − 𝑏 (𝑠𝑡)) − 𝐻 (𝜋 (·|𝑠𝑡 ;𝜃))) (10)

where 𝐻 is the entropy of the policy.

4.5.2 Loss Function for Selecting Multiple Actions. Equation 10 is
used to evaluate the quality of action selected for one frame (i.e.
a single box in the output layer in Figure 7). Recall that we have
𝐾 + 1 actions to be determined at each time, where 𝐾 is the number
of critical frames. To design a loss function that characterizes the
whole system, we simply sum up the loss functions over the number
of actions. The final form of loss function is given below:

𝑙𝑜𝑠𝑠 =

𝐾+1∑︁
𝑘=1
(−

∑︁
𝑡

(log𝜋 (𝑎 (𝑘)𝑡𝑖 |𝑠𝑡 ;𝜃) (𝑟𝑡𝑖 − 𝑏 (𝑠𝑡))

− 𝐻 (𝜋 (𝑎 (𝑘)𝑡 |𝑠𝑡 ;𝜃)))),

(11)

where 𝑎 (𝑘)𝑡𝑖 refers to the action selected for the 𝑘-th critical frame

(𝑘 ≤ 𝐾) at time 𝑡 , while 𝑎 (𝐾+1)𝑡𝑖
is the action selected for non-critical

frames.
Then, the policy parameter 𝜃 is updated according to the follow-

ing equation:

𝜃 ← 𝜃 + 𝛼
𝐾+1∑︁
𝑘=1
(
∑︁
𝑡

(∇𝜃 log𝜋 (𝑎
(𝑘)
𝑡 |𝑠𝑡 ;𝜃) (𝑟𝑡 − 𝑏 (𝑠𝑡))

+ 𝛽∇𝜃𝐻 (𝜋 (𝑎𝑡 (𝑘) |𝑠𝑡 ;𝜃)))),

(12)

where 𝛼 is the learning rate for the policy network, while 𝛽 controls
the strength of the entropy regularization term.

5 EVALUATION
In the previous section, we elaborated on the design of the RL-AFEC
scheme. This section presents the evaluation results of our method.

5.1 Dataset Generation
As shown in Figure 8, we collected 12 commonly used video se-
quences in YUV 4:2:0 format to generate our video dataset [32]. The
videos cover different motion levels, including slow motion (e.g.,
akiyo and news), medium motion (e.g., foreman and container), and
high motion (e.g., coastguard and stefan).

To create the dataset for RL training, we concatenated videos in
a random order to simulate a large video stream on the Internet.
The videos are transmitted in a simulation environment using RTP
through the GE channel. The GE channel is a two-state Markov
model, with transition probabilities from good-to-bad as 𝛼 and that
from bad-to-good as 𝛽 , 𝛼, 𝛽 ∈ (0, 1). The packet loss rate in the
good-state is 𝜖 ∈ [0, 1), and in the bad-state is 1. The overall packet
loss rate of a 𝐺𝐸 (𝛼, 𝛽, 𝜖) is

𝑃𝐿𝑅(𝛼, 𝛽, 𝜖) = 𝛼

𝛼 + 𝛽 +
𝛽

𝛼 + 𝛽 𝜖 (13)

To introduce various loss patterns to the video transmission
process, we use a Hidden Markov Model (HMM) [28] to further

RL-AFEC: Adaptive Forward Error Correction for Real-time Video Communication Based on Reinforcement Learning MMSys ’22, June 14–17, 2022, Athlone, Ireland

(a) akiyo (b) coastguard (c) container (d) foreman

(e) hall (f) mother&daughter (g) news (h) mobile

(i) bridge (j) bus (k) stefan (l) paris

Figure 8: Video pool for generating training and test dataset.
All videos are in CIF format and encoded using H.264 by
setting Frames Per Second (FPS) and Group of Picture (GoP)
size equal to 30.

