
1

CFR-RL: Traffic Engineering with Reinforcement
Learning in SDN

Junjie Zhang, Member, IEEE, Minghao Ye, Zehua Guo, Senior Member, IEEE,
Chen-Yu Yen, and H. Jonathan Chao, Fellow, IEEE

Abstract—Traditional Traffic Engineering (TE) solutions can
achieve the optimal or near-optimal performance by rerouting
as many flows as possible. However, they do not usually consider
the negative impact, such as packet out of order, when frequently
rerouting flows in the network. To mitigate the impact of
network disturbance, one promising TE solution is forwarding
the majority of traffic flows using Equal-Cost Multi-Path (ECMP)
and selectively rerouting a few critical flows using Software-
Defined Networking (SDN) to balance link utilization of the
network. However, critical flow rerouting is not trivial because the
solution space for critical flow selection is enormous. Moreover,
it is impossible to design a heuristic algorithm for this problem
based on fixed and simple rules, since rule-based heuristics are
unable to adapt to the changes of the traffic matrix and network
dynamics. In this paper, we propose CFR-RL (Critical Flow
Rerouting-Reinforcement Learning), a Reinforcement Learning-
based scheme that learns a policy to select critical flows for each
given traffic matrix automatically. CFR-RL then reroutes these
selected critical flows to balance link utilization of the network
by formulating and solving a simple Linear Programming (LP)
problem. Extensive evaluations show that CFR-RL achieves near-
optimal performance by rerouting only 10%-21.3% of total
traffic.

Index Terms—Reinforcement Learning, Software-Defined Net-
working, Traffic Engineering, Load Balancing, Network Distur-
bance Mitigation.

I. INTRODUCTION

The emerging Software-Defined Networking (SDN) pro-
vides new opportunities to improve network performance [1].
In SDN, the control plane can generate routing policies based
on its global view of the network and deploy these policies
in the network by installing and updating flow entries at the
SDN switches.

Traffic Engineering (TE) is one of important network fea-
tures for SDN [2]–[4], and is usually implemented in the con-
trol plane of SDN. The goal of TE is to help Internet Service
Providers (ISPs) optimize network performance and resource
utilization by configuring the routing across their backbone
networks to control traffic distribution [5], [6]. Due to dynamic
load fluctuation among the nodes, traditional TE [7]–[12]

The work of Z. Guo was supported in part by National Key Research
and Development Program of China under Grant 2018YFB1003700 and
Beijing Institute of Technology Research Fund Program for Young Scholars.
(Corresponding author: Zehua Guo)

J. Zhang is with Fortinet, Inc., Sunnyvale, CA 94086 USA (e-mail:
junjie.zhang@nyu.edu).

M. Ye, C.-Y. Yen and H. J. Chao are with the Department of Electrical
and Computer Engineering, New York University, New York City, NY 11201
USA (e-mail: my1706@nyu.edu; cyy310@nyu.edu; chao@nyu.edu).

Z. Guo is with Beijing Institute of Technology, Beijing 100081, China (e-
mail: guo@bit.edu.cn).

reroutes many flows periodically to balance the load on each
link to minimize network congestion probability, where a flow
is defined as a source-destination pair. One usually formulates
the flow routing problem with a particular performance metric
as a specific objective function for optimization. For a given
traffic matrix, one often wants to route all the flows in such
a way that the maximum link utilization in the network is
minimized.

Although traditional TE solutions can achieve the optimal
or near-optimal performance by rerouting as many flows as
possible, they do not consider the negative impact, such as
packet out of order, when rerouting the flows in the network.
To reach the optimal performance, TE solutions might reroute
many traffic flows to just slightly reduce the link utilization
on the most congested link, leading to significant network
disturbance and service disruption. For example, a flow be-
tween two nodes in a backbone network is aggregated of many
micro-flows (e.g., five tuples-based TCP flows) of different
applications. Changing the path of a flow could temporarily
affect many TCP flows’ normal operation. Packets loss or out-
of-order may cause duplicated ACK transmissions, triggering
the sender to react and reduce its congestion window size
and hence decrease its sending rate, eventually increasing the
flow’s completion time and degrading the flow’s Quality of
Service (QoS). In addition, rerouting all flows in the network
could incur a high burden on the SDN controller to calculate
and deploy new flow paths [4]. Because rerouting flows
to reduce congestion in backbone networks could adversely
affect the quality of users’ experience, network operators have
no desire to deploy these traditional TE solutions in their
networks unless reducing network disturbance is taken into
the consideration in designing the TE solutions.

To mitigate the impact of network disturbance, one promis-
ing TE solution is forwarding majority of traffic flows using
Equal-Cost Multi-Path (ECMP) and selectively rerouting a
few critical flows using SDN to balance link utilization of
the network, where a critical flow is defined as a flow with
a dominant impact on network performance (e.g., a flow on
the most congested link) [4], [13]. Existing works show that
critical flows exist in a given traffic matrix [4]. ECMP reduces
the congestion probability by equally splitting traffic on equal-
cost paths while critical flow rerouting aims to achieve further
performance improvement with low network disturbance.

The critical flow rerouting problem can be decoupled into
two sub-problems: (1) identifying critical flows and (2) rerout-
ing them to achieve good performance. Although sub-problem
(2) is relatively easy to solve by formulating it as a Linear

2

Programming (LP) optimization problem, solving sub-problem
(1) is not trivial because the solution space is huge. For
example, if we want to find 10 critical flows among 100
flows, the solution space has C10

100 ≈ 17 trillion combinations.
Considering the fact that traffic matrix varies in the level of
minutes, an efficient solution should be able to quickly and
effectively identify the critical flows for each traffic matrix.
Unfortunately, it is impossible to design a heuristic algorithm
for the above algorithmically-hard problem based on fixed and
simple rules. This is because rule-based heuristics are unable
to adapt to the changes of the traffic matrix and network
dynamics and thus unable to guarantee their performance when
their design assumptions are violated, as later shown in Section
VI-B.

In this paper, we propose CFR-RL (Critical Flow Rerouting-
Reinforcement Learning), a Reinforcement Learning-based
scheme that performs critical flow selection followed by
rerouting with linear programming. CFR-RL learns a policy
to select critical flows purely through observations, without
any domain-specific rule-based heuristic. It starts from scratch
without any prior knowledge, and gradually learns to make
better selections through reinforcement, in the form of reward
signals that reflects network performance for past selections.
By continuing to observe the actual performance of past
selections, CFR-RL would optimize its selection policy for
various traffic matrices as time goes. Once training is done,
CFR-RL will efficiently and effectively select a small set of
critical flows for each given traffic matrix, and reroute them
to balance link utilization of the network by formulating and
solving a simple linear programming optimization problem.

The main contributions of this paper are summarized as
follows:

1) We consider the impact of flow rerouting on network
disturbance in our TE design and propose an effective
scheme that not only minimizes the maximum link
utilization but also reroutes only a small number of flows
to reduce network disturbance.

2) We customize a RL approach to learn the critical flow
selection policy, and utilize LP as a reward function
to generate reward signals. This RL+LP combined ap-
proach turns out to be surprisingly powerful.

3) We evaluate and compare CFR-RL with other rule-based
heuristic schemes by conducting extensive experiments
on different topologies with both real and synthesized
traffic. CFR-RL not only outperforms rule-based heuris-
tic schemes by up to 12.2%, but also reroutes 11.4%-
14.7% less traffic on average. Overall, CFR-RL is able
to achieve near-optimal performance by rerouting only
10%-21.3% of total traffic. In addition, the evaluation
results show that CFR-RL is able to generalize to unseen
traffic matrices.

