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Abstract—Traffic Engineering (TE) has been applied to op-
timize network performance by routing/rerouting flows based
on traffic loads and network topologies. To cope with network
dynamics from emerging applications, it is essential to reroute
flows more frequently than today’s TE to maintain network
performance. However, existing TE solutions may introduce
considerable Quality of Service (QoS) degradation and service
disruption since they do not take the potential negative impact
of flow rerouting into account. In this paper, we apply a new QoS
metric named network disturbance to gauge the impact of flow
rerouting while optimizing network load balancing in backbone
networks. To employ this metric in TE design, we propose a
disturbance-aware TE called DATE, which uses Reinforcement
Learning (RL) to intelligently select some crifical flows between
nodes for each traffic matrix and reroutes them using Linear
Programming (LP) to jointly optimize network performance and
disturbance. DATE is equipped with a customized actor-critic
architecture and Graph Neural Networks (GNNs) to handle
dynamic traffic and single link failures. Extensive evaluations
show that DATE can outperform state-of-the-art TE methods
with close-to-optimal load balancing performance while effec-
tively mitigating the 99th percentile network disturbance by up
to 31.6%.

Index Terms—Traffic Engineering, Software-Defined Network-
ing, Reinforcement Learning, Routing, Network Disturbance,
Link Failure

I. INTRODUCTION

In Wide Area Networks (WAN5s), Internet Service Providers
(ISPs) control traffic distribution by routing/rerouting traffic
across their networks using a network optimizing operation
called Traffic Engineering (TE). The objective of TE is to
minimize the probability of network congestion by rerouting
flows! to balance the load on links when network traffic fluctu-
ates dynamically [1]-[4]. Such flow rerouting operation based
on network traffic demands and link states is heavily dependent
on network observability techniques, for instance, SNMP [5]
and NetFlow [6]. Due to the complexity of collecting traffic
demands and other statistics, these techniques are typically
operated in the control plane, resulting in a long time interval
(e.g., 5 minutes). Hence, network control for performance
optimization can only be conducted at a coarse-grained minute
level.
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Recently, fast and accurate network observability in the
data plane has become possible by programmable switching
technology [7], offering new opportunities to improve net-
work performance in a fine-grained sub-minute fashion. For
example, In-band Network Telemetry (INT) [8] provided by
P4 switches [7] can precisely and rapidly observe network
states (e.g., packet delay, queue length, and link utilization). P4
switches have been tested and deployed in the industry (e.g.,
AT&T [9], Alibaba [10]), and INT has been used in production
networks (e.g., Alibaba Cloud [10]). With Software-Defined
Networking (SDN) [11], the control plane can react to traffic
change quickly by generating and deploying deliberate routing
policies for different flows at the SDN switches based on
its global view of the network. Meanwhile, new applications
such as high-quality real-time video streaming [12]-[14] and
Augmented/Virtual Reality (AR/VR) [15] pose different band-
width and latency requirements on backbone networks. In
the foreseeable future, with emerging network observability
techniques and applications, flows should be adaptively and
frequently rerouted to improve network performance under
various network traffic dynamics.

However, flow rerouting could undesirably interrupt existing
connections. Traditional TE solutions realize optimal or near-
optimal load balancing performance at the cost of rerouting a
large number of flows. In WANSs, a flow usually aggregates
many micro-flows (i.e., five-tuple TCP flows) of different
applications. For the Sprint IP backbone network with around
40 nodes, the average number of active micro-flows measured
on a 2.5Gbps link is more than 250,000 per minute [16]. In this
case, changing the path of a flow could momentarily degrade
the Quality of Service (QoS) of many TCP flows. For example,
when rerouting a flow, out-of-order packets of some TCP
flows between their old and new paths could be generated.
Duplicated ACKs triggered by out-of-order packets could
falsely signal network congestion to the senders, which in turn
reduces the sending rates of the TCP flows to accommodate
the network variation and eventually increases the flows’
completion time or reduces throughput [17]. A recent work
[18] shows that the aggregated throughput can be degraded by
half after rerouting multiple TCP flows. As a result, frequently
rerouting a large number of flows can potentially lead to severe
service disruption of hundreds of thousands of TCP flows.

To address the abovementioned issue, we propose a new
QoS metric called network disturbance to measure the impact



of flow rerouting. Network disturbance is defined as the
percentage of total traffic in the network that is rerouted to
different paths compared to the previous routing (please refer
to Eq. (2)). With the consideration of network disturbance,
ISPs can optimize their network performance while mitigating
the rerouting impact on a large number of TCP flows. How-
ever, they face a new challenge: how to efficiently control
flows to achieve joint optimization of network performance
and disturbance for different traffic scenarios. Given various
possible route changes, it is very difficult, if not impossible,
to quantify network disturbance using a precise mathematical
formulation according to the above definition. Therefore, net-
work disturbance cannot be incorporated into traditional TE
optimization problems as a part of the objective along with
network performance.