represent the nature of the Internet packet loss pattern. Instead
of solely using the classic GE channel, we concatenate the loss
traces generated using the GE channel with 16 different sets of
parameters (𝛼 , 𝛽 , 𝜖) that correspond to 16 different average loss
rates (i.e., 0.1%, 1%, 2%, ..., 15%). We proposed an HMM with 16
states to control the generation of loss traces, where each state
corresponds to an average loss rate used in the GE channel. Both the
transition probability and emission probability obey the binomial
distribution. We set the transition time interval to 5 seconds, which
means the HMM transits to another set of GE parameters every
5 seconds. By using the HMM, we simulate the loss traces with
similar patterns as real Internet loss traces in a long time span,
and introduce a temporal correlation between the past and future
loss patterns. Then, we can extract frame level information from
the packet stream, such as packet loss rate per frame, frame size,
and motion estimation as discussed in Section 3. Each entry in the
dataset is a 90-dimensional vector that corresponds to a 1-second
video clip or 30 frames. In total, the training set contains 12.5 hours
of data while the test set includes 1.25 hours of data.

5.2 Methods in Comparison
To better evaluate the performance of our model, we proposed
two other methods for comparison, a baseline model and a LSTM
model. The baseline model calculates the average loss rate of the
past 5 seconds and then sets the redundancy rate to be multiples of
the average loss rate. Then, the ingress gateway will perform RS
encoding using this redundancy rate.We also developed a predictive
model based on LSTM, inspired by the LSTM model utilized by
DeepRS [6]. Rather than 6 packets as a block in [6], our block is
much bigger and contains all the packets from a certain frame. The
LSTMmodel takes information from the past 5 seconds and predicts
the loss rate of each frame in the next second. Then, it will round
the predicted loss rate of each frame to the nearest multiple of 10%
as the redundancy rate.

0 20 40 60 80 100
VMAF

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

K=5
K=10
K=15
K=20
K=25
K=30

Figure 9: Evaluation results of the RL-AFEC model with dif-
ferent number of critical frames.

5.3 Number of Critical Frames
For RL-AFEC, we use the idea of critical frames to reduce the action
space. The model only determines 𝐾 + 1 actions where 𝐾 is the
number of critical frames. It is important to determine a proper
K value. If K is too large, it may result in a huge action space to
explore and leads to poor convergence. If K is too small, it would
impair the ability of RL-AFEC to adapt to different network sce-
narios. Therefore, we trained several models by setting 𝐾 to be
different values (𝐾 = 5, 𝐾 = 10, ..., 𝐾 = 30). Figure 9 shows the
evaluation results on the test set. The lower the curve, the better
the performance. The green line at the bottom refers to𝐾 = 15with
the best performance among all models with different 𝐾 values.
The upper two lines corresponding to 𝐾 = 25 and 𝐾 = 30 lead to
unsatisfactory performance since the action space is too large to
explore. On the other hand, the performance of RL-AFEC would
also be impaired when K is too small. For example, the model with
𝐾 = 5 is not as good as the model with 𝐾 = 15 because it lacks flex-
ibility for selecting distinct redundancy rate combinations to cope
with various kinds of loss patterns. From the above observations,
we set 𝐾 equal to 15 in the following experiments.

5.4 Evaluation Results on Test Set
In this subsection, we present the evaluation results of the three
methods including the RL-AFEC model, the baseline model, and
the LSTM model on the test set. For the baseline model, we set
the redundancy rate to be several times of the average loss rate of
the past 5 seconds, which are denoted as baseline_x2, baseline_x3,
baseline_x4, baseline_x5, baseline_x10, respectively. For the RL-
AFEC model, we used two 𝛼 values in Equation 8, 𝛼 = 0.05 and
𝛼 = 0.1. Note that the model with a smaller 𝛼 tends to consume
more bandwidth than that with a larger 𝛼 .