The remainder of this paper is organized as follows. Section
II describes the related works. Section III presents the system
design. Section IV discusses how to train the critical flow
selection policy using a RL-based approach. Section V de-
scribes how to reroute the critical flows. Section VI evaluates
the effectiveness of our scheme. Section VII concludes the

paper and discusses future work.

II. RELATED WORKS

A. Traditional TE Solutions
In Multiprotocol Label Switching (MPLS) networks, a rout-

ing problem has been formulated as an optimization problem
where explicit routes are obtained for each source-destination
pair to distribute traffic flows [7], [8]. Using Open Shortest
Path First (OSPF) and ECMP protocols, [9]–[11] attempt
to balance link utilization as even as possible by carefully
tuning the link costs to adjust path selection in ECMP. OSPF-
OMP (OMP, Optimized Multipath) [14], a variation of OSPF,
attempts to dynamically determine the optimal allocation of
traffic among multiple equal-cost paths based on the exchange
of special traffic-load control messages. Weighted ECMP [12]
extends ECMP to allow weighted traffic splitting at each
node and achieves significant performance improvement over
ECMP. Two-phase routing optimizes routing performance by
selecting a set of intermediate nodes and tuning the traffic split
ratios to the nodes [15], [16]. In the first phase, each source
sends traffic to the intermediate nodes based on predetermined
split ratios, and in the second phase, the intermediate nodes
then deliver the traffic to the final destinations. This approach
requires IP tunnels, optical-layer circuits, or label switched
paths in each phase.

B. SDN-Based TE Solutions
Thanks to the flexible routing policy from the emerging

SDN, dynamic hybrid routing [4] achieves load balancing for
a wide range of traffic scenarios by dynamically rebalancing
traffic to react to traffic fluctuations with a preconfigured rout-
ing policy. Agarwal et al. [2] consider a network with partially
deployed SDN switches. They improve network utilization
and reduce packet loss by strategically placing the controller
and SDN switches. Guo et al. [3] propose a novel algorithm
named SOTE to minimize the maximum link utilization in an
SDN/OSPF hybrid network.

C. Machine Learning-Based TE Solutions
Machine learning has been used to improve the performance

of backbone networks and data center networks. For backbone
networks, Geyer et al. [17] design an automatic network
protocol using semi-supervised deep learning. Sun et al. [18]
selectively control a set of nodes and use a RL-based policy
to dynamically change the routing decision of flows traversing
the selected nodes. To minimize signaling delay in large SDNs,
Lin et al. [19] employ a distributed three-level control plane
architecture coupled with a RL-based solution named QoS-
aware Adaptive Routing. Xu et al. [20] use RL to optimize
the throughput and delay in TE. AuTO [21] is developed to
optimize routing traffic in data center networks with a two-
layer RL. One is called the Peripheral System for deploying
hosts and routing small flows, and the other one is called the
Central System for collecting global traffic information and
routing large flows.

However, all of the above works do not consider mitigating
the impact of network disturbance and service disruption
caused by rerouting.

3

S0						S4:	1 S2						S4:	1

S0 S4

S1

S2

S3
1

1

1

1

Controller	(Running	CFR-RL)

Flow	Entry	(FE)

FE

FE

Traffic	Demand Traffic	Demand

SDN	path
ECMP	path

0

Collect	traffic	demands
Update	flow	entries

ECMP	path

Collect	traffic	demands

Fig. 1: An illustrative example of CFR-RL rerouting proce-
dure. Each link capability equal to 1. Best viewed in color.

III. SYSTEM DESIGN

In this section, we describe the design of CFR-RL, a
RL-based scheme that learns a critical flow selection policy
and reroutes the corresponding critical flows to balance link
utilization of the network.

We train CFR-RL to learn a selection policy over a rich va-
riety of historical traffic matrices, where traffic matrices can be
measured by SDN switches and collected by an SDN central
controller periodically [22]. CFR-RL represents the selection
policy as a neural network that maps a "raw" observation (e.g.,
a traffic matrix) to a combination of critical flows. The neural
network provides a scalable and expressive way to incorporate
various traffic matrices into the selection policy. CFR-RL
trains this neural network based on REINFORCE algorithm
[23] with some customizations, as detailed in Section IV.

Once training is done, CFR-RL applies the critical flow
selection policy to each real time traffic matrix provided by the
SDN controller periodically, where a small number of critical
flows (e.g., K) are selected. The evaluation results in Section
VI-B1 show that selecting 10% of total flows as critical flows
(roughly 11%-21% of total traffic) is sufficient for CFR-RL to
achieve near-optimal performance, while network disturbance
(i.e., the percentage of total rerouted traffic) is reduced by
at least 78.7% compared to rerouting all flows by traditional
TE. Then the SDN controller reroutes the selected critical
flows by installing and updating corresponding flow entries
at the switches using a flow rerouting optimization method
described in Section V. The remaining flows would continue
to be routed by the default ECMP routing. Note that the flow
entries at the switches for the critical flows selected in the
previous period will time out, and the flows would be routed
by either default ECMP routing or newly installed flow entries
in the current period. Figure 1 shows an illustrative example.
CFR-RL reroutes the flow from S0 to S4 to balance link load
by installing forwarding entries at the corresponding switches
along the SDN path.

There are two reasons we do not want to adopt RL for the
flow rerouting problem. Firstly, since the set of critical flows
is small, LP is an efficient and optimal method to solve the
rerouting problem. Secondly, a routing solution consists of a

split ratio (i.e., traffic demand percentage) for each flow on
each link. Given a network with E links, there will be total
E∗K split ratios in the routing solution, where K is the number
of critical flows. Since split ratios are continuous numbers, we
have to adopt the RL methods for continuous action domain
[24], [25]. However, due to the high-dimensional, continuous
action spaces, it has been shown that this type of RL methods
would lead to slow and ineffective learning when the number
of output parameters (i.e., E ∗ K) is large [20], [26].

IV. LEARNING A CRITICAL FLOW SELECTION POLICY

In this section, we describe how to learn a critical flow
selection policy using a customized RL approach.

A. Reinforcement Learning Formulation

Input / State Space: An agent takes a state st = T Mt as
an input, where T Mt is a traffic matrix at time step t that
contains information of traffic demand of each flow. Typically,
the network topology remains unchanged. Thus, we do not
include the topology information as a part of the input. The
results in Section VI-B show that CFR-RL is able to learn
a good policy π without prior knowledge of the network.
It is worth noting that including additional information like
link states as a part of input might be beneficial for training
the critical flow selection policy. We will investigate it in our
future work.

Action Space: For each state st , CFR-RL would select K
critical flows. Given that there are total N ∗ (N − 1) flows in a
network with N nodes, this RL problem would require a large
action space of size CK

N∗(N−1). Inspired by [27], we define the
action space as {0, 1, ..., (N ∗ (N − 1)) − 1} and allow the
agent to sample K different actions in each time step t (i.e.,
a1
t , a

2
t , ..., a

K
t).

Reward: After sampling K different critical flows (i.e., fK)
for a given state st , CFR-RL reroutes these critical flows and
obtains the maximum link utilization U by solving the rerout-
ing optimization problem (4a) (described in the following
section). Reward r is defined as 1/U, which is set to reflect the
network performance after rerouting critical flows to balance
link utilization. The smaller U (i.e., the greater reward r), the
better performance. In other words, CFR-RL adopts LP as a
reward function to produce reward signals r for RL.

