
Federated Traffic Engineering with Supervised
Learning in Multi-region Networks

Minghao Ye*, Junjie Zhang†, Zehua Guo‡, H. Jonathan Chao*

*Department of Electrical and Computer Engineering, New York University, New York City, NY, USA
†Fortinet, Inc., Sunnyvale, CA, USA

‡Beijing Institute of Technology, Beijing, China
{minghao.ye, junjie.zhang, chao}@nyu.edu, guolizihao@hotmail.com

Abstract—Network operators usually adopt Traffic Engineer-
ing (TE) to configure the routing in their networks to achieve
good load balancing performance and high resource utiliza-
tion. While centralized TE can effectively improve network
performance with a global view of the network, distributed
TE has been considered as an alternative to manage large-
scale networks that are usually partitioned into multiple regions.
However, it is challenging for distributed TE to reach a global
optimal performance since each region can make its local routing
decisions only based on partially observed network states. In this
paper, we propose a novel distributed TE scheme called FedTe,
which leverages supervised learning coupled with a collaborative
approach to improve the overall load balancing performance
for multi-region networks. FedTe learns from the global optimal
routing strategy in a centralized offline manner and predicts the
optimal distribution of cross-region traffic among different re-
gions through distributed deployment in real time. The predicted
cross-region traffic distribution is integrated with measured local
traffic to construct each region’s optimal regional traffic matrix,
which is used to perform intra-region TE optimization. FedTe
can also handle dynamic traffic variation and link failures with
a 2-layer hierarchical graph neural network architecture. To
validate the effectiveness of the proposed scheme, we evaluate
FedTe with two real-world network topologies and a large-
scale synthetic topology. Extensive evaluation results show that
FedTe can achieve near-optimal load balancing performance and
outperform state-of-the-art distributed TE approaches by up to
28.9% on average.

I. INTRODUCTION

Traffic Engineering (TE) is an important network operation
to optimize network performance and resource utilization by
controlling traffic distribution and configuring traffic routing in
a network [1]. Network operators aim to optimize the routing
in their networks to provide good end-to-end performance
for users while achieving efficient resource usage. Therefore,
TE is widely applied to improve network performance with
an optimization objective, such as minimizing the Maximum
Link Utilization (MLU) in the network to reduce network
congestion and achieve load balancing. Due to dynamic traffic
fluctuations in the network, it is desired to collect network
states and update routing periodically to maintain good net-
work performance. Based on the network topology and each
measured Traffic Matrix (TM) representing the traffic demands
of all flows1, TE usually formulates and solves a routing op-

The corresponding author is Zehua Guo.
1In this paper, a flow is defined as a source-destination pair.

timization problem to optimally redistribute the traffic across
the network accordingly.

Generally speaking, existing TE approaches can be divided
into two categories: centralized TE and distributed TE. In a
fully-controlled and fully-observable network, centralized TE
is widely adopted to improve network performance [2]–[9].
Specifically, a centralized controller is deployed in the network
to collect network topology and TM periodically. A TE module
in the controller is responsible for computing routing paths
and redistributing traffic for flows based on observed network
states. By leveraging existing Multi-Protocol Label Switching
(MPLS) technique [10], a network operator can set up tunnels
(i.e., Label Switched Paths (LSPs)) between different network
nodes and adjust the traffic split ratios among the tunnels
to accommodate the traffic changes [2]–[4]. With emerging
Software-Defined Networking (SDN) [11], centralized TE can
be deployed in a responsive way [12]–[14], where an SDN
controller can redistribute traffic by installing/updating flow
table entries at the underlying SDN switches. The SDN-
based centralized TE has been deployed in today’s Wide Area
Networks (WANs) as industrial solutions (e.g., Google’s B4
[3] and Microsoft’s SWAN [5]).

However, centralized TE suffers from high overhead and
long reaction time to redistribute traffic of flows. Typically,
centralized TE operates at minute-level intervals to accom-
modate traffic changes [3], [5]. As the network size grows,
the computation complexity of TE algorithms significantly
increases since the number of control variables in the rout-
ing optimization problems increases dramatically [15]. Upon
traffic changes, the centralized controller must update all the
underlying switches in real time, which may incur high routing
update overhead for large-scale networks [16]. When link
failure happens, centralized TE can recompute the optimal
routing to bypass the failed links. However, in a geographically
distributed network (e.g., Google Cloud [17]), notifying the
centralized controller of topology changes and waiting for
routing updates is very time-consuming and may result in
temporary performance degradation and potential traffic loss
[18], [19].

To achieve scalable and efficient network management, a
large network is usually divided into multiple geographical
regions, and each of the regions is controlled by a regional
controller [19]–[21]. In this way, distributed TE can be ap-
plied to reduce computation complexity and routing update978-1-6654-4131-5/21/$31.00 ©2021 IEEE

overhead, and to handle link failures promptly and efficiently.
For each network region, local routing decisions are made by a
regional controller to distribute traffic inside the region based
on measured network statistics. When link failure occurs, local
recovery mechanisms can be performed to reroute some flows
in a responsive manner to relieve network congestion and miti-
gate traffic loss. However, it is very challenging for distributed
TE to achieve a global optimal performance with partially-
observed network states. The existing heuristic method like
hot-potato routing [22] is far from global optima since it
only statically directs outgoing traffic to the closest border
router without considering other regions’ preferences. Several
distributed TE approaches [23]–[25] are proposed to facilitate
cooperation and collaboration among different regions to find
a better local routing strategy. However, they could introduce
high communication overhead to exchange information for
multiple iterations during online deployment and thus lead to
sub-optimal performance under dynamic traffic demands [26].

To improve the performance of multi-region networks in
a distributed fashion with low communication overhead, it
is important for each region to obtain traffic and routing
information from other regions through efficient interactions.
This is because local routing decisions for cross-region traffic
would affect other regions’ network performance as well.
For example, directing the outgoing traffic to neighboring
regions through different border routers would result in a
change of adjacent regions’ traffic volumes and potentially
lead to unexpected congestion. Therefore, one of the promis-
ing approaches is to aggregate the knowledge of different
regions and collaboratively work out a good strategy for each
individual region to allocate cross-region traffic at its border
routers. According to the strategy, each region knows how to
direct outgoing traffic through different egress border routers
and how to distribute incoming traffic at different ingress
border routers. The desired cross-region traffic distributions
and local traffic inside a region can be integrated into an
optimal regional TM, which represents the regional traffic
volumes under the collaborative strategy and is then used for
intra-region TE to optimize local routing decisions. However,
the main challenge is how to efficiently obtain a good strategy
for each region through a collaborative approach. Intuitively,
the best strategies should be derived from the global optimal
routing solutions to achieve global TE objectives. However,
given the dynamic TM and network conditions, it would be
very difficult, if not impossible, to obtain the global optimal
routing strategies without a global view of a network.