Table 4 summarizes the evaluation results. We provided the mean
value and three percentiles in the table (80%, 90%, and 95%). For
example, for the RL model with 𝛼 equal to 0.05, the 80th percentile
value is 95.88, which means 80% of tested 1-second videos in the
test set have a VMAF score above 95.88. We can compare the per-
formance of different methods more clearly by observing the data
points in Figure 10. The vertical red line corresponds to a VMAF
score equal to 80, which is the target score used in the reward func-
tion and also indicates ’good’ video quality according to Netflix.
Figure 10(a) shows 80th percentile results. We can observe that the

MMSys ’22, June 14–17, 2022, Athlone, Ireland Chen et al.

0 20 40 60 80
VMAF

0

20

40

60

80

100

Re
du

nd
an

cy
 R

at
e

(%
)

x2

x3

x4

x5

x10

alpha0.05

alpha0.1
LSTM

Baseline
RL-AFEC
LSTM

(a) Evaluation results: 80th percentile

20 40 60 80
VMAF

0

20

40

60

80

100

Re
du

nd
an

cy
 R

at
e

(%
)

x2

x3

x4

x5

x10

alpha0.05

alpha0.1
LSTM

Baseline
RL-AFEC
LSTM

(b) Evaluation results: 90th percentile

0 20 40 60 80
VMAF

0

20

40

60

80

100

Re
du

nd
an

cy
 R

at
e

(%
)

x2

x3

x4

x5

x10

alpha0.05

alpha0.1
LSTM

Baseline
RL-AFEC
LSTM

(c) Evaluation results: 95th percentile

Figure 10: 80th percentile, 90th percentile, and 95th per-
centile VMAF score in the test set obtained by different meth-
ods. The horizontal axis refers to the VMAF value. The verti-
cal axis is the average redundancy rate consumed by different
methods.

performance of baseline_x5 is close to the RL models. However,
if we look at the 90th percentile results, the performance of the
baseline models and the LSTM model degrades quickly and only
the RL-AFEC models can still achieve high VMAF scores with rela-
tively low redundancy rate. To catch up with the performance of
RL-AFEC in terms of VMAF, baseline model has to add ten times of
the average loss rate as redundancy, which leads to much higher
bandwidth consumption compared to RL-AFEC. The 95th percentile
results demonstrate more superiority of our methods, since only

VMAF Mean 80% 90% 95%
Baseline x2 59.95 27.59 9.13 3.93
Baseline x5 90.37 92.24 70.65 43.94
Baseline x10 93.73 94.75 89.50 67.26

LSTM 84.71 68.72 59.53 52.20
RL(𝛼 = 0.1) 95.72 95.71 94.32 86.63
RL(𝛼 = 0.05) 97.25 95.88 94.79 93.95

Table 4: Evaluation results of different methods. 80% means
there are 80% of tested 1-sec videos whose VMAF is higher
than the value in the table.

Figure 11: Comparison of subjective video quality of the
coastguard sequence recovered by the three methods from
7% packet loss rate. (a) Original frame. (b) Baseline x4. (c)
LSTM model. (d) RL (𝛼 = 0.1).

the RL-AFEC models can maintain high video quality for 95% of
test data.

5.5 Evaluation Results on Different Videos
We also performed evaluation by adding various loss rates to dif-
ferent videos and use the methods in comparison to recover the
lost packets. Here we evaluated the RL-AFEC model with 𝛼 equal
to 0.1, the baseline model with redundancy rate equal to 4 times
of the average loss rate of past 5 seconds, and the LSTM model.
These three methods consumed similar redundancy rate according
to previous evaluation results.

The first example is the coastguard sequence with a 7% packet
loss rate. From Figure 11, the first picture shows the original video
frame without any loss. The next three pictures present the re-
covered video frame using baseline x4, the LSTM model, and the
RL-AFEC model with 𝛼 equal to 0.1. Obviously, the video recovered
using RL-AFEC model has the highest quality, which is almost as
good as the original video. But for the other two methods, there is
a lot of noise in the picture since they are incapable of recovering
lost packets.