In this paper, we propose Disturbance-Aware TE (DATE) to
achieve low network disturbance and close-to-optimal network
performance. DATE combines SDN and Equal-Cost Multi-
Path (ECMP) to reduce network disturbance. Specifically, a
majority of the flows are forwarded with existing ECMP
routing by equally splitting traffic on equal-cost shortest paths
while SDN deliberately chooses and reroutes some critical
flows to balance link utilization of the network. Here, critical
flow is defined as a flow with a dominant impact on network
performance. To effectively handle varying network traffic sce-
narios, we use Reinforcement Learning (RL) to learn a critical
flow selection policy and reroute these critical flows using
Linear Programming (LP) to optimize network performance.
To achieve joint optimization of network performance and
disturbance, we design an effective reward function for RL
to collect a performance-related reward from LP and impose
penalty on high disturbance to mitigate network disturbance
during training. As long as the reward signals correlate with
the objective, RL is able to train for the objectives that cannot
be directly optimized due to lack of precise models. Moreover,
we adopt Graph Neural Networks (GNNs) [19], [20] to handle
single link failures since GNNs offer unique advantages to
model network topologies which are basically represented as
graphs. By leveraging the graph representation learning tech-
niques, GNN can naturally outperform other traditional neural
network architectures (e.g., Convolutional Neural Networks).

The main contributions of this paper are summarized as
follows:

1) We introduce a new QoS metric named network distur-

bance to evaluate the impact of flow rerouting on WANS.

2) We propose a disturbance-aware TE solution combining
RL and LP with an effective reward function designed to
achieve joint optimization of network performance and
disturbance in different traffic scenarios.

3) We use GNN to generalize over different single link
failure scenarios such that DATE can maintain good
performance with low disturbance when link failure
happens.

4) Our extensive simulations show that the proposed DATE
outperforms state-of-the-art TE approaches with close-
to-optimal performance and the lowest network distur-

bance, and thus improves QoS in normal operations as
well as single link failure scenarios.
The remainder of this paper is organized as follows. Section
Il provides the definition of network disturbance. Section III
overviews DATE’s system design. Section IV explains how
to learn a critical flow selection policy using RL and further
describes the LP formulations for rerouting critical flows.
Section V discusses the implementation details of DATE.
Section VI evaluates the performance of DATE by presenting
and analyzing the simulation results. Section VII describes the
related works, and Section VIII concludes the paper.

II. DEFINITION OF NETWORK DISTURBANCE

In this section, we formally define network disturbance as
a QoS metric and briefly explain how to calculate network
disturbance caused by flow rerouting.

A. Notations

G(V,E) network with nodes V and directed edges E
(V| = N,|E| = M)

fr selected critical flows

Cij the capacity of link (z,7) ((i,7) € E)

lij the traffic load on link (3, j) ({(,j) € E)

D the traffic demand from source s to destination
d(s,deV,s#d)
f,’]fi the percentage of traffic demand from source s to
destination d routed on link (i, j) (s,d € V, s #
d7 <Zv.7> € Ea <S7d> € fK)
Ags? the percentage of traffic demand from source s

to destination d being rerouted (s,d € V, s # d)

B. Network Disturbance

Once TE updates routing to improve network performance,
flows might be rerouted to different paths or distributed with
different split ratios along original paths compared to the
previous routing. Thus, we have the following definitions.

Definition 1. Rerouted Traffic: Given the traffic demand of
flow (s,d) as D*? and the percentage of flow (s,d) that are
rerouted from original paths as Ac®%, the total amount of
traffic that would be rerouted from original paths is defined
as rerouted traffic*:

Tr= Y, & D Ac™ (1)
s,d€V,s#d

Definition 2. Network Disturbance: Given the rerouted traffic

TR, the network disturbance is defined as:

Tr

Z l)s,d7

s,deV,s#d

DB = 2

i.e., the percentage of total rerouted traffic in the network for
a given traffic matrix, where Y. D> is the total traffic

s,d€V,s#d
of all flows.

2 A portion of traffic of each rerouted flow might stay on the same routing
paths when using consistent hashing to 5-tuple micro-flows, which is not
considered as rerouted traffic.



Fig. 1. Paths and split ratios for flow (1,2) at different time steps ¢. Each
link is bidirectional with link weight equal to 1.
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Fig. 2. Overview of DATE’s system design. DATE selects and reroutes critical
flows periodically or when topology changes. The red solid lines represent the
paths for critical flows with different split ratios, and the green dashed lines
are the ECMP paths for non-critical flows. Each link is bidirectional with link
weight equal to 1.

DATE will select a small set of critical flows fx to be
rerouted for each given Traffic Matrix (TM) to accommodate
traffic dynamics. We assume that ECMP is a default routing
solution for all non-critical flows. For DATE, it is possible that
the critical flows ff(_l and f}- selected for two consecutive
TMs (T'M;_q and T'M,;) are different, which means some of
the critical flows identified in time step ¢t — 1 could be for-
warded by ECMP in time step t. Therefore, these flows should
also be considered as rerouted flows (i.e., (s,d) € fi- ' U f&)
when calculating network disturbance at time step t.