B. Training Algorithm

... ...

PolicyPolicy Network

Convolutional
Layer

Fully Connected
Layer

0 2.2 3.6

3.2 0 6.8

8.9 5.3 0

Traffic Matrix

Fig. 2: Policy network architecture.

4

The critical flow selection policy is represented by a neural
network. This policy network takes a state st = T Mt as an
input as described above and outputs a probability distribution
π(at |st) over all available actions. Figure 2 shows the architec-
ture of the policy network (details in Section VI-A1). Since K
different actions are sampled for each state st and their order
does not matter, we define a solution atK = (a

1
t , a

2
t , ..., a

K
t)

as a combination of K sampled actions. For selecting a
solution atK with a given state st , a stochastic policy π(atK |st)
parameterized by θ can be approximated as follows1:

π(atK |st ; θ) ≈
K∏
i=1

π(ait |st ; θ). (1)

The goal of training is to maximize the network performance
over various traffic matrices, i.e., maximize the expected
reward E[rt]. Thus, we optimize E[rt] by gradient ascend,
using REINFORCE algorithm with a baseline b(st). The policy
parameter θ is updated according to the following equation:

θ ← θ + α
∑
t

∇θ logπ(atK |st ; θ)(rt − b(st)), (2)

where α is the learning rate for the policy network. A good
baseline b(st) reduces gradient variance and thus increases
speed of learning. In this paper, we use an average reward
for each state st as the baseline. (rt − b(st)) indicates how
much better a specific solution is compared to the "average
solution" for a given state st according to the policy. Intu-
itively, Eq.(2) can be explained as follows. If (rt − b(st)) is
positive, π(atK |st ; θ) (i.e., the probability of the solution atK) is
increased by updating the policy parameters θ in the direction
∇θ logπ(atK |st ; θ) with a step size of α(rt − b(st)). Otherwise,
the solution probability is decreased. The net effect of Eq. (2)
is to reinforce actions that empirically lead to better rewards.

To ensure that the RL agent explores the action space ade-
quately during training to discover good policies, the entropy
of the policy π is added to Eq. (2). This technique improves
the exploration by discouraging premature convergence to sub-
optimal deterministic policies [28]. Then, Eq. (2) is modified
to the following equation:

θ ← θ + α
∑
t

(∇θ logπ(atK |st ; θ)(rt − b(st))

+β∇θH(π(·|st ; θ))),
(3)

where H is the entropy of the policy (the probability distribu-
tion over actions). The hyperparameter β controls the strength
of the entropy regularization term. Algorithm 1 shows the
pseudo-code for the training algorithm.

V. REROUTING CRITICAL FLOWS

In this section, we describe how to reroute the selected
critical flows to balance link utilization of the network.

1To select K distinct actions, we do the action sampling without replace-
ment. The right side of Eq. (1) is the solution probability when sampling with
replacement, we use Eq. (1) to approximate the probability of the solution
atK given a state st for simplicity.

Algorithm 1 Training Algorithm

Initialize θ, v = {} (keep track the sum of rewards for each
state), n = {} (keep track the visited count of each state)
for each iteration do
∆θ ← 0
{st } ← Sample a batch of states with size B
for t = 1, ..., B do

Sample a solution atK according to policy π(atK |st)
Receive reward rt
if st ∈ v and st ∈ n then

b(st) =
v[st]
n[st]

(average reward for state st)
else

b(st) = 0, v[st] = 0, n[st] = 0
end if

end for
for t = 1, ..., B do
∆θ ← ∆θ + α(∇θ logπ(atK |st ; θ)(rt − b(st)) +

β∇θH(π(·|st ; θ)))
v[st] = v[st] + rt
n[st] = n[st] + 1

end for
θ ← θ + ∆θ

end for

A. Notations
G(V, E) network with nodes V and directed edges E

(|V | = N, |E | = M).
ci, j the capacity of link 〈i, j〉 (〈i, j〉 ∈ E).
li, j the traffic load on link 〈i, j〉 (〈i, j〉 ∈ E).
Ds,d the traffic demand from source s to destination

d (s, d ∈ V , s , d).
σs,d
i, j the percentage of traffic demand from source s to

destination d routed on link 〈i, j〉 (s, d ∈ V, s ,
d, 〈i, j〉 ∈ E , 〈s, d〉 ∈ fK).

B. Explicit Routing For Critical Flows
By default, traffic is distributed according to ECMP routing.

We reroute the small set of critical flows (i.e., fK) by con-
ducting explicit routing optimization for these critical flows
〈s, d〉 ∈ fK .

The critical flow rerouting problem can be described as the
following. Given a network G(V, E) with the set of traffic
demands Ds,d for the selected critical flows (∀〈s, d〉 ∈ fK) and
the background link load {l̄i, j} contributed by the remaining
flows using the default ECMP routing, our objective is to ob-
tain the optimal explicit routing ratios {σs,d

i, j } for each critical
flow, so that the maximum link utilization U is minimized.

To search all possible under-utilized paths for the selected
critical flows, we formulate the rerouting problem as an
optimization as follows.

minimize U + ε ·
∑
〈i, j 〉∈E

∑
〈s,d〉∈ fK

σs,d
i, j (4a)

subject to

li, j =
∑

〈s,d〉∈ fK

σs,d
i, j · D

s,d + l̄i, j i, j : 〈i, j〉 ∈ E (4b)

5

li, j ≤ ci, j ·U i, j : 〈i, j〉 ∈ E (4c)

∑
k:〈k,i〉∈E

σs,d
k,i
−

∑
k:〈i,k 〉∈E

σs,d
i,k
=

−1 if i = s

1 if i = d

0 otherwise

i ∈ V, s, d : 〈s, d〉 ∈ fK

(4d)

0 ≤ σs,d
i, j ≤ 1 s, d : 〈s, d〉 ∈ fK, i, j : 〈i, j〉 ∈ E (4e)

ε ·
∑

〈i, j 〉∈E

∑
〈s,d〉∈ fK

σs,d
i, j in (4a) is needed because otherwise

the optimal solution may include unnecessarily long paths as
long as they avoid the most congested link, where ε (ε > 0)
is a sufficiently small constant to ensure that the minimization
of U takes higher priority [29]. (4b) indicates the traffic load
on link 〈i, j〉 contributed by the traffic demands routed by the
explicit routing and the traffic demands routed by the default
ECMP routing. (4c) is the link capacity utilization constraint.
(4d) is the flow conservation constraint for the selected critical
flows.

By solving the above LP problem using LP solvers (such
as Gurobi [30]), we can obtain the optimal explicit routing
solution for selected critical flows {σs,d

i, j } (∀〈s, d〉 ∈ fK). Then,
the SDN controller installs and updates flow entries at the
switches accordingly.

VI. EVALUATION

In this section, a series of simulation experiments are
conducted using real-world network topologies to evaluate
the performance of CFR-RL and show its effectiveness by
comparing it with other rule-based heuristic schemes.