The second example is the mother&daughter sequence with a
6% packet loss rate. Figure 12 shows that there are distortions on
the people’s faces in the two video frames in the middle while the
picture recovered by the RL-AFECmodel is as perfect as the original.
As for the last example shown in Figure 13, we added a 4% loss rate
to the news video sequence. We can see that there are still some
ribbons on the picture that are caused by packet loss even though
the video is recovered by the baseline model and the LSTM model.
On the contrary, there is no distortion in the video recovered by
the RL-AFEC model.

RL-AFEC: Adaptive Forward Error Correction for Real-time Video Communication Based on Reinforcement Learning MMSys ’22, June 14–17, 2022, Athlone, Ireland

Figure 12: Comparison of subjective video quality of the
mother&daughter sequence recovered by the three methods
from 6% packet loss rate. (a) Original frame. (b) Baseline x4.
(c) LSTM model. (d) RL (𝛼 = 0.1).

Figure 13: Comparison of subjective video quality of the news
sequence recovered by the three methods from 4% packet
loss rate. (a) Original frame. (b) Baseline x4. (c) LSTM model.
(d) RL (𝛼 = 0.1).

6 CONCLUSION
With an objective of maintaining the quality of videos transmitted
over unreliable networks with low bandwidth consumption in FEC,
we propose RL-AFEC, an adaptive FEC scheme that learns to se-
lect proper redundancy rates for all video frames in each Group of
Pictures (GoP) using reinforcement learning, without any domain-
specific predefined rules. Then, the redundant packets of each frame
are added by frame-level RS code according to the selected redun-
dancy rate. The superiority of our method can be summarized as
below:

• Real time: In every second, RL-AFEC can select the proper
redundancy rate based on the feedback of the past 5 seconds
to tackle potential packet loss in the next 1-second interval
video transmission.
• Robust: According to the evaluation results, for more than
95% 1-second videos in the test set, RL-AFEC achieves a
VMAF score larger than 80 (indicating good video quality)
with only 40% additional bandwidth consumption.
• Fast: RL-AFEC takes less than 5ms on average to select
redundancy rates for each frame on ordinary computers,
which could be even faster if performed on the SD-WAN
gateways.

Yet, there are still areas that may be worth exploring to improve
RL-AFEC:

• Real-world traces: The evaluations that have been done in
this work are based on simulation environments in the labo-
ratory. For example, we introduce time-varying packet loss
rates according to the modified GE channel. In the future, we
would collect real-world traces, if achievable, to supplement
our training dataset and retrain the RL model.

• Periodically retraining: In this paper, the RL-based adap-
tive FEC scheme is trained as an offline task. In other words,
once training is done, RL-AFEC remains unmodified. As a
result, the performance of the model depends on whether the
training set meets all the potential situations in the network.
However, we may periodically retrain the model by accom-
modating future unseen video types and loss patterns into
the training set. Going forward, we may deploy the model
in a real network and perform online learning, such that
RL-AFEC can further adapt itself to the dynamic conditions
in the network.

ACKNOWLEDGMENTS
This work was partially supported by Fortinet, Inc., CA. The authors
would like to thank Fortinet engineers for providing insightful
information through numerous meetings and communications.

REFERENCES
[1] 2019. Preparing Your IP Network for Video Conferencing. https://support.

polycom.com/content/dam/polycom-support/products/uc-infrastructure-
support/management-scheduling/dma/other-documents/en/preparing-ip-
network-video-conferencing.pdf

[2] Enrico Baccaglini, Tammam Tillo, and Gabriella Olmo. 2008. Slice sorting for
unequal loss protection of video streams. IEEE Signal Processing Letters 15 (2008),
581–584.

[3] BBC. 2021. Facebook remote working plan extended to all staff for long term. Re-
trieved January 13, 2022 from https://www.bbc.com/news/technology-57425636

[4] Nicholas Bloom. 2020. Stanford research provides a snapshot of a new working-
from-home economy. Retrieved January 13, 2022 from https://news.stanford.
edu/2020/06/29/snapshot-new-working-home-economy

[5] J-C Bolot, Sacha Fosse-Parisis, and Don Towsley. 1999. Adaptive FEC-based error
control for Internet telephony. In IEEE INFOCOM’99. Conference on Computer
Communications. Proceedings. Eighteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. The Future is Now (Cat. No. 99CH36320),
Vol. 3. IEEE, 1453–1460.