Figure 1 provides an example of measuring network dis-
turbance caused by DATE. We assume that flow (1,2) is the
only flow affected by routing updates from ¢ = 1tot = 4. As
shown in Fig. 1(a), flow (1,2} is forwarded by ECMP at time
t = 1. Therefore, the split ratio is (0.5, 0.5) for the two shortest
paths 1-3-2 and 1-4-2. When ¢t = 2, flow (1, 2) is selected as
one of the critical flows for rerouting as illustrated in Fig. 1(b).
Then, the split ratio becomes (0.3, 0.5, 0.2) for paths 1-3-2, 1-
5-6-2, and 1-4-2, which means 50% of the traffic of flow (1, 2)
is rerouted to the non-shortest path 1-5-6-2 and thus should be
counted as rerouted traffic for calculating network disturbance.
At time ¢ = 3, flow (1,2) remains as a critical flow, but the
routing changes to adapt to traffic dynamics such that the split
ratio becomes (0.4, 0.2, 0.4) with the same paths as ¢t = 2. As
a result, 30% of the traffic of flow (1, 2) is rerouted from path
1-5-6-2 to the other two paths. In the last time step ¢t = 4,
flow (1,2) is not selected as a critical flow, which means that
it is forwarded by ECMP again. Therefore, the percentage of
flow (1,2)’s traffic that is rerouted to different paths is 20%.

III. SYSTEM DESIGN

Figure 2 illustrates DATE’s system design. DATE is located
together with an SDN controller and consists of two modules,
one for normal operations in the network (without any link
failures) and another with single link failures. The SDN
controller is responsible for collecting TM periodically from
the network and updating the network topology if any changes
(e.g., link failure/recovery). The disturbance-aware module is
responsible for flow routing/rerouting for normal operations to
accommodate traffic variations captured by TM, while the fail-
ure recovery module is responsible for flow routing/rerouting
for single link failures, which are reflected by a network
Connectivity Matrix (CM). Based on the TM and CM, DATE
identifies a set of critical flows in the network using RL
and provides the corresponding routing solution with LP. The
evaluation results in Section VI-A shows that selecting 20%
of total flows is a good tradeoff between network performance
and disturbance. According to the updated routing solution, the
SDN controller installs the flow entries in corresponding SDN
switches to reroute the critical flows. As depicted in Fig. 2,
flow (1, 6) is selected as a critical flow and rerouted over three
paths with different split ratios, while flow (4, 6) is forwarded
by ECMP since it is not selected as a critical flow.

To cope with drastic traffic change scenarios, we can pre-
train several DATE models with different disturbance targets
as described in Section VI-B. When the network performance
is relatively stable from small traffic variations, we can adopt
a DATE model with a low target disturbance (e.g., DATE-5
with a target disturbance of 5%) to maintain good performance
while having a small impact on QoS. If network performance
degrades severely due to a sudden large spike of traffic de-
mands, DATE could switch to another model with a high target
disturbance (e.g., DATE-15 with a target disturbance of 15%)
to allow more route changes to improve network performance.
As shown in Section VI-B, DATE can handle different traffic
scenarios and achieve near-optimal performance with lower
network disturbance compared to other TE methods.

When a link failure occurs, a simple local recovery mecha-
nism can be implemented to timeout existing SDN entries for
critical flows and completely revert to ECMP forwarding. As
illustrated in Fig. 2, flow (2,6) is rerouted to the remaining
shortest path 2-5-6 due to a single link failure at link (2, 3), no
matter whether it is a critical flow or not. After that, the CM
would be updated and TE-level resilience can be performed
immediately by the failure recovery module to select and
reroute critical flows. As described in Section V-D, we can pre-
train a DATE model for the failure recovery module with an
augmented dataset by including all possible single link failure
scenarios. The evaluation results in Section VI-C shows that
DATE is able to improve network performance with mitigated
network disturbance in the presence of different single link
failures.

IV. SELECTING AND REROUTING CRITICAL FLOWS

In this section, we explain how to learn a critical flow
selection policy using a customized RL approach and further



provide the LP formulation for critical flow rerouting.

A. Reinforcement Learning Formulation

Input / State Space: To include topology information and
reflect traffic changes, an RL agent takes a state s; =
(CM,TM,;, TM;_) as an input, where C'M is the topology
CM and (T'M,, TM;_1) are TMs at time step ¢ and ¢ — 1,
respectively.

Action Space: For each state s;, DATE will select K critical
flows. Given that there are N * (N — 1) flows in a network
with N nodes, this RL problem would require a large action
space of size C{\f*( N-1)- Inspired by [21], [22], we define
the action space as {0, 1, ..., N * (N — 1) — 1} and allow
the agent to sample K different actions in each time step
t (ie., a},a?,...,al). It is worth noting that the number of
critical flows K is fixed to reduce solution space and accelerate
convergence. We will investigate the possibility to dynamically
adjust the K value for different states in our future work.