A. Evaluation Setup

1) Implementation: The policy neural network consists of
three layers. The first layer is a convolutional layer with
128 filters. The corresponding kernel size is 3 × 3 and the
stride is set to 1. The second layer is a fully connected
layer with 128 neurons. The activation function used for the
first two layers is Leaky ReLU [31]. The final layer is a
fully connected linear layer (without activation function) with
N ∗ (N − 1) neurons corresponding to all possible critical
flows. The softmax function is applied upon the output of
final layer to generate the probabilities for all available actions.
The learning rate α is initially configured to 0.001 and decays
every 500 iterations with a base of 0.96 until it reaches
the minimum value 0.0001. Additionally, the entropy factor
β is configured to 0.1. We found that the set of above
hyperparameters is a good trade-off between performance and
computational complexity of the model (details in Section
VI-B5). Thus, we fixed them throughout our experiments.
The results in the following experiments show CFR-RL works
well on different network topologies with a single set of fixed
hyperparameters. This architecture is implemented using Ten-
sorFlow [32]. Source codes are publicly available on GitHub
(https://github.com/jrayzhang6/CFR-RL).

TABLE I: ISP networks used in evaluation

Topology Nodes Directed Links Pairs
Abilene 12 30 132

EBONE (Europe) 23 76 506
Sprintlink (US) 44 166 1892
Tiscali (Europe) 49 172 2352

2) Dataset: In our evaluation, we use four real-world
network topologies including Abilene network and 3 ISP
networks collected by ROCKETFUEL [33]. The number of
nodes and directed links of the networks are listed in Table
I. For the Abilene network, the measured traffic matrices
and network topology information (such as link connectivity,
weights, and capacities) are available in [34]. Since Abilene
traffic matrices are measured every 5 minutes, there are a total
of 288 traffic matrices each day. To evaluate the performance
of CFR-RL, we choose total 2016 traffic matrices in the
first week (starting from Mar. 1st 2004) as our dataset. For
ROCKETFUEL topologies, the link costs are given while the
link capacities are not provided. Therefore, we infer the link
capacities as the inverse of link costs, which are based on
the default link cost setting in Cisco routers. In other words,
the link costs are inversely proportional to the link capacities.
This approach is commonly adopted in literature [4], [13],
[15]. Besides, since traffic matrices are also unavailable for
the ISP networks from ROCKETFUEL, we use a traffic matrix
generation tool [35] to generate 50 synthetic exponential traffic
matrices and 50 synthetic uniform traffic matrices for each
network. Unless otherwise noted, we use a random sample of
70% of our dataset as a training set for CFR-RL, and use the
remaining 30% as a test set for testing all schemes.

3) Parallel Training: To speed up training, we spawn
multiple actor agents in parallel, as suggested by [28]. CFR-RL
uses 20 actor agents by default. Each actor agent is configured
to experience a different subset of the training set. Then, these
agents continually forward their (state, action, advantage (i.e,
rt − b(st))) tuples to a central learner agent, which aggregates
them to train the policy neural network. The central learner
agent performs a gradient update using Eq(3) according to
the received tuples, then sends back the updated parameters
of the policy network to the actor agents. The whole process
can happen asynchronously among all agents. We use 21 CPU
cores to train CFR-RL (i.e., one core (2.6GHz) for each agent).

4) Metrics: (1) Load Balancing Performance Ratio: To
demonstrate the load balancing performance of the proposed
CFR-RL scheme, a load balancing performance ratio is applied
and defined as follows:

PRU =
Uoptimal

UCFR-RL , (5)

where Uoptimal is the maximum link utilization achieved by
an optimal explicit routing for all flows2. PRU = 1 means
that the proposed CFR-RL achieves load balancing as good
as the optimal routing. A lower ratio indicates that the load

2The corresponding LP formulation is similar to (4a), except that the
objective becomes obtaining the optimal explicit ratios {σs,d

i, j } for all flows.
Note that the background link load {l̄i, j } would be 0 for this problem.

6

balancing performance of CFR-RL is farther away from that
of the optimal routing.
(2) End-to-end Delay Performance Ratio: To model and mea-
sure end-to-end delay in the network, we define the overall
end-to-end delay in the network as Ω =

∑
〈i, j 〉∈E

(
li . j

ci, j−li, j
) as

described in [12]. Then, an end-to-end delay performance ratio
is defined as follows:

PRΩ =
Ωoptimal

ΩCFR-RL , (6)

where Ωoptimal is the minimum end-to-end delay achieved by
an optimal explicit routing for all flows with an objective3

to minimize the end-to-end delay Ω. Note that the rerouting
solution for selected critical flows is still obtained by solving
(4a). The higher PRΩ, the better end-to-end delay performance
achieved by CFR-RL. PRΩ = 1 means that the proposed CFR-
RL achieves the minimum end-to-end delay as the optimal
routing.
(3) Rerouting Disturbance: To measure the disturbance caused
by rerouting, we define rerouting disturbance as the percentage
of total rerouted traffic4 for a given traffic matrix, i.e.,

RD =

∑
〈s,d〉∈ fK

Ds,d∑
s,d∈V,s,d

Ds,d
, (7)

where
∑

〈s,d〉∈ fK

Ds,d is the total traffic of selected critical flows

that need to be rerouted and
∑

s,d∈V,s,d
Ds,d is the total traffic

of all flows. The smaller RD, the less disturbance caused by
rerouting.

5) Rule-based Heuristics: For comparison, we also evaluate
two rule-based heuristics as the following:

1) Top-K: selects the K largest flows from a given traffic
matrix in terms of demand volume. This approach is
based on the assumption that flows with larger traffic
volumes would have a dominant impact on network
performance.

2) Top-K Critical: similar to Top-K approach, but selects
the K largest flows from the most congested links. This
approach is based on the assumption that flows travers-
ing the most congested links would have a dominant
impact on network performance.

B. Evaluation

1) Critical Flows Number: We conduct a series of experi-
ments with different number of critical flows selected, and fix
other parameters throughout the experiments.

Figure 3 shows the average load balancing performance
ratio achieved by CFR-RL with increasing number of critical
flows K . The initial value with K = 0 represents the default
ECMP routing. The results indicate that there is a considerable

3The objective of this LP problem is to obtain the optimal explicit routing
ratios {σs,d

i, j } for all flows, such that Ω is minimized.
4Although partial of traffic flows might still be routed along the original

ECMP paths, updating routing at the switches might cause packets drop or
out-of-order. Thus, we still consider this amount of traffic as rerouting traffic.

0 5%*N*(N-1) 10%*N*(N-1)
Number of Critical Flows K

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

 P
er

fo
rm

an
ce

 R
at

io

Abilene Network

0 5%*N*(N-1) 10%*N*(N-1)
Number of Critical Flows K

0.5

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

 P
er

fo
rm

an
ce

 R
at

io

EBONE Network

0 5%*N*(N-1) 10%*N*(N-1)
Number of Critical Flows K

0.5

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

 P
er

fo
rm

an
ce

 R
at

io

Sprintlink Network

0 5%*N*(N-1) 10%*N*(N-1)
Number of Critical Flows K

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

 P
er

fo
rm

an
ce

 R
at

io

Tiscali Network

Fig. 3: Average load balancing performance ratio of CFR-
RL with increasing number of critical flows K on the four
networks.

Abilene Network EBONE Network Sprintlink Network Tiscali Network0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 P
R
U

CFR-RL
Top-K Critical
Top-K
ECMP

Fig. 4: Comparison of average load balancing performance
ratio where error bars span ± one standard deviation from the
average on the entire test set of the four networks.

room for further improvement when flows are routed by
ECMP. The sharp increases in the average load balancing
performance ratio for all four networks shown in Fig. 3
indicate that CFR-RL is able to achieve near-optimal load
balancing performance by rerouting only 10% flows. As a
result, network disturbance would be much reduced compared
to rerouting all flows as traditional TE. For the subsequent
experiments, we set K = 10% ∗ N ∗ (N − 1) for each network.