[6] Sheng Cheng, Han Hu, Xinggong Zhang, and Zongming Guo. 2020. Deeprs:
Deep-learning based network-adaptive fec for real-time video communications.
In 2020 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 1–5.

[7] Qin Dai and Ralf Lehnert. 2010. Impact of packet loss on the perceived video
quality. In 2010 2nd International Conference on Evolving Internet. IEEE, 206–209.

[8] Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy
Lillicrap, Jonathan Hunt, Timothy Mann, Theophane Weber, Thomas Degris, and
Ben Coppin. 2015. Deep reinforcement learning in large discrete action spaces.
arXiv preprint arXiv:1512.07679 (2015).

[9] Edwin O Elliott. 1963. Estimates of error rates for codes on burst-noise channels.
The Bell System Technical Journal 42, 5 (1963), 1977–1997.

[10] Salma Shukry Emara, Silas Fong, Baochun Li, Ashish Khisti, Wai-Tian Tan, Xiao-
qing Zhu, and John Apostolopoulos. 2021. Low-latency network-adaptive error
control for interactive streaming. IEEE Transactions on Multimedia (2021).

[11] Edgar N Gilbert. 1960. Capacity of a burst-noise channel. Bell system technical
journal 39, 5 (1960), 1253–1265.

[12] Sheila S Hemami and Amy R Reibman. 2010. No-reference image and video
quality estimation: Applications and human-motivated design. Signal processing:
Image communication 25, 7 (2010), 469–481.

[13] Te-Yuan Huang, Polly Huang, Kuan-Ta Chen, and Po-Jung Wang. 2010. Could
Skype be more satisfying? A QoE-centric study of the FEC mechanism in an
Internet-scale VoIP system. IEEE Network 24, 2 (2010), 42–48.

[14] Mushahid Hussain and Abdul Hameed. 2018. Adaptive video-aware forward
error correction code allocation for reliable video transmission. Signal, Image
and Video Processing 12, 1 (2018), 161–169.

[15] Cisco Global Cloud Index. 2018. Forecast and methodology, 2016–2021 white
paper. Updated: February 1 (2018).

[16] Wenyu Jiang and Henning Schulzrinne. 2000. Modeling of packet loss and delay
and their effect on real-time multimedia service quality. In Proc. NOSSDAV.

[17] Heather Kelly. 2020. Twitter employees don’t ever have to go back to the of-
fice (unless they want to). Retrieved January 13, 2022 from https://www.
washingtonpost.com/technology/2020/05/12/twitter-work-home

[18] Eymen Kurdoglu, Yong Liu, and YaoWang. 2017. Perceptual quality maximization
for video calls with packet losses by optimizing FEC, frame rate, and quantization.
IEEE Transactions on Multimedia 20, 7 (2017), 1876–1887.

https://support.polycom.com/content/dam/polycom-support/products/uc-infrastructure-support/management-scheduling/dma/other-documents/en/preparing-ip-network-video-conferencing.pdf
https://support.polycom.com/content/dam/polycom-support/products/uc-infrastructure-support/management-scheduling/dma/other-documents/en/preparing-ip-network-video-conferencing.pdf
https://support.polycom.com/content/dam/polycom-support/products/uc-infrastructure-support/management-scheduling/dma/other-documents/en/preparing-ip-network-video-conferencing.pdf
https://support.polycom.com/content/dam/polycom-support/products/uc-infrastructure-support/management-scheduling/dma/other-documents/en/preparing-ip-network-video-conferencing.pdf
https://www.bbc.com/news/technology-57425636
https://news.stanford.edu/2020/06/29/snapshot-new-working-home-economy
https://news.stanford.edu/2020/06/29/snapshot-new-working-home-economy
https://www.washingtonpost.com/technology/2020/05/12/twitter-work-home
https://www.washingtonpost.com/technology/2020/05/12/twitter-work-home

MMSys ’22, June 14–17, 2022, Athlone, Ireland Chen et al.