To address the aforementioned challenges, we propose a
Supervised Learning (SL)-based framework called FedTe (Fed-
erated Traffic Engineering) for distributed TE in multi-region
networks, which enables each network region to optimize local
routing decisions and achieve near-optimal performance with
low computation/communication overhead. FedTe learns from
a global optimal routing strategy as the ground truth through
centralized offline training, and then deploys the trained model
in each regional controller to predict the optimal distribution
of cross-region traffic in a distributed manner. After integrating

the prediction results and measured local traffic into an optimal
regional TM, each region can solve and obtain the optimal lo-
cal routing strategy independently using Linear Programming
(LP) to improve the overall network performance. To effec-
tively handle traffic dynamics and link failures, we leverage the
graph representation learning techniques from Graph Neural
Network (GNN) [27], [28]. Since network topologies are
naturally represented as graphs, GNN has unique advantages
over traditional neural network architectures to model net-
work topologies and imitate the information exchange process
among multiple network nodes/regions. To further facilitate
training and minimize inter-region communication overhead,
we design a 2-layer GNN architecture in accordance with
different levels of network abstractions. Specifically, the first
layer is responsible for modeling the traffic and topology
information inside each network region, while the second layer
summarizes the regional information and exchanges GNN
encoded messages among multiple regions to share encrypted
regional information with privacy protection in a collaborative
manner. Such light-weight messages can be fit into a single
packet for transmission, and the message exchange process
is only performed once when routing updates are required
due to traffic changes or link failures. To the best of our
knowledge, this is the first paper that adopts SL for distributed
TE optimization problem.

The main contributions of this paper are summarized as
follows:
• We propose an SL-based TE that predicts the optimal

distribution of cross-region traffic for each network region
to perform local TE optimization in a distributed manner,
while the offline centralized learning is guided by the
global optimal routing solutions.

• We design a 2-layer scalable GNN-based neural network
architecture to handle dynamic traffic variations and link
failures, which can greatly simplify the prediction model
complexity and accelerate training/inference processes.

• We evaluate and compare FedTe to the existing dis-
tributed TE methods by conducting extensive experiments
on different network topologies, where FedTe can outper-
form the state-of-the-art distributed TE methods by up to
28.9% in terms of average load balancing performance.

The rest of the paper is organized as follows. Section II
lists the related works. Section III provides an overview of
FedTe’s design. Section IV explains how to predict the optimal
distribution of cross-region traffic using FedTe’s hierarchical
GNN architecture. Section V describes the implementation
details of FedTe. Section VI evaluates the performance of
FedTe. Section VII concludes this paper.

II. RELATED WORKS

Existing TE solutions can be generally categorized into two
classes: centralized TE and distributed TE.

A. Centralized TE Solutions

Centralized TE usually routes/reroutes flows periodically
to balance the load on links by formulating an optimization

problem and solving the problem with optimization solvers or
heuristic solutions. To achieve robust network performance,
SMORE [4] uses a set of paths computed by an oblivious
routing algorithm [29] and dynamically adjusts path split ratios
for all flows with a centralized controller. Many centralized TE
solutions have also been deployed in the industry, such as B4
for Google [3] and SWAN for Microsoft [5], to achieve high
utilization in inter-Data Center (DC) WANs. Recently, some of
the academic works leverage the emerging Machine Learning
(ML) techniques to improve the performance of centralized
TE. Valadarsky et al. [6] design an ML-based solution to
generate good routing configurations with consideration of
future traffic demands. DRL-TE [7] develops an experience-
driven approach based on Reinforcement Learning (RL) to
enable model-free routing control. CFR-RL [8] uses RL to
select critical flows and reroutes these critical flows to balance
link utilization with mitigated network disturbance.

However, these solutions either suffer from the scalability
issue or are not designed for multi-region TE. SMORE [4] can
update routing responsively with a fixed set of preconfigured
paths, but it may still suffer from the scalability issue due to the
increasing complexity of solving the optimization problem for
large-scale networks, as shown in Section VI-C. For today’s
industrial solutions [3], [5], they are originally designed for
cloud providers to optimize inter-DC traffic allocation in an
abstracted site-level topology with tens of sites. However, since
the inter-region/intra-region traffic allocations are separately
optimized, these TE methods may lead to sub-optimal network
performance. For the learning-based approaches, DRL-TE [7]
only works for 20 flows with pre-computed paths, while CFR-
RL [8] is designed for a fully-observable network with global
control from a centralized SDN controller.

B. Distributed TE Solutions

Some large networks are partitioned into multiple regions in
accordance with geographic locations, and the control scala-
bility issue becomes critical for these large-scale multi-region
networks since the centralized control introduces considerable
computation and communication overhead. To address the
above issue, distributed TE is introduced as an alternative
solution. However, most existing distributed TE solutions are
heuristic and unable to adapt to the changes of TMs and net-
work dynamics. For example, hot-potato routing [22] allows
one network region to send its outgoing traffic to other regions
via the nearest border router, but it may introduce unexpected
congestion since the preferences of other regions are not
considered. In recent years, some distributed TE solutions
based on distributed optimization methods are proposed. They
aim at exchanging necessary information among regions to
improve overall performance collaboratively [23]. Duchi et al.
[24] develop distributed algorithms based on dual subgradient
averaging and provide sharp bounds on their convergence
rates. Srivastava et al. [25] provide a distributed stochastic
gradient algorithm for agents to compute an optimal decision
variable that minimizes the worst-case loss incurred by any
agent in the network. However, these approaches usually

require multiple iterations of message exchanges during online
deployment, which incurs high communication overhead. On
the contrary, FedTe only performs a light-weight information
exchange once when a routing update is needed.

To achieve efficient collaborations among multiple network
regions, several data-driven frameworks are proposed for dis-
tributed TE. Geng et al. [26] adopt distributed RL agents to get
the local link utilization statistics within their regions, where
each agent learns a good local routing strategy over a set of
preconfigured paths by interacting with other agents and ex-
changing congestion-related reward signals. Pinyoanuntapong
et al. [30] propose a distributed TE framework that adopts
multi-agent RL for distributed control to cope with network
dynamics. However, they need to take considerable training
time to learn and converge to a good policy, since RL agents
have to interact with the network environment to obtain action
feedbacks and explore the large action space through trail-and-
error. In contrast, guided by the feasible global optimal routing
solutions, FedTe can be efficiently trained using SL to handle
various traffic and link failure scenarios and generalize well
to unseen traffic scenarios, as later shown in Section VI.

III. SYSTEM DESIGN

In this section, we introduce the system design of FedTe,
which is an SL-based TE solution for distributed TE in multi-
region networks. Broadly speaking, FedTe is deployed in the
controller of each region. With very limited message exchange
among regional controllers, FedTe predicts optimal cross-
region traffic distribution for each individual region. Cross-
region traffic distribution can serve as an instruction on how
to optimally direct outgoing traffic and estimate incoming
traffic distribution at border routers. The above setting is based
on the assumption that all regions will cooperate together
to achieve the global optimal network performance. For a
large-scale network or multiple inter-connected Autonomous
Systems (ASes) managed by a single network operator, the
assumption holds since network operators have full control
of the entire network and they are willing to optimize their
network performance. Therefore, under the guidance of cross-
region traffic distribution from FedTe, each network region
can derive the corresponding optimal regional TM and opti-
mize the local routing decision accordingly to achieve global
optimal load balancing performance with low computation and
communication overhead. Figure 1(a) shows the routing update
workflow of FedTe. When a routing update is required, each
regional controller running FedTe collects local network states
and exchanges a light-weight GNN encoded message with
other regional controllers only once to synchronize necessary
information. Then, FedTe constructs an optimal regional TM
based on predicted cross-region traffic distribution and opti-
mizes the regional routing decision, which would be directly
applied in the local network region. It is worth noting that the
above routing update procedures can be repeated periodically
(e.g., every 5 minutes) or upon topology/traffic changes to
improve network performance, and the local region routing
solutions can be either flow-based or destination-based. They

can be easily obtained by formulating and solving a routing
optimization problem [1] using LP.