Reward: After sampling K different critical flows (i.e., fx)
for a given state s;, DATE reroutes these critical flows
and obtains the maximum link utilization U by solving the
rerouting optimization problem (9a) described in Section IV-D.
To minimize the maximum link utilization U and mitigate
network disturbance DB, we design a reward function as
follows:

1
i if DB < DBry

r= / 3)
it DB > DB
U-(0+P(DB—DBrg)) 0~ F0rH

where DBrp is a preset target network disturbance, and
P(DB — DBrpy) is a penalty function depicted in Figure
3 when the target network disturbance cannot be satisfied:

P(DB — DBry) = (100(DB — DBry))? (4

The reward function is set to encourage the selection of
critical flows that can achieve better network performance with
lower network disturbance. When DB < DBrp, the target
network disturbance can be achieved. Therefore, the 1/U
term reflects the network performance after rerouting critical
flows to balance link utilization. The smaller U, the better the
performance and thus a higher reward can be received. When
DB > DBry, an increasing penalty would be imposed since
the target network disturbance cannot be satisfied. Given the
penalty function design in Eq. (4), a small amount of violation
(e.g., DB — DBry = 1%) can be tolerated while a huge
penalty would be imposed for a higher network disturbance.

B. Training Algorithm

The critical flow selection policy is represented by a
neural network. This policy network takes a state s; =
(CM,TM,;,TM;_1) as an input as described above and
outputs a probability distribution m(a¢|s;) over all available
actions. Since K different actions are sampled for each
state s; and their order doesn’t matter, we define a solution

5% 10% 15% 20% 25% 30%
B — DBy

Fig. 3. A penalty function when network disturbance exceeds the preset target

disturbance.

at, = (a},a?,...,ak) as a combination of K sampled actions.
For selecting a solution a;, with a given state s;, a stochastic
policy m(a¢, |s¢) parameterized by 6 can be approximated as
follows?:

K
mo(ar|se) ~ | [ mo(ails:)- )
=1

The goal of the training is to maximize the network perfor-
mance over various TMs, i.e., to maximize the expected reward
E[r¢]. Thus, we optimize E[r] with gradient ascend, using
REINFORCE algorithm with a baseline b(s;). The policy
parameter 6 is updated according to the following equation:

0—0+a Z Vologmo(a, |st)(re — b(st)). (6)
t

where « is the learning rate for the policy network. A good
baseline b(s;) reduces gradient variance and thus increases
speed of learning. In this paper, we use a learned estimate of
the value function V™ (s;) as the baseline b(s;). The critic
network in Fig. 4 is trained to learn an estimate of V™ (s;).
The critic network parameter 6, is updated according to the
following equation:

Oy < 0y — > Vo, (re — Vi (s1))?, (7)
t

where Va:e (+) is outputted by the critic network as the estimate
of V™ (.), and «, is the learning rate for the critic network.
Note that the critic network is only trained to estimate the
expected reward 7, and solely helps train the policy network.
Once training is done, only the policy network is required
to execute the action selection. (r; — V”(s;)) indicates how
much better the reward of a specific solution is compared
to the expected reward for a given state s; according to the
policy mg. Intuitively, Eq. (6) can be explained as follows.
If (ry — nge(st)) is positive, mg(az, |s¢) (i.e., the probability
of the solution a;,) is increased by updating the policy
parameters 6 in the direction Vylogmg(ay, |s:) with a step size
of a(ry — V'’ (s¢)). Otherwise, the probability of the solution
is decreased. The net effect of Eq. (6) is to reinforce actions

that empirically lead to better rewards.
To ensure that the RL agent explores the action space
adequately during training to discover good policies, the
entropy of the policy 7 is added to Eq. (6). This entropy

3To select K distinct actions, we conduct the action sampling without
replacement. The right hand side of Eq. (5) is the probability of the solution
when sampling with replacement, where Eq. (5) is used to approximate the
probability of the solution a;,, given a state s¢ for simplicity.



term can improve the exploration by discouraging premature
convergence to suboptimal deterministic policies [23]. Then,
Eq. (6) is modified to the following equation:

Vo, (s1))

+BVoH (mo(-[st)),

0«0+ aZV0ZOQ7Te(atK|5t)(rt -
t ®)

where H is the entropy of the policy (the probability distribu-
tion over actions). The hyperparameter 5 controls the strength
of the entropy regularization term. Algorithm 1 shows the
pseudo-code for the training algorithm.

Algorithm 1 Training Algorithm

Initialize 6 and 6,
for each iteration do
A 0, AG, <0
{s+} < Sample a batch of states with size B
fort=1,...,B do
Sample a solution at, according to policy mg(az, |st)
Receive reward r;
end for
fort=1,...,B do
Al + A0+ a(Vologme(at,|s)(re — Vg’ (st)) +
BVoH (mo(-[st)))
A, + AB, — a, Vg, (1 —
end for
0 0+ A0
0, < 0, + Ab,
end for

V! (1))

C. Actor-Critic Network Architecture

Figure 4 shows the architecture of GNN-based actor-critic
network. The inputs to the network are node features and
topology CM, where the features for a given node are a series
of demands originated from that node. The encoder computes
the initial node embedding using a shared feed-forward layer,
and then each node’s embedding is updated by exchanging
messages with its neighbors. Similar to the transformer model
presented in [22], [24], the embedding update module consists
of a stack of H (e.g., 6) identical attention layers. Each
attention layer is composed of two sub-layers. The first is a
multi-head attention layer that performs message exchanging
between neighbor nodes, and the second is a node-wise
fully connected feed-forward layer that performs a nonlinear
transformation. In addition, a skip connection [25] and layer
normalization [26] are applied to each sub-layer. Employing
H attention layers can be interpreted as executing H iterations
of embedding update process, and one iteration of embedding
update process can be essentially considered as a feature
propagation. After H iterations, each node’s embedding would
include H hops away neighbors’ information. According to
the “small-world” property [27], any two nodes in most real
network topologies are reachable in less than 6 hops. Thus, a
small value of H would be enough for each node to capture

the complete information of the whole network (i.e., TMs and
topology information).