[19] Zhi Li, Christos Bampis, Julie Novak, Anne Aaron, Kyle Swanson, AnushMoorthy,
and JD Cock. 2018. VMAF: The journey continues. Netflix Technology Blog 25
(2018).

[20] Zhi Li, Christos Bampis, Julie Novak, Anne Aaron, Kyle Swanson, AnushMoorthy,
and JD Cock. 2018. VMAF: The journey continues. Netflix Technology Blog 25
(2018).

[21] Qiyong Liu, Zhaofeng Jia, Kai Jin, Jing Wu, and Huipin Zhang. 2019. Error
resilience for interactive real-time multimedia application. US Patent 10,348,454.

[22] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural adaptive
video streaming with pensieve. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication. 197–210.

[23] Anish Mittal, Anush K Moorthy, and Alan C Bovik. 2011. Blind/referenceless
image spatial quality evaluator. In 2011 conference record of the forty fifth asilomar
conference on signals, systems and computers (ASILOMAR). IEEE, 723–727.

[24] Anish Mittal, Rajiv Soundararajan, and Alan C Bovik. 2012. Making a “completely
blind” image quality analyzer. IEEE Signal processing letters 20, 3 (2012), 209–212.

[25] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Tim-
othy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous methods for deep reinforcement learning. In International conference
on machine learning. PMLR, 1928–1937.

[26] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing Atari with
Deep Reinforcement Learning. (2013). http://arxiv.org/abs/1312.5602 NIPS Deep
Learning Workshop 2013.

[27] Chinmay Padhye, Kenneth J Christensen, and Wilfrido Moreno. 2000. A new
adaptive FEC loss control algorithm for voice over IP applications. In Conference
Proceedings of the 2000 IEEE International Performance, Computing, and Commu-
nications Conference (Cat. No. 00CH37086). IEEE, 307–313.

[28] Lawrence Rabiner and Biinghwang Juang. 1986. An introduction to hidden
Markov models. ieee assp magazine 3, 1 (1986), 4–16.

[29] S Rajagopalan. 2020. An Overview of SD-WAN Load Balancing for WAN Con-
nections. In 2020 4th International Conference on Electronics, Communication and
Aerospace Technology (ICECA). IEEE, 1–4.

[30] Ashwin Rao, Arnaud Legout, Yeon-sup Lim, Don Towsley, Chadi Barakat, and
Walid Dabbous. 2011. Network characteristics of video streaming traffic. In
Proceedings of the Seventh COnference on emerging Networking EXperiments and
Technologies. 1–12.

[31] Irving S Reed and Gustave Solomon. 1960. Polynomial codes over certain finite
fields. Journal of the society for industrial and applied mathematics 8, 2 (1960),
300–304.

[32] P. Seeling and M. Reisslein. 2012. Video Transport Evaluation With H.264 Video
Traces. IEEE Communications Surveys and Tutorials, in print 14, 4 (2012), 1142–
1165. Traces available at trace.eas.asu.edu.

[33] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural
networks and tree search. nature 529, 7587 (2016), 484–489.

[34] Suramya Tomar. 2006. Converting video formats with FFmpeg. Linux Journal
2006, 146 (2006), 10.

[35] Tomoaki Tsugawa, Norihito Fujita, Takayuki Hama, Hideyuki Shimonishi, and
Tutomu Murase. 2007. TCP-AFEC: An adaptive FEC code control for end-to-end
bandwidth guarantee. In Packet Video 2007. IEEE, 294–301.

[36] Thierry Turletti and Christian Huitema. 1996. Videoconferencing on the Internet.
IEEE/ACM Transactions on networking 4, 3 (1996), 340–351.

[37] Michael Wood. 2017. How to make SD-WAN secure. Network Security 2017, 1
(2017), 12–14.