FedTe is trained through a centralized offline training
procedure as shown in Fig. 1(b). At first, regional network
states are periodically collected and aggregated to a server
to compute the global optimal routing solutions, which are
converted to the corresponding cross-region traffic distribu-
tions. During the training phase, these cross-region traffic
distributions are used as the training targets to guide the
learning of FedTe. Given the input network states and training
targets, the offline training can be performed in a server
without the intervention of the real network environment. All
the network components are constructed virtually using GNN
and information exchange process is imitated by leveraging
the graph representation learning techniques of GNNs. In
particular, the multi-region network is modeled as a 2-layer
hierarchical GNN architecture (details in Section IV). The first
layer is responsible for modeling and encoding the node-level
topology and traffic information within each network region.
Then, the complete information of each network region is
summarized and encoded in the second layer and exchanges
with other network regions. Updating with the encoded in-
formation/messages from other regions, each network region
obtains a global view of the network. At the final step, the
predicted distributions of incoming and outgoing traffic are
decoded from the encoded and updated information of each
region, which are compared against the training targets to
compute the loss and update GNN parameters (see Section
V-B). Although it seems contradictory for a distributed TE
scheme to perform centralized offline training, it is important
to ensure the optimality of the training targets such that FedTe
can learn from the best routing strategies. Moreover, once
training is done, the identical FedTe model would be deployed
in each regional controller of the real network environment.
Then, multiple FedTe models perform in a distributed and
collaborative manner to quickly obtain efficient local routing
decisions towards global optimal performance.

To generate desired cross-region traffic distribution training
targets, we leverage a set of preconfigured paths computed by
an oblivious routing algorithm [29] with some customizations
and solve a modified Multi-Commodity Flow (MCF) problem
with a path budget K = 4 as reported in SMORE [4]. To
avoid traffic looping among multiple regions, we delete some
invalid paths from the set of preconfigured paths in advance.
Take Figure 2(a) as an example, node 3 wants to send some
traffic to node 10. Based on the existing preconfigured paths
of flow 〈3, 10〉, some of the traffic are directed to border node
5 according to the red solid path. Once traffic is forwarded
to region C1, node 5 needs to forward the traffic to node 10
under controller C1’s control. However, if region C1 adopts
destination-based routing (i.e., does not distinguish source
addresses), it is possible that node 5 will send some traffic
back to node 3 according to the preconfigured path from node
5 to node 10 (blue dash-dotted path). As a result, there is
a forwarding loop between node 3 and node 5, which may
cause severe network problems and resource waste. To avoid

Region A

Region B

Region C

Controller A

Controller B

Controller C

1. Collect regional
topology and traffic

5. Update local
routing strategy

2. Exchange information (only once)

3. Construct optimal regional TM 4. Solve for regional optimal routing

(a) Workflow of FedTe’s routing update after distributed deployment.

Region A

Region B

Region C

Controller A

Controller B

Controller C

Server

1. Collect regional
topology and traffic

2. Aggregate network
states from regions

3. Compute the global
optimal routing and
convert to targets

4. Train FedTe using input
network states and target
traffic distributions

5. Deploy the model

Step 1

Step 2 Step 5

(b) Procedure of centralized offline training.

Fig. 1. Overview of FedTe’s system design.

the conflict, one of these two paths should be regarded as
invalid path and removed from the path set. Another case of
invalid path is the green dashed path from node 9 to node 8.
Since there is no need to direct local traffic to other regions,
such path should be deleted and only the intra-region paths are
allowed for local traffic. Therefore, it is essential to remove
these invalid paths before solving the modified MCF problem.
In addition, the number of invalid paths can be taken as a
metric to evaluate whether the network region partition is
good or not. For instance, a bad regional partitioning strategy
may result in the removal of a large number of invalid paths,
such that TE performance would be degraded with limited
path sets. For simplicity, we divide network regions based on
the geographical distribution of network nodes, which is an
effective strategy since we only need to remove a few invalid
paths without performance loss.

Once the global optimal routing solution is obtained, it
should be converted to the cross-region traffic distribution that
serves as the guidance for training FedTe. Recall that the
optimal regional TM combines the local traffic and the optimal
distribution of incoming and outgoing traffic. Given the global
optimal routing strategy, we can extract useful information

C2

C1

10

C0

8

9

4 6

5 7
0 2

1 3

Path: 3 to 10

Path: 5 to 10

Loop

Path:
9 to 8

(a) An example of invalid paths.

C2

C1

10

C0

8

9

4 6

5 7
0 2

1 3

Path 1
(30%)

Path 2
(20%)

Path 4
(40%)

Path 3
(10%)

Incoming traffic
50% from node 9
50% from node 8

Outgoing traffic
Node 9: 30%
Node 5: 30%
Node 4: 40%

(b) Convert global optimal routing solution to training targets.

Fig. 2. An illustrative example of multi-region networks.

from each region’s perspective: (1) How to properly distribute
outgoing traffic to available egress border routers with the
consideration of global optimality; (2) What are the distri-
butions of incoming traffic at the ingress border routers when
all the regions are following global optimal routing policy. To
explain the above ideas, an example is illustrated in Fig. 2(b).
According to a global optimal routing solution, flow 〈0, 10〉
is distributed among 4 valid paths with different split ratios.
From the perspective of region C0, the outgoing traffic from
node 0 to node 10 should be forwarded to node 4, node 5
and node 9 with split ratios 40%, 30%, and 30%, respectively.
From the perspective of region C2, traffic is injected from node
8 and node 9 and destined to node 10. Assume that node 0
wants to send 10 units of traffic to node 10, which means
there are 5 units of incoming traffic from node 8 to node 10
and another 5 units of traffic destined to node 10 would be
coming from node 9. For the transit traffic traversing region
C1, it would be considered as two outgoing traffic flows. One
is originated from node 4, the other is originated from node
5, and they are both destined to node 10. For flow 〈4, 10〉, all
the outgoing traffic would be forwarded to node 8. In contrast,
the traffic of flow 〈5, 10〉 would be forwarded to node 8
and node 9 with split ratios 33.3% and 66.6%, respectively.
The above incoming and outgoing traffic distribution for each
region would be used as training targets for FedTe.