All node embeddings outputted by the encoder are then
concatenated to form a graph embedding, which is passed to
a policy network to generate a probability distribution over
actions and passed to a critic network to predict the baseline
of the input state.

D. Rerouting Critical Flows

By default, traffic is distributed according to ECMP routing.
We reroute a small set of critical flows (i.e., fx) by conducting
explicit routing optimization for these critical flows. Given
a network G(V, E) with a set of traffic demands D*? for
the selected critical flows (V(s,d) € fx) and the background
link load {/; ;} contributed by the remaining non-critical flows
using the default ECMP routing, our objective is to obtain
the optimal explicit routing ratios {a } for each critical flow
such that U is minimized. To search all possible under-utilized
paths for the selected critical flows, we formulate the rerouting
problem as an optimization problem as follows.

minimize U+e- » Y ol (9a)
(i,J)€E (s,d)Efx
subject to
Lj= Y off D™ +1;  ij:(i.j)eE (9b)
<Svd>€fK
lij<ci;-U i,j:(i,j)€ (%)
ifi=s
Z OZ:? — af’,j if i = ©4)
ki(ki)eE (@, >€E 0 otherwise
i€V, s,d:(s,d) € fx
0<op! <1 s.d:(s,d)€ fi,ij:(i,5) €E (%)

s,d .
o} ; is added to avoid unnec-

In Eq. Qa), e- > >

(i,4)€E (s,d)EfK
essarily long paths in the optimal solution, where € (¢ > 0) is
a sufficiently small constant to ensure that the minimization
of U takes higher priority. Eq. (9b) indicates that the traffic
load on link (%, j) is contributed by the traffic demands routed
by explicit routing and also the traffic demands routed by the
default ECMP routing. Eq. (9¢) is the link capacity utilization
constraint. Eq. (9d) is a flow conservation constraint for the
selected critical flows.

After solving the above problem using LP solvers (e.g.,
Gurobi [28]), we can obtain an optimal explicit routing so-
lution {afj} (V(s,d) € fk) for the selected critical flows.
Then, the SDN controller installs and updates flow entries at
the SDN switches accordingly.

V. IMPLEMENTATION

In this section, we describe the experiment setup as well as
implementation details of DATE.
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Fig. 4. GNN-based actor-critic architecture.

TABLE I
NETWORK TOPOLOGIES FOR EVALUATION

Topology Nodes | Directed Links | S-D Pairs

Abilene 12 30 132

GEANT 23 74 506

EBONE (Europe) 23 76 506

Sprintlink (US) 44 166 1892

Tiscali (Europe) 49 172 2352

A. Dataset

In our evaluation, we use five different real-world network
topologies, including Abilene network, GEANT network, and
three ISP networks collected by Rocketfuel [29]. The numbers
of nodes, directed links, and source-destination pairs of the
networks are listed in Table I. For the Abilene network,
the network topology information (such as link connectivity,
weights, and capacities) and measured TMs can be found in
[30]. Since the Abilene TMs are measured every 5 minutes,
there are a total of 2016 continuous TMs each week. To
evaluate the performance of DATE and correctly measure
network disturbance with consecutive TMs, we choose a
total of 2016 TMs in the first week (starting from Mar. Ist,
2004) as our training set and test our scheme on the TMs
in the following week (starting from Mar. 8th, 2004). For
the GEANT network, the topology information including link
capacities and costs are provided in [31]. The GEANT TMs
are available at [32] and they are collected every 15 minutes
for a continuous period of 4 months. Similarly, we select a
total of 672 continuous TMs in the first week (starting from
Jan. 1st, 2005) as our training set and test our scheme on the
TMs in the following week (starting from Jan. 8th, 2005). For
the remaining three ISP networks from Rocketfuel, only the
link costs are given while the link capacities and TMs are not
provided. Therefore, we infer the link capacities as the inverse
of link costs based on the default link cost setting in Cisco
routers, which is a commonly adopted approach in literature
[33]-[35]. As for the dataset, we synthesize 200 TMs for each
of the three networks using the gravity model [36]. We first
compute a gravity TM where each entry ngd represents the
demand volume from source node s to destination node d.

Then, we generate the TM sequence based on the gravity
TM. The traffic demand D*? of each TM is sampled from
a uniform distribution of [0.5- D5, 4.5- D5] to simulate the
dynamics of network traffic. In our evaluation, the first 100
TMs are used for training and the remaining 100 TMs are
used for testing.