[38] Huahui Wu, Mark Claypool, and Robert Kinicki. 2005. Adjusting forward error
correction with temporal scaling for TCP-friendly streaming MPEG. ACM Trans-
actions on Multimedia Computing, Communications, and Applications (TOMM) 1,
4 (2005), 315–337.

[39] Jiyan Wu, Bo Cheng, Ming Wang, and Junliang Chen. 2016. Priority-aware FEC
coding for high-definition mobile video delivery using TCP. IEEE Transactions
on Mobile Computing 16, 4 (2016), 1090–1106.

[40] JiyanWu, Chau Yuen, and Junliang Chen. 2015. Leveraging the delay-friendliness
of TCP with FEC coding in real-time video communication. IEEE Transactions on
Communications 63, 10 (2015), 3584–3599.

[41] Jimin Xiao, Tammam Tillo, Chunyu Lin, and Yao Zhao. 2012. Dynamic sub-GOP
forward error correction code for real-time video applications. IEEE Transactions
on Multimedia 14, 4 (2012), 1298–1308.

[42] Jimin Xiao, Tammam Tillo, and Yao Zhao. 2013. Real-time video streaming using
randomized expanding Reed–Solomon code. IEEE transactions on circuits and
systems for video technology 23, 11 (2013), 1825–1836.

[43] XK Yang, Ce Zhu, ZG Li, Xiao Lin, GN Feng, Si Wu, and Nam Ling. 2003. Unequal
loss protection for robust transmission of motion compensated video over the
internet. Signal Processing: Image Communication 18, 3 (2003), 157–167.

[44] Zhenjie Yang, Yong Cui, Baochun Li, Yadong Liu, and Yi Xu. 2019. Software-
defined wide area network (SD-WAN): Architecture, advances and opportunities.
In 2019 28th International Conference on Computer Communication and Networks

(ICCCN). IEEE, 1–9.
[45] Deheng Ye, Zhao Liu, Mingfei Sun, Bei Shi, Peilin Zhao, Hao Wu, Hongsheng Yu,

Shaojie Yang, Xipeng Wu, Qingwei Guo, et al. 2020. Mastering complex control
in moba games with deep reinforcement learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 34. 6672–6679.

[46] Minghao Ye, Junjie Zhang, Zehua Guo, and H. Jonathan Chao. 2021. DATE:
Disturbance-Aware Traffic Engineeringwith Reinforcement Learning in Software-
Defined Networks. In 2021 IEEE/ACM 29th International Symposium on Quality of
Service (IWQOS). 1–10. https://doi.org/10.1109/IWQOS52092.2021.9521343

[47] Junjie Zhang, Minghao Ye, Zehua Guo, Chen-Yu Yen, and H Jonathan Chao. 2020.
CFR-RL: Traffic engineering with reinforcement learning in SDN. IEEE Journal
on Selected Areas in Communications 38, 10 (2020), 2249–2259.

A ARTIFACT APPENDIX
A.1 Abstract
This appendix serves to provide information for reproducibility
of the RL-AFEC. Please find more detailed information in the cor-
responding GitHub repository: https://github.com/chenke97/RL-
AFEC

A.2 Artifact check-list (meta-information)
• Algorithm: Reinforcement learning
• Data set: RTP packet stream generated by simulation
• Run-time environment: Python, Tensorflow
• Hardware: Powerful CPU with multiple cores for training is
recommended
• Metrics: PL-VQA
• Output: FEC redundant rate for each video frame.
• Experiments: Testing on the test set and different per-video
streams.
• How much disk space required (approximately)?: < 1 GB
• How much time is needed to prepare workflow (approxi-
mately)?: < 1 hour
• How much time is needed to complete experiments (approxi-
mately)?: 12 hours
• Publicly available?: Yes
• Code licenses (if publicly available)?: MIT license
• Data licenses (if publicly available)?: MIT license
• Archived (provideDOI)?: https://doi.org/10.1145/3524273.3528184

A.3 Description
A.3.1 How delivered. For training, we used NYU HPC server to accelerate
policy convergence. Basically, we used 20 CPU cores, 19 of them serve as
worker threads which interact with environment (e.g. 1. obtain a state 2.
pick up an action 3. get an reward in terms of video quality score generated
by PL-VQA model in our paper) to collect experience and 1 central thread
performs back-propagation to update weights of the neural network. The
total training time is around 8 hours.

