
1

FlexDATE: Flexible and Disturbance-Aware Traffic
Engineering With Reinforcement Learning in

Software-Defined Networks
Minghao Ye, Junjie Zhang, Member, IEEE, Zehua Guo, Senior Member, IEEE, Member, ACM,

and H. Jonathan Chao, Life Fellow, IEEE

Abstract—Traffic Engineering (TE) is an important network
operation that routes/reroutes flows based on network topology
and traffic demands to optimize network performance. Recently,
new emerging applications pose challenges to TE with dynamic
network conditions, where frequent routing updates are required
to maintain good network performance with Software-Defined
Networking (SDN). However, flow rerouting operations could
lead to considerable Quality of Service (QoS) degradation and
service disruption, which is often neglected by existing TE
solutions. In this paper, we apply a new QoS metric named
network disturbance to measure the negative impact of flow
rerouting operations performed by TE. To achieve near-optimal
load balancing performance and mitigate network disturbance
together in dynamic network scenarios, we propose a flexible and
disturbance-aware TE solution called FlexDATE that combines
Reinforcement Learning (RL) and Linear Programming (LP).
Specifically, FlexDATE leverages RL to intelligently identify
flexible numbers of critical flows for each traffic matrix and
reroutes these critical flows based on LP optimization to improve
network performance with low disturbance. Empowered by a
customized actor-critic architecture coupled with Graph Neural
Networks (GNNs), FlexDATE can generalize well to unseen traffic
scenarios and remain resilient to single link failures. Extensive
simulations are conducted on five real-world network topologies
to evaluate FlexDATE with real and synthetic traffic traces.
The results show that FlexDATE can achieve the performance
target (i.e., 90% of optimal performance) in 99% of network
scenarios and effectively mitigate the average and maximum
network disturbance by up to 9.1% and 38.6%, respectively,
compared to state-of-the-art TE solutions.

Index Terms—Traffic engineering, reinforcement learning,
software-defined networking, network disturbance, graph neural
networks.

I. INTRODUCTION

TRAFFIC Engineering (TE) is an important network oper-
ation for Internet Service Providers (ISPs) to control traf-

fic distribution by routing/rerouting traffic across their Wide

An earlier version of this paper was presented in part at the 2021
IEEE/ACM 29th International Symposium on Quality of Service [DOI:
10.1109/IWQOS52092.2021.9521343].

This paper was supported by the National Key Research and Development
Program of China under Grant 2021YFB1714800, the National Natural
Science Foundation of China under Grant 62002019 and the Beijing Institute
of Technology Research Fund Program for Young Scholars. (Corresponding
author: Zehua Guo.)

Minghao Ye and H. Jonathan Chao are with the Department of Electrical
and Computer Engineering, New York University, New York City, NY 11201
USA (e-mail: minghao.ye@nyu.edu; chao@nyu.edu).

Junjie Zhang is with Fortinet, Inc., Sunnyvale, CA 94086 USA (e-mail:
junjie.zhang@nyu.edu).

Zehua Guo is with Beijing Institute of Technology, Beijing 100081, China
(e-mail: guolizihao@hotmail.com).

Area Networks (WANs). With the objective of minimizing
network congestion probability, TE usually reroutes network
flows1 periodically to achieve better load balancing in dynamic
network traffic conditions [1]–[4]. Given a network topology
and traffic demands between all source-destination pairs, TE
can be formulated as an optimization problem and solved for
optimal routing strategies to redistribute the traffic across the
network. Generally speaking, such flow rerouting operations
are heavily dependent on the network statistics measured by
network observability techniques (e.g., SNMP [5] and NetFlow
[6]). Due to the complexity of collecting traffic demands and
other statistics, these techniques are typically operated in the
control plane with a long time interval. Therefore, TE is
usually conducted at a coarse-grained minute-level to improve
network performance.