0 100 200 300 400 500 600
Traffic Matrix Index

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

P
R
U

Abilene Network

CFR-RL
Top-K Critical
Top-K
ECMP

0 5 10 15 20 25 30
Traffic Matrix Index

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

P
R
U

EBONE Network
Exponential TM Uniform TM

CFR-RL
Top-K Critical
Top-K
ECMP

0 5 10 15 20 25 30
Traffic Matrix Index

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

P
R
U

Sprintlink Network
Exponential TM Uniform TM

CFR-RL
Top-K Critical
Top-K
ECMP

0 5 10 15 20 25 30
Traffic Matrix Index

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

P
R
U

Tiscali Network
Exponential TM Uniform TM

CFR-RL
Top-K Critical
Top-K
ECMP

Fig. 5: Comparison of load balancing performance in the four
networks on each test traffic matrix.

7

TABLE II: Comparison of average rerouting disturbance

Topology CFR-RL Top-K Critical Top-K
Abilene 21.3% 32.7% 42.9%

EBONE (Exponential / Uniform) 11.2% / 10.0% 25.9% / 11.5% 32.9% / 11.7%
Sprintlink (Exponential / Uniform) 11.3% / 10.1% 23.6% / 13.8% 33.2% / 14.6%

Tiscali (Exponential / Uniform) 11.2% / 10.0% 24.5% / 12.0% 32.7% / 12.2%

Abilene Network EBONE Network Sprintlink Network Tiscali Network0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 P
R

Ω

CFR-RL
Top-K Critical
Top-K
ECMP

Fig. 6: Comparison of average end-to-end delay performance
ratio where error bars span ± one standard deviation from the
average on the entire test set of the four networks.

0 100 200 300 400 500 600
Traffic Matrix Index

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

P
R

Ω

Abilene Network

CFR-RL
Top-K Critical
Top-K
ECMP

0 5 10 15 20 25 30
Traffic Matrix Index

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

P
R

Ω

EBONE Network
Exponential TM Uniform TM

CFR-RL
Top-K Critical
Top-K
ECMP

0 5 10 15 20 25 30
Traffic Matrix Index

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

P
R

Ω

Sprintlink Network
Exponential TM Uniform TM

CFR-RL
Top-K Critical
Top-K
ECMP

0 5 10 15 20 25 30
Traffic Matrix Index

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

P
R

Ω

Tiscali Network
Exponential TM Uniform TM

CFR-RL
Top-K Critical
Top-K
ECMP

Fig. 7: Comparison of end-to-end delay performance in the
four networks on each test traffic matrix.

2) Performance Comparison: For comparison, we also
calculate the performance ratios and rerouting disturbances
for Top-K, Top-K critical, and ECMP according to Eqs.
(5), (6) and (7). Figure 4 shows the average load balancing
performance ratio that each scheme achieves on the entire test
set of the four networks. Figure 5 shows the load balancing
performance ratio on each individual traffic matrix for the
four networks. Note that the first 15 traffic matrices in Figs.
5(b)-5(d) are generated by an exponential model and the
remaining 15 traffic matrices are generated by an uniform
model. CFR-RL performs significantly well in all networks.
For example, for the Abilene network, CFR-RL improves load
balancing performance by about 32.8% compared to ECMP,
and by roughly 7.4% compared to Top-K critical. For the
EBONE network, CFR-RL outperforms Top-K critical with
an average 12.2% load balancing performance improvement.
For Sprintlink and Tiscali networks, CFR-RL performs slightly
better than Top-K critical by 1.3% and 3.5% on average,
respectively. Moreover, Figure 6 shows the average end-to-
end delay performance ratio that each scheme achieves on
the entire test set of the four networks. Figure 7 shows the

0.5 0.6 0.7 0.8 0.9 1.0
PRU

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Day 2
CFR-RL
Top-K Critical
Top-K
ECMP

0.5 0.6 0.7 0.8 0.9 1.0
PRU

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Day 3
CFR-RL
Top-K Critical
Top-K
ECMP

0.5 0.6 0.7 0.8 0.9 1.0
PRU

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Day 5
CFR-RL
Top-K Critical
Top-K
ECMP

0.5 0.6 0.7 0.8 0.9 1.0
PRU

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Day 6
CFR-RL
Top-K Critical
Top-K
ECMP

Fig. 8: Comparison of load balancing performance ratio in
CDF with the traffic matrices from Tuesday, Wednesday,
Friday and Saturday in week 2.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
PRΩ

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Day 2
CFR-RL
Top-K Critical
Top-K
ECMP

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
PRΩ

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Day 3
CFR-RL
Top-K Critical
Top-K
ECMP

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
PRΩ

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Day 5
CFR-RL
Top-K Critical
Top-K
ECMP

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
PRΩ

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Day 6
CFR-RL
Top-K Critical
Top-K
ECMP

Fig. 9: Comparison of end-to-end delay performance ratio
in CDF with the traffic matrices from Tuesday, Wednesday,
Friday and Saturday in week 2.

end-to-end delay performance ratio on each test traffic matrix
for the four networks. It is worth noting that the rerouting
solution for selected critical flows is still obtained by solving
(4a) (i.e., minimize maximum link utilization), though the end-
to-end delay performance is evaluated5 for each scheme. By
effectively selecting and rerouting critical flows to balance
link utilization of the network, CFR-RL outperforms heuristic
schemes and ECMP in terms of end-to-end delay in all
networks except the EBONE network. In the EBONE network,
heuristic schemes perform better with the exponential traffic

5For the Abilene network, the real traffic demands in the measured traffic
matrices collected in [34] are relatively small, and thus the corresponding
end-to-end delay would be very small. To effectively compare end-to-end
delay performance of each scheme, we multiply each demand Ds,d in a real
traffic matrix TMt by 0.9

UECMP
t

, where UECMP
t is the maximum link utilization

achieved by ECMP routing on the traffic matrix TMt .

8

0 50 100 150 200 250
Traffic Matrix index

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
R
U

Day 2

CFR-RL
Top-K Critical
Top-K
ECMP

0 50 100 150 200 250
Traffic Matrix index

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
R
U

Day 3

CFR-RL
Top-K Critical
Top-K
ECMP

0 50 100 150 200 250
Traffic Matrix index

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
R
U

Day 5

CFR-RL
Top-K Critical
Top-K
ECMP

0 50 100 150 200 250
Traffic Matrix index

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
R
U

Day 6

CFR-RL
Top-K Critical
Top-K
ECMP

Fig. 10: Comparison of load balancing performance ratio with
the traffic matrices from Tuesday, Wednesday, Friday and
Saturday in week 2.