For testing, local laptop’s computing power is enough. We ran our testing
on an Intel CORE i7 CPU. The inference time for one data point (the state
for 1-second video) is around 2 ms.

A.3.2 Hardware dependencies. A powerful CPU is recommended to train
the agent. It relies on sufficient interaction with environment through
collecting experiences by multiple threads running at the same time to train
a good policy; hence, a powerful CPU with multiple core may accelerate
the whole process.

A.3.3 Software dependencies. Python 3.6.8, Tensorflow 2.2.0 (CPU version),
numpy, tqdm, absl

A.3.4 Data sets. We generated both training set and test set in simulation.
Data sets are available on GitHub.

http://arxiv.org/abs/1312.5602
https://doi.org/10.1109/IWQOS52092.2021.9521343
https://github.com/chenke97/RL-AFEC
https://github.com/chenke97/RL-AFEC
https://doi.org/10.1145/3524273.3528184

RL-AFEC: Adaptive Forward Error Correction for Real-time Video Communication Based on Reinforcement Learning MMSys ’22, June 14–17, 2022, Athlone, Ireland

A.4 Installation
We used Anaconda to create an virtual environment rl-afec and then install
required dependencies.
1. conda create -n rl-afec python=3.6
2. conda activate rl-afec
3. pip install tensorflow-cpu==2.2.0
4. pip install numpy tqdm absl-py

A.5 Experiment workflow
1. Training: To train an RL-AFEC agent, put the trace file (e.g., video_RL_train.txt)
in data/, then specify the file name in config.py, i.e., trace_file = ’video_RL_train.txt’.
Then run "python3 train.py". The saved models will be stored in folder
"tfckpt/RLRS_1.0pure_policy_video_RL_train.txt/" (folder name format is
"RLRS_1.0pure_policy_" + training set file name).

2. Testing To test the trained policy on a set of test traces, put the test
trace file (e.g., video_RL_testing.txt) in data, then specify the file name in

config.py, i.e., test_trace_file = ’video_RL_testing.txt’. The latest checkpoint
will be loaded by default.

A.6 Evaluation and expected result
The testing results will be saved in file "eval_results_video_RL_testing.txt"
and "loss_pattern_after_video_RL_testing.txt" (file name format is "eval_results_"
+ test set file name). In eval_results_video_RL_testing.txt, each row will
contain selected actions, VMAF score after recovery and bandwidth wasted
(in byte) for 30 frames of every second. For example, for a row "[6, 5, 4, 3, 2,
3, 2, 5, 5, 3, 5, 6, 6, 3, 5, 2] 96.01322937011719 567000", the first part are the
selected actions for each of 15 critical frames and the shared redundancy
rate for the rest non-critical frames, the middle part 96.01 is the video quality
score of this one-second video after FEC recovery using the selected actions
and the last part 567KB is the wasted bandwidth. The actions above are
actually the index into the real action pool [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 1], each number represents a redundant rate for performing frame-
level Reed-Solomon code. According to the action index, the corresponding
redundancy is selected.

	Abstract
	1 Introduction
	2 Background and Related Works
	2.1 Video structures
	2.2 Video Quality Assessment (VQA)
	2.3 Forward Error Correction (FEC)
	2.4 Software-Defined Wide Area Network (SD-WAN)

	3 Packet-Level Video Quality Assessment
	3.1 PL-VQA Design
	3.2 Evaluation

	4 RL-AFEC Design
	4.1 State
	4.2 Action
	4.3 Reward
	4.4 Model's Architecture
	4.5 Loss Function

	5 Evaluation
	5.1 Dataset Generation
	5.2 Methods in Comparison
	5.3 Number of Critical Frames
	5.4 Evaluation Results on Test Set
	5.5 Evaluation Results on Different Videos

	6 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected result