In recent years, applications, such as high-quality real-
time video streaming [7]–[9] and Augmented/Virtual Reality
(AR/VR) [10], pose diverse bandwidth and latency require-
ments to backbone networks with dynamic traffic variations.
In this scenario, coarse-grained minute-level TE operations
may lead to performance degradation since they cannot adapt
to drastic traffic changes with long routing update intervals.
Thanks to emerging programmable network technology [11],
fast and accurate network observability in the data plane
has become possible and provides new opportunities for
TE to perform routing updates in a fine-grained sub-minute
fashion. For instance, P4 switches [11] have been tested
and deployed in the industry (e.g., AT&T [12] and Alibaba
[13]) with more flexibility to process packets in the data
plane. In Alibaba Cloud [13], In-band Network Telemetry
(INT) technique [14] has been implemented in P4 switches
to precisely and rapidly observe network states (e.g., packet
delay, queue length, and link utilization). Moreover, INT can
be combined with Software-Defined Networking (SDN) [15]
to implement network monitoring systems in SDN controllers
and collect network statistics from the data plane [16], [17].
With INT and SDN, TE can be deployed at the control
plane and quickly react to traffic changes based on the global
view of the network. Once TE generates an updated routing
strategy based on timely measured network states from INT,
the SDN controller can deploy deliberate routing policies
at underlying SDN switches to reroute flows. For example,
SDN-based TE is operating at second-level to satisfy the

1In this paper, a flow is defined as a source-destination pair. We use these
two terms interchangeably.

2

requirements of different cloud applications in Amazon’s inter-
region backbone network [18]. In the foreseeable future, with
emerging network observability techniques and applications,
flows should be adaptively and frequently rerouted to improve
network performance and cope with network traffic dynamics.

However, TE operations may undesirably interrupt existing
connections with path changes. In traditional TE solutions, a
large number of flows would be rerouted to achieve optimal
or near-optimal load balancing performance. Given that a
single flow usually aggregates many micro-flows (i.e., five-
tuple TCP flows) of different applications, frequent routing
updates could momentarily degrade the Quality of Service
(QoS) of many TCP flows. For example, packet reordering
may happen when TE reroutes the flows. When a TCP flow is
migrated from a high latency path to a low latency path, some
of the newly sent packets on the new path may arrive at the
destination earlier than the previous packets on the old path. As
a result, these packets are considered out-of-order packets, and
duplicate acknowledgments (dupACKs) would be triggered at
the receiver side, which falsely signals network congestion to
the sender. Upon receiving three dupACKs, the sender would
reduce the congestion window size and thus decrease the
sending rate, which eventually reduces the throughput of the
TCP flow and increases its completion time. A recent work
[19] shows that the aggregated throughput can be degraded
by half after rerouting multiple TCP flows. Besides, it is
also possible that some delay-sensitive TCP flows would be
rerouted to new paths with higher latencies and thus fail to
satisfy the latency requirements [18]. Therefore, frequently
rerouting a large number of flows could severely disrupt
services with a negative impact on hundreds of thousands of
TCP flows.

To address the above-mentioned issue, we propose a new
QoS metric called network disturbance to measure the impact
of flow rerouting in TE. Network disturbance is defined as
the percentage of total traffic in the network that is rerouted
to different paths during routing updates (please refer to Eq.
(2)). By considering network disturbance, ISPs can optimize
their network performance while mitigating the rerouting
impact on a large number of TCP flows. However, there is
a new challenge: how to efficiently control flows to achieve
joint optimization of network performance and disturbance
in different network scenarios. Given various possible route
changes, it is very difficult, if not impossible, to quantify
network disturbance using a precise mathematical formulation
according to the above definition. Meanwhile, it is very
challenging to realize a trade-off between maximizing network
performance and minimizing network disturbance. To achieve
good performance in dynamic network conditions, it might
be necessary to reroute many flows at the cost of incurring
high network disturbance. On the contrary, ISPs may use a
static routing strategy without network disturbance, but the
resulting network performance would be far from optimal.
Therefore, network disturbance cannot be incorporated in
traditional optimization problems as a part of the objective
along with network performance.