There are two reasons why we adopt GNN to predict cross-
region traffic distributions and then use LP to optimize local
routing. On the one hand, to achieve a global optimization
objective, both intra-region and inter-region routing decisions
should be optimized simultaneously. A hierarchical TE ap-

proach, which finds the optimal inter-region traffic allocation
for the abstracted region-level network and then optimizes lo-
cal routing in each region separately, may lead to sub-optimal
performance due to the limited collaboration between inter-
region and intra-region routing decisions. For example, the
inter-region traffic distribution may overwhelm some network
regions with huge traffic loads, even though such distribution
can effectively balance the load of inter-region links in the
region-level network. Instead, we use GNN to directly learn
from the global optimal routing strategy and predict the
optimal cross-region traffic allocation with consideration of
both intra-region and inter-region routing performance. On
the other hand, LP is an efficient and optimal approach to
solve for local routing strategy in small-scale network region
once the optimal regional TM is obtained. There is no need to
further adopt GNN for intra-region routing optimization with
the concern about model complexity.

IV. PROPOSED MODEL

To model network topologies and message exchange pro-
cedures, we leverage graph representation learning techniques
and message passing frameworks [27], [28] offered by GNNs.
FedTe consists of an intra-region encoder that performs intra-
region message exchange, an inter-region encoder performs
inter-region message exchange, and a decoder interprets de-
sired cross-region traffic distribution from updated and en-
coded node features.

A. Intra-Region Encoder

For each region, an intra-region encoder is applied to model
and encode the regional topology and traffic information. The
inputs to the intra-region encoder are node features and a node
connectivity matrix, where the features for a given network
node are a series of demands originated from that node, and
the connectivity matrix indicates the neighbors of each node.
The regional controller is represented as a virtual node with
node features initialized as all ones, and all region nodes
are assumed to be directly connected to this virtual node.
Figure 3(a) shows a multi-region topology example, and the
example of an intra-region encoder applied in one region is
shown in Fig. 3(b). The encoder computes an initial node
embedding using a shared feed-forward layer, and then each
node’s embedding is updated by exchanging messages with its
neighbors. Similar to the transformer model presented in [31],
[32], the embedding update module consists of a stack of H
identical attention layers. Each attention layer is composed of
two sub-layers. The first is a multi-head attention layer that
performs message exchanging between neighboring nodes, and
the second is a node-wise fully connected feed-forward layer
that performs a nonlinear transformation. In addition, a skip
connection [33] and layer normalization [34] are applied to
each sub-layer. Let hv denote the node embedding for a given
node v, it is updated iteratively by aggregating the messages
passed from its neighbors:

hl+1
v =

∑
w∈χv

M(hlv, h
l
w, θ

l
M), (1)

C2

C1

10

C0

Intra-Region Encoder

h0

h1

h2

h3

h0

h1

h2

h3

h0

Intra-region node connectivity matrix

Decoder

Feed
forward

Multi-head
attention

Feed
forward

Attention layer ✕ H

Feed
forward

2↦1

2↦3

2↦0

3↦1

3↦2

3↦0

Node embedding

Outgoing split ratio𝞼k

s ↦ d Source-destination pair

hi

h1

h2

Message

S Softmax

h0 h1 h2 h3 hC0

h0 1 1 1 0 0

h1 1 1 0 1 0

h2 1 0 1 1 0

h3 0 1 1 1 0

hC0
1 1 1 1 1

h0

h1

h2

h3

hC0

0 2

1 3

h3

h0

h1

h2

h3

Inter-Region Encoder

h0

Inter-region node connectivity matrix

Multi-head
attention

Feed
forward

h1

h2

h0 h1 h2 h3 hC1 hC2

h0 1 0 0 0 1 1

h1 0 1 0 0 1 1

h2 0 0 1 0 1 1

h3 0 0 0 1 1 1

h3

h0

h1

h2

h3

h0

h1

h2

h3

hC1

8

9

4 6

5 7
0 2

1 3

C0

Feed
forward

0↦4

0↦10

𝞼k

𝞼0

......

𝞼k

𝞼0

...

S

S

1↦4

1↦10

𝞼k

𝞼0

...

...

𝞼k

𝞼0

...

S

S

2↦4

2↦10

𝞼k

𝞼0

...

...

𝞼k

𝞼0

...

S

S

3↦4

3↦10

𝞼k

𝞼0

...

...

𝞼k

𝞼0

...

S

S

h0

h1

h2

h3

h0 Node features (traffic demands)

(a)

(b) (c)

(d)

hC2

hC0hC0hC0hC0

Attention layer ✕ 1 from other regions

Fig. 3. The hierarchical graph neural network model for FedTe. (a) A multi-region topology example, where C0, C1 and C2 are virtual nodes that represent
the network controller for each region. (b) An intra-region encoder computes the initial node embeddings using a shared fully connected Feed-Forward (FF)
layer with each corresponding node’s features. Then, per-node embeddings are updated using H attention layers according to the connectivity matrix of each
given regional topology. Each attention layer consists of a Multi-Head Attention (MHA) layer and a node-wise fully connected FF layer. (c) An inter-region
encoder updates per-node embeddings with the virtual node embeddings of controllers in other regions. Note that there is only one attention layer in the
inter-region encoder. In other words, each region only exchanges messages once. (d) A decoder interprets each node’s embedding as incoming traffic and
outgoing split ratios for each corresponding source-destination pair. Note that the traffic incoming from other regions must traverse border nodes. Thus, the
incoming traffic is only interpreted from border nodes’ embeddings by the decoder with a node-wise fully connected FF layer. Similarly, a node-wise fully
connected FF layer and a pair-wise softmax layer are used to generate outgoing split ratios for each corresponding pair.

where χv is the set of nodes which exchange messages with
node v, and θM denotes learnable function parameters.

Employing H attention layers can be interpreted as exe-
cuting H iterations of embedding update process, and one
iteration of embedding update process can be essentially
considered as a feature propagation. After H iterations, each
node’s embedding would include H hops away neighbors’
information. Thus, when H equals to the number of max hops
between any two nodes in the network, it would be enough for
each node to capture the complete information of the whole
network region. Once the intra-region message exchange phase
is done, the updated virtual node’s embedding is then used to
represent the regional graph embedding and exchanged with
other regions.

B. Inter-Region Encoder
To learn the traffic and topology information of other

regions, each node’s embedding would be updated with the
graph embeddings (i.e., virtual node embeddings) from other
regions during the inter-region message exchange phase. To
limit the communication overhead among regional controllers

in the real deployment, each region would only exchange
message once for each routing update. Thus, as shown in Fig.
3(c), the inter-region encoder consists of a single attention
layer and performs embedding update only once.