B. Hyperparameters

The GNN-based actor-critic architecture is implemented
using TensorFlow [37]. For the encoder, we set the embedding
dimension dj, to 64 and the number of attention heads M to
8. For the feed-forward sub-layer in each attention layer, the
intermediate layer dimension dy is set to 256. Besides, the
number of attention layers H is set to 6. For the decoder,
the feed-forward layer of the policy network has an output
dimension of N * (N — 1), which represents the number of
source-destination pairs in the network since N is the number
of network nodes. The softmax function is applied upon the
output of the policy network to generate the probabilities for
all available actions. The critic network is similar to the policy
network except that the last layer is a fully connected linear
layer with only one neuron corresponding to the baseline b(s;).
The learning rates « and «, are configured to decay from
0.001 to 0.0001 over 0.5 x 10° iterations. Additionally, the
entropy factor  is set to 0.01. We do not use sophisticated
hyperparameter tuning methods [38], and fix all these hyperpa-
rameters throughout our experiments. The experiment results
in Section VI demonstrate that DATE works well in different
environments with a single set of hyperparameters.

C. Farallel Training

To speed up training, we spawn multiple actor agents in
parallel as suggested by [23]. DATE uses 20 actor agents by
default. Each actor agent is configured to experience a different
subset of the training set. Then, these agents continually
forward their tuples (state, action, reward) to a central learner
agent, which aggregates them to train the policy network and
critic network. The central learner agent performs a gradient
update using Eq. (7) and Eq. (8) according to the received
tuples and then sends back the updated network parameters to



the actor agents. In our evaluation, we use 21 CPU cores (one
3.0GHz core for each agent) and 16GB memory to train DATE.
The training process is greatly facilitated due to our scalable
neural network architecture design. It takes less than 2 hours
to train a DATE model from scratch for small networks (i.e.,
Abilene, GEANT and EBONE network) with 3,000 iterations.
For the two large networks, it requires 8,000 iterations with
approximately 6 hours’ training to converge since the action
space is much larger. It is also worth noting that all the training
costs are incurred offline and the number of CPU cores can be
adjusted based on actual hardware specifications. For online
deployment, the inference time is less than one second and the
resource consumption is relatively low (e.g., one CPU core).

D. Resilience

In addition to normal operations, TE should maintain good
performance in the presence of link failures. Therefore, we
trained DATE with an augmented dataset including the TMs
in all possible single link failure scenarios*. In each scenario,
we remove the failed link from the network environment and
recalculate the shortest paths for ECMP. All the preconfigured
paths containing the failed link will also be excluded from
the LP formulation. To simulate single link failure in GNN,
we change the CM such that the message exchange between
the two nodes of the failed link is temporarily disabled. After
training is done, we evaluate DATE under different single link
failure scenarios and the results are presented in Section VI-C.
In this paper, we only consider single link failure scenarios.
For multiple link failures, including all possible link failure
scenarios will make the augmented training dataset extremely
large since there are too many link failure combinations. We
will investigate this problem in our future works.

E. Baselines

Traditional TE solutions introduce considerable QoS degra-
dation due to frequent and substantial flow rerouting in the
network without consideration of network disturbance. To
demonstrate the advantages of DATE in mitigating network
disturbance and improving network performance, we compare
DATE to the following schemes, including the state-of-the-art
TE solutions and a rule-based heuristic:

1) CFR-RL [39]: customizes an RL approach to learn
a critical flow selection policy with an objective of
optimizing network performance, and further utilizes LP
to reroute these critical flows.

2) SMORE [40]: computes a set of paths using an obliv-
ious routing algorithm and deploys a centralized con-
troller to dynamically adapt sending rates of all flows
according to these preconfigured paths.

3) Top-K: selects K flows with the largest demand volume
from a given TM and only reroutes these flows using LP.
It is based on the assumption that elephant flows would
have a dominate impact on network performance.

4For the nodes with degree 1 in the two networks, the failures on their
inbound/outbound links are excluded from the training scenarios since any
failure on these links will result in traffic loss.

F. Evaluation Metrics
To demonstrate the performance of DATE, we define a
performance ratio as follows:

Unpti mal

PR = (10)

Upate '
where Ugpimal 1s the maximum link utilization achieved by an
optimal explicit routing for all flows. PR = 1 means that
the proposed DATE has the same performance as the optimal
routing. A lower ratio indicates that the performance of DATE
is farther away from that of the optimal routing. Note that
we can compute the performance ratio of other TE solutions
by replacing the denominator as the maximum link utiliza-
tion achieved by other schemes. Besides, the corresponding
network disturbance DB is calculated using Eq. (2) in our
evaluation to measure the impact of flow rerouting on the
network.

VI. EVALUATION

Extensive experiments are conducted based on five real-
world network topologies and their TMs to evaluate the perfor-
mance and network disturbance of DATE in normal operations
and single link failure scenarios. We compare DATE with
state-of-the-art TE solutions and a rule-based heuristic to show
the effectiveness of DATE in mitigating network disturbance
while improving network performance.

A. Number of Critical Flows
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Fig. 5. Comparison of average performance ratio and network disturbance
with an increasing number of critical flows K selected in the Abilene network
using different preset target disturbance. In (a)(c), error bars span + one
standard deviation from the average on the entire test set. In (b)(d), the
horizontal grey line is the target disturbance. The line in the box represents
the median value, and the upper whisker is customized as the 99th percentile
disturbance. The data points beyond the upper whisker are outliers, which
represents the worst 1% cases with the highest network disturbance.