0 50 100 150 200 250
Traffic Matrix index

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

P
R

Ω

Day 2

CFR-RL
Top-K Critical
Top-K
ECMP

0 50 100 150 200 250
Traffic Matrix index

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

P
R

Ω

Day 3

CFR-RL
Top-K Critical
Top-K
ECMP

0 50 100 150 200 250
Traffic Matrix index

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

P
R

Ω

Day 5

CFR-RL
Top-K Critical
Top-K
ECMP

0 50 100 150 200 250
Traffic Matrix index

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

P
R

Ω

Day 6

CFR-RL
Top-K Critical
Top-K
ECMP

Fig. 11: Comparison of end-to-end delay performance ratio
with the traffic matrices from Tuesday, Wednesday, Friday and
Saturday in week 2.

model. It is possible that rerouting the elephant flows selected
by heuristic schemes further balances load on non-congested
links and results in achieving smaller end-to-end delay. In
addition, Tab. II shows the average rerouting disturbance,
i.e., the average percentage of total traffic rerouted by each
scheme (except ECMP) for the four networks. CFR-RL greatly
reduces network disturbance by rerouting at most 21.3%,
11.2%, 11.3%, and 11.2% of total traffic on average for the
four networks, respectively. In contrast, Top-K critical reroutes
11.4% more traffic for the Abilene network and 14.7%, 12.3%,
and 13.3% more traffic for the EBONE, Sprintlink, and Tiscali
networks (for exponential traffic matrices). Top-K performs
even worse by rerouting more than 42% of total traffic on
average for the Abilene network and 32%, 33%, and 32%
of total traffic on average for the other three networks (for
exponential traffic matrices). It is worth noting that there
are no elephant flows in uniform traffic matrices shown in
Fig. 5(b)-5(d). Thus, all three schemes reroute similar amount

of traffic for uniform traffic matrices. However, CFR-RL is
still able to perform slightly better than the two rule-based
heuristics. Overall, the above results indicate that CFR-RL is
able to achieve near-optimal load balancing performance and
greatly reduce end-to-end delay and network disturbance by
smartly selecting a small number of critical flows for each
given traffic matrix and effectively rerouting the corresponding
small amount of traffic.

As shown in Figs. 5(b)-5(d), Top-K critical performs well
with the exponential traffic model. However, its performance
degrades with the uniform traffic model. One possible reason
for the performance degradation of Top-K critical is that all
links in the network are relatively saturated under the uniform
traffic model. Alternative underutilized paths are not available
for the critical flows selected by Top-K critical. In other words,
there is no much room for rerouting performance improvement
by only considering the elephant flows traversing the most con-
gested links. Thus, fixed-rule heuristics are unable to guarantee
their performance, showing that their design assumptions are
invalid. In contrast, CFR-RL performs consistently well under
various traffic models.

3) Generalization: In this series of experiments, we trained
CFR-RL on the traffic matrices from the first week (starting
from Mar. 1st 2004) and evaluate it for each day of the
following week (starting from Mar. 8th 2004) for the Abilene
network. We only present the results for day 2, day 3, day 5
and day 6, since the results for other days are similar. Figures
8 and 9 show the full CDFs of two types of performance ratio
for these 4 days. Figures 10 and 11 show the load balancing
and end-to-end delay performance ratios on each traffic matrix
of these 4 days, respectively. The results show that CFR-RL
still achieves above 95% optimal load balancing performance
and average 88.13% end-to-end delay performance, and thus
outperforms other schemes on almost all traffic matrices. The
load balancing performance of CFR-RL degrades on several
outlier traffic matrices in day 2. There are two possible reasons
for the degradation: (1) The traffic patterns of these traffic
matrices are different from what CFR-RL learned from the
previous week. (2) Selecting K = 10% ∗ N ∗ (N − 1) is not
enough for CFR-RL to achieve near-optimal performance on
these outlier traffic matrices. However, CFR-RL still performs
better than other schemes. Overall, the results indicate that real
traffic patterns are relatively stable and CFR-RL generalizes
well to unseen traffic matrices for which it was not explicitly
trained.

4) Training and Inference Time: Training a policy for the
Abilene network took approximately 10,000 iterations, and the
time consumed for each iteration is approximately 1 second.
As a result, the total training time for Abilene network is
approximately 3 hours. Since the EBONE network is relatively
larger, it took approximately 60,000 iterations to train a
policy. Then, the total training time for EBONE network is
approximately 16 hours. For larger networks like Sprintlink
and Tiscali, the solution space is even larger. Thus, more
iterations (e.g., approximately 90,000 and 100,000 iterations)
should be taken to train a good policy, and each iteration takes
approximately 2 seconds. Note that this cost is incurred offline
and can be performed infrequently depending on environment

9

TABLE III: Comparison of average load balancing perfor-
mance ratio with different sets of hyperparameters

filters / neurons = 128, β = 0.1
α = 0.01 (with decay) 0.761
α = 0.001 (with decay) 0.970

α = 0.0001* 0.963
* without decay, since the initial learning rate is equal to the

minimum learning rate.
(a)

α = 0.001 (with decay), β = 0.1
filters / neurons = 64 0.928

filters / neurons = 128 0.970
filters / neurons = 256 0.837

(b)

filters / neurons = 128, α = 0.001 (with decay)
β = 0.1 0.970
β = 0.01 0.958

(c)

stability. The policy neural network as described in Section
VI-A1 is relatively small. Thus, the inference time for the
Abilene and EBONE networks are less than 1 second, and
they are less than 2 seconds for the Sprintlink and Tiscali
networks.

5) Hyperparameters: Table III shows that how hyperpa-
rameters affect the load balancing performance of CFR-RL
in the Abilene network. For each set of hyperparameters, we
trained a policy for the Abilene network by 10,000 iterations,
and then evaluated the average load balancing performance
ratio over the whole test set. We only present the results
for the Abilene network, since the results for other network
topologies are similar. In Tab. III(a), the number of filters in
the convolutional layer and neurons in the fully connected
layer is fixed to 128 and entropy factor β is fixed to 0.1.
We compare the performance with different learning rate α.
The results show that training might become unstable if the
initial learning rate is too large (e.g., 0.01), and thus it cannot
converge to a good policy. In contrast, training with a smaller
learning rate is more stable but might require longer training
time to further improve the performance. As a result, we chose
α = 0.001 to encourage exploration in the early stage of
training. We compared the performance with different sizes
of filters and neurons in Tab. III(b). The results show that
too few filters/neurons might restrict the representation that
the neural network can learn and thus cause under-fitting.
Meanwhile, too many neurons might cause over-fitting, and
thus the corresponding policy cannot generalize well to the
test set. In addition, more training time is required for a
larger neural network. In Tab. III(c), the results show that a
larger entropy factor encourages exploration and leads to a
better performance. Overall, the set of hyperparameters we
have chosen is a good trade-off between performance and
computational complexity of the model.

VII. CONCLUSION AND FUTURE WORK

With an objective of minimizing the maximum link utiliza-
tion in a network and reducing disturbance to the network
causing service disruption, we proposed CFR-RL, a scheme

that learns a critical flow selection policy automatically us-
ing reinforcement learning, without any domain-specific rule-
based heuristic. CFR-RL selects critical flows for each given
traffic matrix and reroutes them to balance link utilization
of the network by solving a simple rerouting optimization
problem. Extensive evaluations show that CFR-RL achieves
near-optimal performance by rerouting only a limited portion
of total traffic. In addition, CFR-RL generalizes well to traffic
matrices for which it was not explicitly trained.

Yet, there are several aspects that may help improve the so-
lution that we proposed in this contribution. Among them, we
are determining how CFR-RL can be updated and improved.

Objectives: CFR-RL could be formulated to achieve other
objectives. For example, to minimize overall end-to-end delay
in the network (i.e., Ω =

∑
〈i, j 〉∈E

(
li . j

ci, j−li, j
)) described in Section

VI-A4(2), we can define reward r as 1/Ω and reformulate the
rerouting optimization problem (4a) to minimize Ω.