C. Decoder

Once the message exchange phases are done, each node’s
embedding includes the information of the whole network. As
shown in Fig. 3(d), a decoder consists of two readout functions
Ri and Ro, which are used to decode the corresponding
incoming and outgoing traffic distribution from these node
embeddings.
Ri interprets the updated per-node embedding as corre-

sponding incoming traffic distribution, i.e.,

{tv,di |d ∈ V
n} = Ri(hv, θRi), v ∈ Bni , (2)

where tv,di is the incoming traffic from node v to node d,
Bni is the incoming border node set of region n, V n is the
node set of region n, θRi is the learnable readout function
parameters. Note that the traffic incoming from other regions

must traverse border nodes. Thus, the incoming traffic is only
interpreted from border nodes’ embeddings. In addition, the
incoming traffic tv,v would not affect the regional TM. Thus,
we do not interpret it from the node embedding.
Ro interprets the per-node embedding as corresponding

outgoing traffic distribution, i.e.,

{σv,dk |d ∈ V̄
n, k ∈ Bv,do } = Ro(hv, θRo), v ∈ V n, (3)

where σv,dk is the outgoing split ratio for traffic from node v
to node d, Bv,do is the outgoing border node set of pair 〈v, d〉,
V̄ n is the set of nodes in other regions.

It is worth noting that the encoders and decoder are shared
and reused by each node, which greatly simplifies model
complexity and substantially reduces training and inference
time (shown in Section VI-C). It also allows the distributed
deployment of FedTe.

V. IMPLEMENTATION

In this section, we describe the implementation details of
FedTe and our experiment setup.

A. Dataset

TABLE I
NETWORK TOPOLOGIES USED IN EVALUATION

Topology Nodes Directed Links Regions
Telstra (Australia) 38 152 5

Google Cloud 44 160 3
BRITE 204 964 16

To evaluate the proposed FedTe scheme, we partition two
real-world network topologies and a large-scale synthetic
topology into different numbers of network regions. The
numbers of nodes, directed links, and network regions are
shown in Table I. The Telstra network is an ISP network
collected by Rocketfuel [35] where the network nodes are
scattered across Australia. Thus, we manually partition the
Telstra network into five network regions in accordance with
the geographic distributions of nodes (i.e., different states of
Australia). Note that the single-degree nodes in the Telstra
topology are removed since they have no influence on routing
performance evaluations [36]. The second real-world network
topology is obtained from Google Cloud [17], and the nodes
are distributed around the world. We divide this global network
into three regions based on different continents: Asia, North
America, and Europe. For the large-scale synthetic network
topology generated from BRITE [37], there are 204 nodes
and 964 directed links in the 4x4 grid region-level topology.
As a result, the whole network is partitioned into 16 regions
such that each region contains 10-15 nodes and 40-60 links.

In addition to the network connectivity information, it is
essential to assign proper link weights and capacities to the
three networks. As suggested by [26], all the link weights
are set to 10 while each link’s capacity is determined by the
degree of the two nodes connected to that link. Specifically,
the link capacity is set to 10 Gbps if either of the two directly
connected nodes’ degrees is larger than three; otherwise, we

only assign 5 Gbps capacity to the link. Since the measured
TMs are not available for the three networks, we generate
a sequence of synthesized spatiotemporal TMs based on the
Modulated Gravity Model (MGM) [38], [39]. To emulate
the characteristics of real traffic, MGM uses gravity-model-
like constraints to construct spatial properties and utilizes a
sinusoid to reflect the cyclical nature of traffic. Therefore, the
generated TMs can expose diurnal patterns that are commonly
seen in the networks to reflect traffic changes. Moreover, we
need to consider dynamic traffic fluctuations in real traffic
scenarios, such as unexpected traffic spikes. There are several
parameters in MGM that can be tuned to adjust traffic varia-
tions (e.g., spatial variance and Peak-to-Mean (PM) ratio), and
we also use an exponential model [38] to introduce additional
traffic fluctuations. In our evaluation, we synthesize 200 TMs
for training FedTe and another 200 TMs for testing. In both
of the training set and testing set, there are 100 dynamic
TMs (i.e., large variation MGM + exponential model) and 100
stable TMs (i.e., small variation MGM only). For dynamic
TMs, we introduce large variations for hourly traffic with
a spatial variance σ2 = 3, while the PM ratios of daily
and hourly traffic are separately configured as 5 and 1.5 to
simulate extreme traffic conditions. As for stable TMs, the
spatial variance σ2 of hourly traffic is only 1.5, and we set
the daily and hourly PM ratios to 1.1 and 1.05, respectively.

B. Training

Based on the TMs in the training set, we generate a series
of training samples consists of different input network states
and output target distributions. For each training sample,
the inputs are the network-wide TM and intra-region/inter-
region topology connectivity matrices, while the output is
the target distribution of cross-region traffic that is converted
from the global optimal routing solution based on the given
inputs. For each iteration, FedTe collects a batch of training
samples to train the neural networks using stochastic gradient
descent [40]. The objective of the training process is to
minimize a customized loss, which is a linear combination
of the Kullback–Leibler Divergence (KLD) loss and the Mean
Absolute Error (MAE) loss between the predicted cross-region
traffic distribution and the target distribution as well as an L2
regularization loss [41]. FedTe is trained on a Tesla V100 GPU
with 16GB memory. All the training costs are incurred offline
and we apply early stopping to avoid overfitting [42]. Specifi-
cally, we use a standalone validation set that is different from
the training/testing set to monitor the loss value every 1,000
iterations. Once the prediction loss cannot further improve on
the validation set, we terminate the training process such that
the trained model can generalize well to different scenarios.
It is worth mentioning that the offline training process can be
performed periodically to update the FedTe model with newly
collected data or upon major topology changes.

C. Hyperparameters

For the encoder of the prediction model, we set the embed-
ding dimension dh to 128 and the number of attention heads

M to 8. A GNN encoded message exchanged among regions is
represented by an embedding vector. Given that each element
in the embedding vector is expressed in 32 bits, the size of
one encoded message is dh ∗ 32 = 4096 bits. The dimension
of the feed-forward sub-layer in each attention layer df is set
to 256. Additionally, the number of attention layers H is set to
the number of max hops between any two nodes in the three
networks to ensure complete information exchanges. Note that
the training speed would be slightly increased with fewer
attention layers, but the performance of FedTe would also be
degraded due to potential information loss. For the decoder,
the output dimension of readout function Ri is the maximum
size of regional node set among all regions, i.e., max

n
|V n|. The

output dimension of readout function Ro is the maximum size
of outgoing pairs times the maximum size of outgoing border
nodes, i.e., max

v
((|V̄ n| ∗ |Bv,do |)|v ∈ V n, d ∈ V̄ n). A constant

learning rate α = 10−4 is used for training. The batch size is
set to 64 for all the three networks. To avoid overfitting, we
also apply dropout [43] to the output of each layer of encoder
with a rate of ρdrop = 0.1, and L2 regularization [41] to each
layer of encoder and decoder with regularization parameter
λ = 0.001. We fix all these hyperparameters throughout our
experiments since FedTe can achieve good performance on
different topologies with a single set of fixed hyperparameters
as shown in Section VI.

D. Baselines
We compare FedTe to the following baseline methods:
1) Multi-Region Traffic Engineering (MRTE) [26]:

leverages multi-agent RL to model each network region
as individual RL agents, such that the agents can learn
from interacting with neighboring regions’ agents and
make better regional routing decisions towards global
optimal performance.

2) Hot-Potato Routing (HPR) [22]: directs the outgoing
traffic to the closest border router and computes the
optimal local routing strategy for each region using LP.