It is important for DATE to select and reroute a proper
number of critical flows to improve network performance
with low network disturbance. If the number of critical flows



is too small, it might be difficult to achieve good network
performance. On the contrary, rerouting too many critical
flows may introduce considerable network disturbance. To
investigate the influence of different numbers of critical flows,
we conduct a series of experiments with an increasing number
of critical flows selected as a fraction of the total flows under
two preset disturbance targets. Note that the comparison is
mainly performed on the Abilene network since the results
for other four networks are similar.

Figure 5 shows the average performance ratio and network
disturbance achieved by DATE with an increasing number of
critical flows, where the X-axis is the percentage of total flows
selected as critical flows. Recall that the total number of flows
in the network is N * (N — 1), where N is the number of
network nodes. In this case, 10% of total flows selected means
that the number of critical flows is K = 10% % N * (N — 1).
In Fig. 5(a), we can see that the average performance ratio
becomes higher as the number of critical flows increases. How-
ever, the network disturbance is also increasing as illustrated
in the boxplot of Fig. 5(b), which demonstrates the tradeoff
between network performance and disturbance. For extreme
cases, K = 20% * N % (N — 1) results in a 99th percentile
disturbance of 4.7% with several outliers up to 9%. If we
select 30% or 40% of total flows as critical flows, the 99th
percentile disturbance exceeds the target disturbance and the
maximum disturbance is higher than 13%. From Fig. 5(c)(d),
we have similar observations when the target disturbance is set
to 10%. Comparing to K = 10%x* N % (N — 1), selecting 20%
of total flows can achieve 6.7% performance improvement on
average and the target disturbance can be satisfied even in the
most extreme case. Rerouting more than 20% of total flows
lead to slight performance improvement while the worst-case
disturbance is close to 20%. As a result, selecting and rerouting
20% of total flows could be a good choice since the target
disturbance can be satisfied in at least 99% of traffic scenarios.
In the following experiments, the number of critical flows is set
to K = 20% x N * (N — 1) such that DATE can achieve better
network performance with mitigated network disturbance.

B. Comparison between Different Schemes

For normal operations, we train three DATE models for each
network with different disturbance targets (i.e., DBry = 5%,
DBry = 10%, DBry = 15%) and denote them as DATE-5,
DATE-10, and DATE-15, respectively. As discussed in Section
III, we can switch between different DATE models on demand.
For comparison, we also calculate the performance ratio of
CFR-RL, SMORE, Top-K, and ECMP according to Eq. (10)
and measure the corresponding network disturbance using Eq.
(2) in each network. Figure 6 illustrates the comparison of
different schemes in terms of performance ratio and network
disturbance in the five networks, where the X-axis represents
the average network disturbance and the Y-axis is the average
performance ratio achieved by each scheme. The end of each
line is the 99th percentile disturbance corresponding to the
worst cases. For the baseline methods, CFR-RL performs sig-
nificantly well in both networks. This is because the objective
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Fig. 6. Comparison of average performance ratio, average network distur-
bance (marker) and 99th percentile network disturbance (end of each line)
between different schemes on the entire test set of the five networks. The
upper-right corner represents the best solution with the highest performance
ratio and lowest network disturbance.

of CFR-RL is to solely optimize network performance such
that it can identify the most critical flows in the network
for rerouting. As for other baselines, SMORE can adjust the
sending rate of all flows in the network with preconfigured
paths to achieve close-to-optimal performance, while Top-K
can only improve the network performance to some extent
since the largest K flows are not always the best choices.

Even though some of the baseline methods can achieve
promising performance, they can also incur high network
disturbance since none of these approaches takes network
disturbance into consideration. For example, SMORE gen-
erates an average of 16.6% and 24.2% network disturbance
in the Abilene network and Sprintlink network, respectively,
which is much higher than other schemes. In the worst cases,
more than 42.4% of the total traffic would be rerouted to
different paths by SMORE in the EBONE network, which
means almost half of the network traffics suffers from service
disruption. This is because SMORE adaptively changes the
sending rate of all flows for each measured TM without
consideration of disturbance. On the contrary, CFR-RL has
lower disturbance compared to SMORE in all of the networks
except for the GEANT network. This is reasonable since CFR-
RL only reroutes a smaller set of critical flows and part of the
traffic of the critical flows may stay on their previous paths.
However, at least 22.5% of the total traffic would be rerouted
by CFR-RL in the worst cases of the GEANT network. Unlike
DATE, CFR-RL is not disturbance-aware and it would incur
higher disturbance in some cases. For Top-K, the network
disturbance is much larger than CFR-RL and DATE. In the
GEANT network, Top-K generates 44.9% disturbance in the



worst cases by rerouting the largest K flows in the network,
which is one of the limitations of the rule-based heuristic.