Table II shows an interesting finding. Although CFR-RL
does not explicitly minimize rerouting traffic, it ends up
rerouting much less traffic (i.e., 10.0%-21.3%) and performs
better than rule-based heuristic schemes by 1.3%-12.2%. This
reveals that CFR-RL is effectively searching the whole set of
candidate flows to find the best critical flows for various traffic
matrices, rather than simply considering the elephant flows on
the most congested links or in the whole network as rule-based
heuristic schemes do. We will consider minimizing rerouting
traffic as one of our objectives and investigate the trade-off
between maximizing performance and minimizing rerouting
traffic.

Scalability: Scaling CFR-RL to larger networks is an im-
portant direction of our future work. CFR-RL relies on LP
to produce reward signals r . The LP problem would become
complex as the number of critical flows K and the size of a
network increase. This would slow down the policy training for
larger networks (e.g., the Tiscali network in Section VI-B4),
since the time consumed for each iteration would increase.
Moreover, the solution space would become enormous for
larger networks, and RL has to take more iterations to converge
to a good policy. To further speed up training, we can either
spawn even more actor agents (e.g., 30) in parallel to allow
the system to consume more data at each time step and thus
improve exploration [28], or apply GA3C [36] to offload
the training to a GPU, which is an alternative architecture
of A3C and emphasizes on an efficient GPU utilization to
increase the number of training data generated and processed
per second. Another possible design to mitigate the scalability
issue is adopting SDN multi-controller architectures. Each
controller takes care of a subset of routers in a large network,
and one CFR-RL agent is running on each SDN controller.
The corresponding problem naturally falls into the realm of
Multi-Agent Reinforcement Learning. We will evaluate if a
multi-SDN controller architecture can help provide additional
improvement in our approach.

Retraining: In this paper, we mainly described the RL-
based critical flow selection policy training process as an
offline task. In other words, once training is done, CFR-

10

RL remains unmodified after being deployed in the network.
However, CFR-RL can naturally accommodate future unseen
traffic matrices by periodically updating the selection policy.
This self-learning technique will enable CFR-RL to further
adapt itself to the dynamic conditions in the network after
being deployed in real networks. CFR-RL can be retrained
by including new traffic matrices. For example, the outlier
traffic matrices (e.g., the 235th-240th traffic matrices in Day
2) presented in Fig. 10 should be included for retraining, while
the generalization results shown in Section VI-B3 suggest
that retraining frequently might not be necessary. Techniques
to determine when to retrain and which new/old traffic ma-
trix should be included/excluded in/from the training dataset
should be further investigated.

The above examples are some key issues that are left for
future work.

ACKNOWLEDGMENTS

The authors would like to thank the editors and reviewers
for providing many valuable comments and suggestions.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[2] S. Agarwal, M. Kodialam, and T. Lakshman, “Traffic engineering
in software defined networks,” in IEEE International Conference on
Computer Communications’13. IEEE, 2013, pp. 2211–2219.

[3] Y. Guo, Z. Wang, X. Yin, X. Shi, and J. Wu, “Traffic engineering in
sdn/ospf hybrid network,” in IEEE International Conference on Network
Protocols’14. IEEE, 2014, pp. 563–568.

[4] J. Zhang, K. Xi, M. Luo, and H. J. Chao, “Dynamic hybrid routing:
Achieve load balancing for changing traffic demands,” in IEEE Interna-
tional Symposium on Quality of Service’14. IEEE, 2014, pp. 105–110.

[5] J. Zhang, K. Xi, and H. J. Chao, “Load balancing in ip networks using
generalized destination-based multipath routing,” IEEE/ACM Transac-
tions on Networking, vol. 23, no. 6, pp. 1959–1969, 2015.

[6] Z. Guo, W. Chen, Y.-F. Liu, Y. Xu, and Z.-L. Zhang, “Joint switch up-
grade and controller deployment in hybrid software-defined networks,”
IEEE Journal on Selected Areas in Communications, vol. 37, no. 5, pp.
1012–1028, 2019.

[7] Y. Wang and Z. Wang, “Explicit routing algorithms for internet traffic
engineering,” in IEEE International Conference on Computer Commu-
nications and Networks’99. IEEE, 1999, pp. 582–588.

[8] E. D. Osborne and A. Simha, Traffic engineering with MPLS. Cisco
Press, 2002.

[9] B. Fortz and M. Thorup, “Optimizing ospf/is-is weights in a changing
world,” IEEE Journal on Selected Areas in Communications, vol. 20,
no. 4, pp. 756–767, 2002.

[10] K. Holmberg and D. Yuan, “Optimization of internet protocol network
design and routing,” Networks: An International Journal, vol. 43, no. 1,
pp. 39–53, 2004.

[11] J. Chu and C.-T. Lea, “Optimal link weights for ip-based networks
supporting hose-model vpns,” IEEE/ACM Transactions on Networking,
vol. 17, no. 3, pp. 778–788, 2009.

[12] J. Zhang, K. Xi, L. Zhang, and H. J. Chao, “Optimizing network
performance using weighted multipath routing,” in IEEE International
Conference on Computer Communications and Networks’12. IEEE,
2012, pp. 1–7.

[13] J. Zhang, K. Xi, M. Luo, and H. J. Chao, “Load balancing for
multiple traffic matrices using sdn hybrid routing,” in IEEE International
Conference on High-Performance Switching and Routing’14, 2014, pp.
44–49.

[14] C. VILLAMIZAR, “Ospf optimized multipath (ospf-omp),” IETF
Internet-Draft, draft-ietf-ospf-omp-03.txt, 1999. [Online]. Available:
https://ci.nii.ac.jp/naid/10026755527/en/

[15] M. Kodialam, T. Lakshman, J. B. Orlin, and S. Sengupta, “Oblivious
routing of highly variable traffic in service overlays and ip backbones,”
IEEE/ACM Transactions on Networking, vol. 17, no. 2, pp. 459–472,
2008.

[16] M. Antic, N. Maksic, P. Knezevic, and A. Smiljanic, “Two phase
load balanced routing using ospf,” IEEE Journal on Selected Areas in
Communications, vol. 28, no. 1, pp. 51–59, 2009.

[17] F. Geyer and G. Carle, “Learning and generating distributed routing
protocols using graph-based deep learning,” in ACM Workshop on
Big Data Analytics and Machine Learning for Data Communication
Networks’18. ACM, 2018, pp. 40–45.

[18] P. Sun, J. Li, Z. Guo, Y. Xu, J. Lan, and Y. Hu, “Sinet: Enabling scalable
network routing with deep reinforcement learning on partial nodes,” in
ACM SIGCOMM’19 Posters and Demos, 2019, pp. 88–89.

[19] S.-C. Lin, I. F. Akyildiz, P. Wang, and M. Luo, “Qos-aware adaptive
routing in multi-layer hierarchical software defined networks: A re-
inforcement learning approach,” in IEEE International Conference on
Services Computing’16. IEEE, 2016, pp. 25–33.

[20] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang,
“Experience-driven networking: A deep reinforcement learning based
approach,” in IEEE International Conference on Computer Communi-
cations’18. IEEE, 2018, pp. 1871–1879.

[21] L. Chen, J. Lingys, K. Chen, and F. Liu, “Auto: scaling deep rein-
forcement learning for datacenter-scale automatic traffic optimization,”
in ACM SIGCOMM’18. ACM, 2018, pp. 191–205.