3) Equal-Cost Multi-Path (ECMP) [44]: distributes traffic
evenly among available next hops along the shortest
paths. The link cost setting is discussed in Section V-A.

E. Evaluation Metric
To demonstrate the load balancing performance achieved by

FedTe for each TM, we use a metric called performance ratio
throughout the evaluation. It is defined as follows:

PR =
Uoptimal

UFedTe
, (4)

where Uoptimal is the MLU achieved by a global optimal
routing obtained by solving an MCF problem [1], and UFedTe
represents the MLU in the entire network achieved by FedTe’s
distributed regional routing strategies. A higher PR value
indicates that FedTe’s load balancing performance is closer
to that of global optimal routing. When PR = 1, FedTe is
able to achieve the global optimal performance in a distributed
manner. For comparison, we also compute the performance
ratio of the three baseline methods according to Eq. (4).

VI. EVALUATION

In this section, we present the experiment results in two real-
world network topologies and a large-scale synthetic topology
to evaluate the performance and overhead of FedTe through
extensive comparison against the baseline methods.

A. Performance Comparison

Figure 4 shows the performance ratios achieved by FedTe,
MRTE, HPR, and ECMP in Cumulative Distribution Function
(CDF) on the entire test set of the three networks, and Figure 5
provides the performance comparison on each synthesized test
TM with different traffic variations. As shown in Fig. 4, FedTe
performs consistently well with an average performance ratio
of 97.5%, 94.8% and 84.6% achieved in the Telstra network,
Google Cloud network, and BRITE network, respectively.
FedTe can also prevent from extreme performance loss since
the local routing strategies are optimized by LP with accurately
predicted regional optimal TMs. For example, FedTe is able to
achieve a performance ratio higher than 91.3% for all Telstra
TMs, while at least 81.1% and 77.2% of performance ratio can
be guaranteed for Google Cloud network and BRITE network.
When it comes to different traffic scenarios, FedTe can achieve
promising performance in both dynamic and stable traffic
scenarios and outperform other TE methods. One interesting
observation is that the performance of FedTe on large variation
TMs are slightly lower than that on small variation TMs as
illustrated in Fig. 5. One possible reason is that the exponential
model used for large variation synthetic TMs would introduce
more uncertainty in the traffic patterns.

For the baseline methods, HPR can only achieve sub-
optimal performance in the three networks. While HPR has an
average of 74.7% performance in the Google Cloud network
as illustrated in Fig. 5(b), it becomes the worst-performing
scheme in the other two networks. This is because HPR is
a heuristic method which only directs the outgoing traffic
to the closest border router without consideration of global
optimality. Therefore, HPR may over-utilize some of the links
and lead to unexpected congestion in other regions. For ECMP,
the performance of static multi-path routing is heavily depen-
dent on the nature of different network topologies without
performance guarantee. As shown in Fig. 5, ECMP can achieve
good load balancing performance (i.e., PR ≥ 90%) for all the
test TMs in the Telstra network, but this is not the case for the
Google Cloud network and BRITE network with only 59.8%
and 43.8% of average performance, respectively. Although
HPR and ECMP have the advantage of simplicity, they cannot
achieve promising performance due to lack of collaboration.
As for MRTE, it can also achieve near-optimal performance in
the Telstra network, but the performance is not stable enough
for other networks. For example, in the Google Cloud network
and BRITE network, MRTE only achieves 37.1% and 56.6%
performance on average. The main reason is that RL agents
can hardly converge during the training stage when traffic dy-
namically changes with spatial and temporal patterns. Besides,
since MRTE takes link load measurements as the input to RL
agents, there might be potential information loss since different

0.5 0.6 0.7 0.8 0.9 1.0
Performance Ratio

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

FedTe
MRTE
HPR
ECMP

(a) Telstra network.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Performance Ratio

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

FedTe
MRTE
HPR
ECMP

(b) Google Cloud network.

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Performance Ratio

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

FedTe
MRTE
HPR
ECMP

(c) BRITE network.

Fig. 4. Comparison of performance ratio in CDF among FedTe and the baseline methods on the entire test set of the three networks.

0 50 100 150 200
Traffic Matrix Index

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rf

or
m

an
ce

 R
at

io

 Large Variation Small Variation

FedTe
MRTE

HPR
ECMP

(a) Telstra network.

0 50 100 150 200
Traffic Matrix index

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pe
rf

or
m

an
ce

 R
at

io

 Large Variation Small Variation

FedTe
MRTE

HPR
ECMP

(b) Google Cloud network.

0 50 100 150 200
Traffic Matrix Index

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pe
rf

or
m

an
ce

 R
at

io

 Large Variation Small Variation

FedTe
MRTE

HPR
ECMP

(c) BRITE network.

Fig. 5. Comparison of performance ratio on each test TM of the three networks with two different traffic fluctuation scenarios. The first 100 TMs represents
dynamic traffic scenario with large variation, while the remaining 100 TMs are relatively stable with small variation.

0 50 100 150 200
Traffic Matrix Index

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rf

or
m

an
ce

 R
at

io

 Large Variation Small Variation

FedTe
MRTE

HPR
ECMP

(a) Telstra network.

0 50 100 150 200
Traffic Matrix Index

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pe
rf

or
m

an
ce

 R
at

io

 Large Variation Small Variation

FedTe
MRTE

HPR
ECMP

(b) Google Cloud network.

0 50 100 150 200
Traffic Matrix Index

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pe
rf

or
m

an
ce

 R
at

io

 Large Variation Small Variation

FedTe
MRTE

HPR
ECMP

(c) BRITE network.

Fig. 6. Comparison of performance ratio on each test TM of the three networks with random single link failure scenarios.

combinations of TMs and routing decisions can lead to the
same link load observations. Overall, the experiment results
indicate that our proposed FedTe can outperform the baseline
methods and effectively improve load balancing performance
in different traffic scenarios with good generalization.

B. Resilience

An important aspect of TE is to enable the network to be
resilient against link failure situations, which means that TE
should maintain good network performance in the presence
of link failures. In multi-region networks, it is less likely to
have multiple link failures in each network region. Therefore,
we consider single link failure scenarios where a random link
is broken for each given TM. When link failure happens, we
exclude the failed link from LP formulation and solve LP for
FedTe to obtain the updated regional routing strategies based
on the predicted regional optimal TMs.