In this paper, we propose Flexible and Disturbance-Aware
Traffic Engineering (FlexDATE) to mitigate network distur-

bance caused by flow rerouting while ensuring near-optimal
network performance in dynamic network scenarios. Specifi-
cally, a majority of the flows are forwarded by static oblivious
routing with a worst-case performance guarantee to avoid
service disruption, while the SDN controller deliberately
chooses and reroutes some critical flows to balance link
utilization of the network. Here, a critical flow is defined
as a flow with a dominant impact on network performance.
To effectively handle varying network traffic conditions and
link failure scenarios, we use Reinforcement Learning (RL)
to learn a good policy that determines the number of critical
flows and identifies the critical flows simultaneously with
a customized actor-critic architecture. Then, we can obtain
the optimal routing strategy for critical flows by solving
a modified Linear Programming (LP) optimization problem.
Upon network traffic/connectivity changes, we can reroute
the critical flows by updating their traffic split ratios over
a set of preconfigured paths [20], [21] at the sender side.
To find a good trade-off between network performance and
disturbance, we design an effective reward function for RL
with a preset performance target and penalty factors on net-
work disturbance to prioritize performance improvement or
disturbance mitigation at different training stages. As long as
the reward signals correlate with the objective, RL is able
to train for objectives that cannot be directly optimized due
to a lack of precise models. In addition, we adopt Graph
Neural Networks (GNNs) [22], [23] to handle single link
failures. GNN is recently applied in different TE solutions
[24]–[26] with unique advantages to model network topologies
that are generally represented as graphs. By leveraging the
graph representation learning techniques and message passing
frameworks, GNN considers link failure scenarios by disabling
direct message exchanges between the two nodes connected
to a failed link. Moreover, each module/layer in FlexDATE’s
GNN architecture can be shared and reused by each node,
which facilitates the training process and outperforms other
traditional neural network architectures (e.g., convolutional
neural networks) with lower model complexity.

The main contributions of this paper are summarized as
follows:

1) We propose a new QoS metric called network distur-
bance to evaluate the impact of flow rerouting on WANs.

2) We design a flexible and disturbance-aware TE solution
combining RL and LP to select and reroute a few
critical flows to achieve near-optimal performance with
mitigated disturbance in different traffic scenarios.

3) We leverage GNN architecture to learn from network
topology information such that FlexDATE can generalize
well to different single link failure scenarios.

4) Our extensive simulations show that FlexDATE can
achieve above 90% of optimal performance in most
network scenarios and outperform state-of-the-art TE
solutions with the lowest average network disturbance.

The remainder of this paper is organized as follows. Section
II provides the problem statement of TE and the definition
of network disturbance. Section III overviews FlexDATE’s
system design. Section IV explains how to learn a good policy
to determine the number of critical flows and identify the crit-

3

ical flows with RL. Section V describes the LP formulations
for rerouting critical flows and forwarding non-critical flows.
Section VI discusses the implementation details of FlexDATE.
Section VII evaluates the performance of FlexDATE by pre-
senting and analyzing the simulation results. Section VIII lists
the related works, and Section IX concludes the paper.

II. PROBLEM STATEMENT AND NETWORK DISTURBANCE

In this section, we provide a brief explanation of TE
and formally define network disturbance as a QoS metric to
measure the impact caused by flow rerouting.

A. Problem Statement

A network can be modeled as a directed graph G(V,E),
where V is the set of network nodes and E is the set of
directed links. Each directed link e ∈ E has a capacity that
limits the maximum traffic to be carried on that link. Given
a series of traffic demands that need to be delivered from
each source node s ∈ V to each destination node d ∈ V , a
Traffic Matrix (TM) can be constructed to represent the traffic
demands {Ds,d} of all flows 〈s, d〉 in a certain period. To
properly deliver all traffic demands from different source nodes
to different destination nodes, a routing strategy is required to
specify how the traffic is routed over the network. A widely-
adopted approach is to construct multiple preconfigured paths
{P s,d} for each source-destination pair 〈s, d〉 and route the
traffic on different paths. In this scenario, the routing strategy
can be represented as path split ratios {σs,dp } that specify the
percentage of traffic demands of each flow 〈s, d〉 routed on
each path p ∈ P s,d.

Generally speaking, it is important to configure good routing
strategies to maintain promising network performance un-
der dynamic traffic scenarios and unexpected link failures.
Otherwise, the network may experience severe performance
degradation, such as traffic loss and high latency. Therefore,
TE operation is required to optimize the routing strategy to
reduce network congestion probability and achieve good net-
work performance. Given the network topology and measured
TM, we can formulate an optimization problem and solve
it for optimal routing. One of the common TE objectives
is minimizing the Maximum Link Utilization (MLU) in the
network to achieve good load balancing. Here, MLU denotes
the utilization of the most congested link in the network and
can be computed as U = maxe∈E(le/ce), where le and ce
are the traffic load and capacity of link e, respectively. When
there is a newly measured TM or failed link, TE can solve
the optimization problem and obtain an updated routing to
accommodate traffic/connectivity changes.