[22] H. Xu, Z. Yu, C. Qian, X. Li, and Z. Liu, “Minimizing flow statistics
collection cost of sdn using wildcard requests,” in IEEE International
Conference on Computer Communications’17, 2017, pp. 1–9.

[23] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine Learning, vol. 8, no. 3,
pp. 229–256, May 1992.

[24] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez,
Y. Tassa, D. Silver, and D. Wierstra, “Continuous control with deep
reinforcement learning.” 2016. [Online]. Available: http://dblp.uni-
trier.de/db/conf/iclr/iclr2016.htmlLillicrapHPHETS15

[25] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” vol. 37, pp. 1889–1897, 07–09 Jul 2015.
[Online]. Available: http://proceedings.mlr.press/v37/schulman15.html

[26] A. Valadarsky, M. Schapira, D. Shahaf, and A. Tamar, “Learning
to route,” in ACM Workshop on Hot Topics in Networks’17, ser.
HotNets-XVI. New York, NY, USA: ACM, 2017, pp. 185–191.
[Online]. Available: http://doi.acm.org/10.1145/3152434.3152441

[27] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource man-
agement with deep reinforcement learning,” in ACM Workshop on Hot
Topics in Networks’16, New York, NY, USA, pp. 50–56.

[28] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” vol. 48, pp. 1928–1937, 20–22 Jun 2016.
[Online]. Available: http://proceedings.mlr.press/v48/mniha16.html

[29] Yufei Wang, Zheng Wang, and Leah Zhang, “Internet traffic engineering
without full mesh overlaying,” in IEEE International Conference on
Computer Communications’01, vol. 1, April 2001, pp. 565–571.

[30] L. Gurobi Optimization, “Gurobi optimizer reference manual,” 2019.
[Online]. Available: http://www.gurobi.com

[31] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in ICML workshop on Deep
Learning for Audio, Speech and Language Processing’13, 2013, pp. 1–6.

[32] M. Abadi and et al., “Tensorflow: A system for large-scale
machine learning,” in USENIX Conference on Operating Systems
Design and Implementation’16, ser. OSDI’16. Berkeley, CA, USA:
USENIX Association, 2016, pp. 265–283. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3026877.3026899

[33] N. Spring, R. Mahajan, and D. Wetherall, “Measuring isp topologies
with rocketfuel,” in ACM SIGCOMM Computer Communication Review,
vol. 32, no. 4. ACM, 2002, pp. 133–145.

[34] Yin Zhang’s Abilene TM. [Online]. Available:
http://www.cs.utexas.edu/~yzhang/research/AbileneTM/

[35] TMgen: Traffic Matrix Generation Tool. [Online]. Available:
https://tmgen.readthedocs.io/en/latest/

[36] M. Babaeizadeh, I. Frosio, S. Tyree, J. Clemons, and
J. Kautz, “GA3C: gpu-based A3C for deep reinforcement
learning,” CoRR, vol. abs/1611.06256, 2016. [Online]. Available:
http://arxiv.org/abs/1611.06256

11

Junjie Zhang received the B.S. degree in com-
puter science from Nanjing University of Posts &
Telecommunications, China, in 2006, the M.S. de-
gree in computer science and the Ph.D. degree in
electrical engineering from New York University,
New York, NY, USA, in 2010 and 2015, respec-
tively.

He has been with Fortinet, Inc., Sunnyvale, CA,
USA, since 2015. He holds two US patents in the
area of computer networking. His research interests
include network optimization, traffic engineering,

machine learning, and network security.

Minghao Ye received the first B.E. degree in micro-
electronic science and engineering from Sun Yat-
sen University, Guangzhou, China, and the second
B.E. degree (Hons.) in electronic engineering from
Hong Kong Polytechnic University, Hong Kong, in
2017, the M.S. degree in electrical engineering from
New York University, New York, NY, USA, in 2019,
where he is currently pursuing the Ph.D. degree
with the Department of Electrical and Computer
Engineering. His research interests include traffic
engineering, software-defined networks, mobile edge

computing, and reinforcement learning.

Zehua Guo (M’19-SM’20) received a B.S. de-
gree from Northwestern Polytechnical University, an
M.S. degree from Xidian University, and a Ph.D.
degree from Northwestern Polytechnical University.
He is an Associate Professor at Beijing Institute of
Technology. He was a Research Fellow at Depart-
ment of Electrical and Computer Engineering, New
York University Tandon School of Engineering, a
Research Manager at ChinaCache, a Senior Software
Engineer at DidiChuxing, a Post-Doctoral Research
Associate at Department of Computer Science and

Engineering, University of Minnesota Twin Cities, and a Visiting Associate
Professor at Singapore University of Technology and Design. His research
interests include software-defined networking, network function virtualization,
data center network, cloud computing, content delivery network, network
security, machine learning, and Internet exchange. Dr. Guo is an Associate
Editor for IEEE ACCESS and the EURASIP Journal on Wireless Communi-
cations and Networking (Springer), and an Editor for the KSII Transactions
on Internet and Information Systems. He was the Session Chair for the IEEE
International Conference on Communications 2018 and the Technical Program
Committee Member of Computer Communications (Elsevier). He is a Senior
Member of IEEE.

Chen-Yu Yen received the B.S. degree in electri-
cal engineering from National Taiwan University,
Taipei, Taiwan, in 2014, and the M.S. degree in
electrical engineering from Columbia University in
2018. He is currently pursuing the Ph.D. degree
with the Department of Electrical and Computer
Engineering, New York University, New York, NY,
USA. His research interests include reinforcement
learning, congestion control, and practical machine
learning for networking.

H. Jonathan Chao (M’83-F’01) received the B.S.
and M.S. degrees in electrical engineering from
National Chiao Tung University, Taiwan, in 1977
and 1980, respectively, and the Ph.D. degree in
electrical engineering from The Ohio State Univer-
sity, Columbus, OH, USA, in 1985. He was the
Head of the Electrical and Computer Engineering
(ECE) Department at New York University (NYU)
from 2004 to 2014. He has been doing research
in the areas of software-defined networking, net-
work function virtualization, datacenter networks,

high-speed packet processing/switching/routing, network security, quality-of-
service control, network on chip, and machine learning for networking. During
2000-2001, he was the Co-Founder and a CTO of Coree Networks, Tinton
Falls, NJ, USA. From 1985 to 1992, he was a Member of Technical Staff
at Bellcore, Piscataway, NJ, USA, where he was involved in transport and
switching system architecture designs and application-specified integrated
circuit implementations, such as the world’s first SONET-like framer chip,
ATM layer chip, sequencer chip (the first chip handling packet scheduling),
and ATM switch chip. He is currently a Professor of ECE at NYU, New
York City, NY, USA. He is also the Director of the High-Speed Networking
Lab. He has co-authored three networking books, Broadband Packet Switching
Technologies-A Practical Guide to ATM Switches and IP Routers (New
York: Wiley, 2001), Quality of Service Control in High-Speed Networks
(New York: Wiley, 2001), and High-Performance Switches and Routers (New
York: Wiley, 2007). He holds 63 patents and has published more than
260 journal and conference papers. He is a fellow of the IEEE and the
National Academy of Inventors. He was a recipient of the Bellcore Excellence
Award in 1987. He was a co-recipient of the 2001 Best Paper Award from
the IEEE TRANSACTION ON CIRCUITS AND SYSTEMS FOR VIDEO
TECHNOLOGY.