Figure 6 presents the comparison of performance ratio
among FedTe and the baseline methods with random single

link failures. In the three networks, FedTe is able to maintain
good performance with negligible performance loss and gen-
eralize well to various single link failure scenarios. As for the
baseline methods, we can observe performance degradations in
several link failure scenarios compared to the normal operation
without link failure. For instance, both of HPR and ECMP
do not work well in the Google Cloud network as depicted
in Fig. 6(b), while MRTE is experiencing severe congestion
and performance loss in specific link failure scenarios. As
illustrated in Fig. 6(a), the performance ratio of MRTE can
be degraded to around 65% in the Telstra network for several
test TMs, which is even worse than HPR’s performance. In
the Google Cloud network and BRITE network, the load
balancing performance of MRTE is also unsatisfactory in the
link failure scenarios since it cannot reach convergence in
these two networks. From Fig. 6(c), we can find frequent
performance degradation for MRTE in the BRITE network. In
terms of worst-case performance, MRTE’s performance ratio is
even lower than 40%. This observation indicates that MRTE is

TABLE II
COMPARISON OF TRAINING TIME

Network Topology FedTe MRTE
Telstra (Australia) 12 minutes 18 hours

Google Cloud 6 minutes 14 hours
BRITE 40 minutes 24 days

not capable of generalizing over all single link failure scenarios
with a multi-agent RL design. In contrast, FedTe can improve
the network performance by 20.1% and 28.9% on average
compared to the best performing baseline methods in the
Google Cloud network and BRITE network, respectively. As
a result, FedTe can guarantee robust TE performance against
different single link failure scenarios.

C. Training Time and Computation Costs

Table II compares the training time of the two learning-
based TE solutions in the three networks. For FedTe, the
training time and number of iterations required for conver-
gence are dependent on the size of network topology as well
as the number of network regions. Thanks to the scalable 2-
layer GNN architecture design, the training process of FedTe
is greatly facilitated. In the Telstra network and Google Cloud
network, only several minutes of training are required for
FedTe to reach convergence with 18,000 and 7,000 iterations,
respectively. For the large-scale BRITE network, it takes less
than one hour to train a FedTe model with 29,000 iterations.
In contrast, the training cost of the RL-based MRTE approach
is much higher compared to FedTe. As instructed in [26],
MRTE’s training is performed on a 4-core Intel 3.4GHz CPU
and 32GB memory. In the two real-world network topologies,
it takes more than 12 hours of training for MRTE with 3,000
iterations. Moreover, MRTE requires several weeks of training
with 8,000 iterations in the large-scale BRITE network, which
makes it difficult to achieve convergence in a reasonable
timescale. From the comparison of training time, we can see
that the training efficiency of FedTe is greatly improved by
leveraging SL and hierarchical GNN architecture.

To evaluate the computation overhead of different TE ap-
proaches, we run an experiment to measure the solving time
for updating the routing solution in accordance with each given
test TM in the large-scale BRITE network. All the computation
costs are measured with the same 4-core Intel 3.4GHz CPU,
where Gurobi optimizer [45] is applied as an LP solver to
compute the optimal routing solution. For comparison, we
also measure the computation overhead of two centralized
TE scheme, including SMORE [4] and MCF [1]. Note that
we do not evaluate the computation cost for ECMP since it
is a static routing solution. As shown in Figure 7(a), all the
three distributed TE approaches can solve for local optimal
routing strategies in less than 3 seconds, which demonstrates
the advantages of distributed TE to quickly react to traffic
changes. Since the inference time of FedTe’s GNN architecture
is only tens of milliseconds, FedTe is able to predict the
optimal cross-region traffic distribution and optimize local
routing strategies in less than one second. This is reasonable
since distributed TE divides a large global routing problem into

0 50 100 150 200
Traffic Matrix Index

0.0

0.5

1.0

1.5

2.0

2.5

3.0

So
lv

in
g

T
im

e
(s

ec
on

d)

FedTe MRTE HPR

(a) Computation costs of distributed TE.

0 50 100 150 200
Traffic Matrix Index

0

50

100

150

200

250

300

350

So
lv

in
g

T
im

e
(s

ec
on

d)

SMORE MCF

(b) Computation costs of centralized TE.

Fig. 7. Solving time of different TE approaches to compute an updated routing
solution for each of the 200 test TMs in the large-scale BRITE network.

a few small local routing subproblems for network regions to
achieve better scalability. In contrast, due to the large problem
size, it takes several minutes for centralized TE to solve for
global optimal routing as depicted in Fig. 7(b). Even though
centralized TE can achieve optimal or close-to-optimal load
balancing performance with a global view of a network, they
cannot accommodate dynamic traffic in a responsive manner
when network size becomes larger.

VII. CONCLUSION

With consideration of computation and management over-
head, large-scale networks are often partitioned into multiple
regions in accordance with geographic locations. To achieve
global TE objectives in multi-region networks with low com-
putation/communication overhead, we propose FedTe, a SL-
based distributed TE scheme that learns from the global
optimal routing solution and predicts the optimal distribution
of cross-region traffic for each network region to perform local
routing optimization. FedTe leverages a scalable hierarchical
GNN architecture to accelerate the training and inference
processes through efficient message exchange among network
nodes and regions. Extensive evaluations show that the pro-
posed FedTe scheme can achieve near-optimal load balancing
performance in a distributed manner and enable the network
to be resilient against various single link failure scenarios.

ACKNOWLEDGMENTS

This paper was supported by the Key-Area Research and
Development Program of Guangdong Province under Grant
2021B0101400001, the National Natural Science Foundation
of China under Grant 62002019, and the Beijing Institute of
Technology Research Fund Program for Young Scholars. We
thank anonymous reviewers for their valuable feedbacks and
Nan Geng from Tsinghua University for sharing his codes.

REFERENCES

[1] J. Zhang, K. Xi, and H. J. Chao, “Load balancing in ip networks using
generalized destination-based multipath routing,” IEEE/ACM Transac-
tions on Networking (TON), vol. 23, no. 6, pp. 1959–1969, 2015.

[2] A. Elwalid, C. Jin, S. Low, and I. Widjaja, “Mate: Mpls adaptive traffic
engineering,” in Proceedings IEEE INFOCOM 2001. Conference on
Computer Communications. Twentieth Annual Joint Conference of the
IEEE Computer and Communications Society (Cat. No. 01CH37213),
vol. 3. IEEE, 2001, pp. 1300–1309.

[3] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with
a globally-deployed software defined wan,” ACM SIGCOMM Computer
Communication Review, vol. 43, no. 4, pp. 3–14, 2013.

[4] P. Kumar, Y. Yuan, C. Yu, N. Foster, R. Kleinberg, P. Lapukhov, C. L.
Lim, and R. Soulé, “Semi-oblivious traffic engineering: The road not
taken,” in 15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18), 2018, pp. 157–170.

[5] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and
R. Wattenhofer, “Achieving high utilization with software-driven wan,”
in Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM,
2013, pp. 15–26.

[6] A. Valadarsky, M. Schapira, D. Shahaf, and A. Tamar, “Learning to
route,” in Proceedings of the 16th ACM workshop on hot topics in
networks, 2017, pp. 185–191.

[7] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang,
“Experience-driven networking: A deep reinforcement learning based
approach,” in IEEE INFOCOM 2018-IEEE Conference on Computer
Communications. IEEE, 2018, pp. 1871–1879.

[8] J. Zhang, M. Ye, Z. Guo, C.-Y. Yen, and H. J. Chao, “CFR-RL:
Traffic engineering with reinforcement learning in sdn,” IEEE Journal
on Selected Areas in Communications, vol. 38, no. 10, pp. 2249–2259,
2020.