Compared to these baselines, DATE can effectively trade
off network performance and disturbance. As shown in Fig.
6, the best operating region of TE is the upper right region
with the highest performance ratio and lowest network distur-
bance. Most of the baselines focus on network performance
while ignoring network disturbance, which means they are
operating in the upper left region. On the contrary, DATE can
consistently operate in the upper right region in all of the
five networks. In the Abilene network, DATE-15 can achieve
an average of 26.9% performance improvement over ECMP
while the 99th percentile disturbance is only 11.3%. In the
GEANT network, the average network performance can be
improved by 29.8%, 47.5%, and 48.0% compared to ECMP
with DATE-5, DATE-10, and DATE-15, respectively. At the
meantime, the target network disturbance can be satisfied in
99% of the test TMs for the three DATE models. In the
rest of the three ISP networks, DATE-15 can achieve the
same performance as the best performing scheme with lower
disturbance. For example, DATE-15 can achieve 99.6% perfor-
mance on average with EBONE TMs while mitigating the 99th
percentile disturbance by 8.6% and 31.6% compared to CFR-
RL and SMORE, respectively. It is worth noting that DATE-
10 can also achieve at least 92% average performance with
low disturbance in the five networks, which demonstrates the
capability of DATE to improve network performance within
the target disturbance. As a result, DATE can achieve good
performance with mitigated network disturbance in different
traffic scenarios.

C. Resilience
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Fig. 7. Comparison of performance ratio and network disturbance in CDF
among DATE and the baseline methods in the 2nd week of the Abilene
network and GEANT network with random single link failures.

As discussed in Section V-D, we test the resilient routing
provided by DATE with different single link failures. A
target disturbance DBry = 20% is specified to maintain
good performance and reduce network disturbance in extreme
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(c) Tiscali network.

Fig. 8. Comparison of performance ratio and network disturbance in CDF
among DATE and the baseline methods on the entire test set of the three ISP
networks with random single link failures.

conditions. For the Abilene network and GEANT network,
we randomly fail one link every hour such that twelve Abilene
TMs and four GEANT TMs are evaluated before the next link
failure. If some of the flows are rerouted due to link failure
(e.g., the previous paths are not available), they are not counted
as rerouted traffic when we measure network disturbance.
Figure 7 presents the Cumulative Distribution Function (CDF)
of performance ratio and network disturbance achieved by
DATE and baseline methods in the 2nd week of the Abilene
network and GEANT network under different single link
failure scenarios. Note that the network disturbance of ECMP
is zero since the routing is static and the impact of link failure
is omitted from the calculation of network disturbance. In
the Abilene network, DATE outperforms CFR-RL and Top-K
in different traffic scenarios with random single link failures.
There is a small performance gap between DATE and SMORE,
but the disturbance of SMORE is much larger compared to
DATE. For the GEANT network, DATE can achieve similar
performance as SMORE with the lowest network disturbance
among all schemes. In terms of worst-case performance, DATE
can even outperform SMORE with the lowest performance
ratio of 80% while SMORE’s performance can be degraded
to 56.9%, which reveals the capability of DATE to handle
single link failure by leveraging the graph representation
learning techniques. To further explore the potential capability
of DATE, we conduct experiments using synthesized TMs with
random single link failures in the three ISP networks. Simi-
larly, we randomly fail a unique link every 2 TMs to evaluate
the resilient routing from DATE. Figure 8 shows the CDF of



performance ratio and network disturbance achieved by DATE
and the baseline methods on the test set of the three ISP
networks under different single link failure scenarios. In the
EBONE network and Sprintlink network, DATE can achieve
the same performance as CFR-RL with lower disturbance or
outperforms CFR-RL with similar disturbance. For the Tiscali
network, DATE can even slightly outperform SMORE and the
disturbance is much lower compared to SMORE. Therefore,
DATE is able to maintain promising network performance and
mitigate network disturbance in the presence of single link
failures.

VII. RELATED WORKS

SDN-based TE is widely applied to optimize network per-
formance. Dynamic hybrid routing [33] relies on a flexible
routing policy from SDN and dynamically re-balances traffic
to accommodate traffic fluctuations based on a preconfigured
routing policy for better load balancing. Agarwal et al. [41]
consider a network with partially deployed SDN switches and
try to improve network utilization by strategically placing SDN
switches. Guo et al. [42] design a TE solution named SOTE
to achieve load balancing in an SDN/OSPF hybrid network.

Machine learning has been used in TE design recently.
To minimize signaling delay in large SDNs, Lin et al. [43]
propose QoS-aware Adaptive Routing, which employs RL for
designing a distributed three-level control plane architecture.
Xu et al. [44] use RL to optimize performance metrics (i.e.,
throughput and delay) in backbone networks. However, none
of the above works takes mitigating the impact of network
disturbance and service disruption caused by flow rerouting
into account when designing TE solutions.

VIII. CONCLUSION

In this paper, we apply a new QoS metric called network
disturbance to measure the impact of flow rerouting on WANS.
To incorporate network disturbance in TE design, we propose
DATE, a disturbance-aware TE solution leveraging RL and
GNN to learn a critical flow selection policy that can ac-
commodate dynamic network traffics and different link failure
scenarios. For each given TM and topology, DATE smartly
selects a small set of critical flows and reroutes them with
LP to balance link utilization of the network within a target
network disturbance. Extensive evaluations show that DATE is
able to achieve a high load balancing performance and reduce
network disturbance in normal operations as well as single
link failure scenarios.
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