[9] M. Ye, J. Zhang, Z. Guo, and H. J. Chao, “Date: Disturbance-aware
traffic engineering with reinforcement learning in software-defined net-
works,” in 2021 IEEE/ACM 29th International Symposium on Quality
of Service (IWQOS), 2021, pp. 1–10.

[10] A. Viswanathan, E. C. Rosen, and R. Callon, “Multiprotocol Label
Switching Architecture,” RFC 3031, Jan. 2001. [Online]. Available:
https://rfc-editor.org/rfc/rfc3031.txt

[11] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[12] S. Agarwal, M. Kodialam, and T. Lakshman, “Traffic engineering in
software defined networks,” in 2013 Proceedings IEEE INFOCOM.
IEEE, 2013, pp. 2211–2219.

[13] Y. Guo, Z. Wang, X. Yin, X. Shi, and J. Wu, “Traffic engineering in
sdn/ospf hybrid network,” in 2014 IEEE 22nd International Conference
on Network Protocols. IEEE, 2014, pp. 563–568.

[14] J. Zhang, K. Xi, M. Luo, and H. J. Chao, “Dynamic hybrid routing:
Achieve load balancing for changing traffic demands,” in 2014 IEEE
22nd International Symposium of Quality of Service (IWQoS). IEEE,
2014, pp. 105–110.

[15] M. Moradi, Y. Zhang, Z. Morley Mao, and R. Manghirmalani, “Dragon:
Scalable, flexible, and efficient traffic engineering in software defined isp
networks,” IEEE Journal on Selected Areas in Communications, vol. 36,
no. 12, pp. 2744–2756, 2018.

[16] J. Zhang, Z. Guo, M. Ye, and H. J. Chao, “Smartentry: Mitigating routing
update overhead with reinforcement learning for traffic engineering,” in
Proceedings of the Workshop on Network Meets AI & ML, 2020, pp.
1–7.

[17] “Global locations of google cloud topology,” 2021. [Online]. Available:
https://cloud.google.com/about/locations/

[18] H. H. Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gelernter, “Traffic
engineering with forward fault correction,” in Proceedings of the 2014
ACM Conference on SIGCOMM, 2014, pp. 527–538.

[19] X. Li, P. Djukic, and H. Zhang, “Zoning for hierarchical network
optimization in software defined networks,” in 2014 IEEE Network
Operations and Management Symposium (NOMS). IEEE, 2014, pp.
1–8.

[20] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: a framework for efficient
and scalable offloading of control applications,” in Proceedings of the

first workshop on Hot topics in software defined networks, 2012, pp.
19–24.

[21] W. Reda, K. Bogdanov, A. Milolidakis, H. Ghasemirahni, M. Chiesa,
G. Q. Maguire Jr, and D. Kostić, “Path persistence in the cloud:
A study of the effects of inter-region traffic engineering in a large
cloud provider’s network,” ACM SIGCOMM Computer Communication
Review, vol. 50, no. 2, pp. 11–23, 2020.

[22] U. Feige and P. Raghavan, “Exact analysis of hot-potato routing,” in
Proceedings., 33rd Annual Symposium on Foundations of Computer
Science. IEEE Computer Society, 1992, pp. 553–562.

[23] T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, Y. Hong, H. Wang,
Z. Lin, and K. H. Johansson, “A survey of distributed optimization,”
Annual Reviews in Control, vol. 47, pp. 278–305, 2019.

[24] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging for
distributed optimization: Convergence analysis and network scaling,”
IEEE Transactions on Automatic control, vol. 57, no. 3, pp. 592–606,
2011.

[25] K. Srivastava, A. Nedić, and D. Stipanović, “Distributed min-max
optimization in networks,” in 2011 17th International Conference on
Digital Signal Processing (DSP). IEEE, 2011, pp. 1–8.

[26] N. Geng, T. Lan, V. Aggarwal, Y. Yang, and M. Xu, “A multi-agent
reinforcement learning perspective on distributed traffic engineering,” in
2020 IEEE 28th International Conference on Network Protocols (ICNP).
IEEE, 2020, pp. 1–11.

[27] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” arXiv preprint arXiv:1706.02216, 2018.

[28] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2018.

[29] H. Räcke, “Optimal hierarchical decompositions for congestion
minimization in networks,” in Proceedings of the Fortieth Annual ACM
Symposium on Theory of Computing, ser. STOC ’08. New York,
NY, USA: Association for Computing Machinery, 2008, p. 255–264.
[Online]. Available: https://doi.org/10.1145/1374376.1374415

[30] P. Pinyoanuntapong, M. Lee, and P. Wang, “Delay-optimal traffic
engineering through multi-agent reinforcement learning,” in IEEE INFO-
COM 2019-IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS). IEEE, 2019, pp. 435–442.

[31] W. Kool, H. van Hoof, and M. Welling, “Attention, learn to
solve routing problems!” in 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net, 2019. [Online]. Available:
https://openreview.net/forum?id=ByxBFsRqYm

[32] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[34] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv
preprint arXiv:1607.06450, 2016.

[35] N. Spring, R. Mahajan, and D. Wetherall, “Measuring isp topologies
with rocketfuel,” in ACM SIGCOMM Computer Communication Review,
vol. 32, no. 4. ACM, 2002, pp. 133–145.

[36] D. Applegate and E. Cohen, “Making routing robust to changing
traffic demands: Algorithms and evaluation,” IEEE/ACM Transactions
on Networking, vol. 14, no. 6, pp. 1193–1206, 2006.

[37] A. Medina, A. Lakhina, I. Matta, and J. Byers, “Brite: An approach
to universal topology generation,” in MASCOTS 2001, Proceedings
Ninth International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems. IEEE, 2001, pp. 346–353.

[38] TMgen: Traffic Matrix Generation Tool. [Online]. Available:
https://tmgen.readthedocs.io/en/latest/

[39] P. Tune and M. Roughan, “Spatiotemporal traffic matrix synthesis,”
in ACM SIGCOMM Computer Communication Review, vol. 45, no. 4.
ACM, 2015, pp. 579–592.

[40] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-
scale machine learning,” 2018.

[41] A. Krogh and J. A. Hertz, “A simple weight decay can improve
generalization,” in Proceedings of the 4th International Conference on
Neural Information Processing Systems, ser. NIPS’91. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1991, p. 950–957.

[42] L. Prechelt, “Early stopping - but when?” in Neural Networks: Tricks
of the Trade - Second Edition, ser. Lecture Notes in Computer Science,
G. Montavon, G. B. Orr, and K. Müller, Eds. Springer, 2012, vol.

7700, pp. 53–67. [Online]. Available: https://doi.org/10.1007/978-3-
642-35289-8 5

[43] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural
networks from overfitting,” Journal of Machine Learning Research,
vol. 15, no. 56, pp. 1929–1958, 2014. [Online]. Available:
http://jmlr.org/papers/v15/srivastava14a.html

[44] D. Thaler and C. Hopps, “Multipath Issues in Unicast and Multicast
Next-Hop Selection,” IETF RFC 2991, November 2000.

[45] Gurobi Optimization LLC, “Gurobi optimizer reference manual,” 2021.
[Online]. Available: https://www.gurobi.com