B. Network Disturbance

Once TE performs a routing update, flows might be rerouted
to different paths or distributed with different split ratios along
original paths compared to the previous routing. Such flow
rerouting operation may lead to service disruption and QoS
degradation as described in Section I. Thus, we have the
following definitions.

1

3

4

5 6 2

0.3

0.2

0.5

(a) Routing at time step t = 1.

1

3

4

5 6 2

0.4

0.4

0.2

(b) Routing at time step t = 2.

Fig. 1. An example to measure network disturbance caused by flow rerouting.
The routing strategies for flow 〈1, 2〉 at different time steps t are represented
as traffic split ratios over different paths.

Definition 1. Rerouted Traffic: Given the traffic demand of
flow 〈s, d〉 as Ds,d and the percentage of flow 〈s, d〉 that are
rerouted from original paths as ∆σs,d, the total amount of
traffic that would be rerouted from original paths is defined
as rerouted traffic2:

TR =
∑

s,d∈V,s6=d

Ds,d ·∆σs,d, (1)

Definition 2. Network Disturbance: Given the rerouted traffic
TR, network disturbance is defined as:

DB =
TR∑

s,d∈V,s 6=d
Ds,d

, (2)

i.e., the percentage of total rerouted traffic in the network for
a given traffic matrix, where

∑
s,d∈V,s6=d

Ds,d is the total traffic

of all flows.

Fig. 1 provides an example of measuring network distur-
bance caused by TE operations. We assume that flow 〈1, 2〉
is the only flow affected by routing updates from time step
t = 1 to t = 2. As shown in Fig. 1(a), flow 〈1, 2〉 is routed
on three different paths 1-3-2, 1-5-6-2, and 1-4-2 at time step
t = 1, and the corresponding path split ratios are (0.3, 0.5,
0.2). When t = 2, flow 〈1, 2〉 is rerouted with different path
split ratios (0.4, 0.2, 0.4) as illustrated in Fig. 1(b). In this
scenario, 30% of flow 〈1, 2〉’s traffic at t = 2 is rerouted from
path 1-5-6-2 to the other two paths, which should be counted
as rerouted traffic for calculating network disturbance.

III. SYSTEM DESIGN

The objective of FlexDATE is to maintain promising net-
work performance with TE operations in different network
scenarios and mitigate network disturbance caused by traffic
rerouting. Upon traffic changes or link failures, FlexDATE
exploits a combination of RL and LP to identify a set of critical
flows in the network and solves an optimization problem to
reroute these critical flows. When traffic is relatively stable, it
is desired to select less or similar critical flows for each TM
to reduce network disturbance while achieving good network
performance. However, if the traffic variation becomes larger
or link failure happens, the network performance could be
degraded. In these scenarios, FlexDATE may need to reroute
more critical flows to maintain good network performance
at the cost of incurring higher network disturbance. To ac-
commodate dynamic traffic variations and various link failure

2A portion of traffic of each rerouted flow might stay on the same routing
paths when using consistent hashing to 5-tuple micro-flows, which is not
considered rerouted traffic.

4

FlexDATEController

RL
Input state: TMs & CM

previous routing & actions

Output: Routing strategy for
the selected critical flows

Update the split ratios
of the critical flows at

their source nodes

Collect TM
periodically

1

2

4

3

5

6

7

0.2

0.7

0.1

Flow 5 → 3: Non-critical
flow (oblivious routing)

Flow 1 → 3:
Critical flow

0.3

0.3

LP

Action: (1) Determine the
number of critical flows K

(2) Select K critical flows
for LP to optimize routing

0.4

Update CM
when link

fails/recovers

Fig. 2. Overview of FlexDATE’s system design. FlexDATE selects and
reroutes critical flows periodically or upon drastic traffic changes and link
failure/recovery. The red solid arrows represent the path split ratios of a critical
flow 〈1, 3〉 updated by the controller, and the blue dashed arrows are the path
split ratios of a non-critical flow 〈5, 3〉 forwarded by the default oblivious
routing.

scenarios, we design a novel single-stage RL architecture to
determine the number of critical flows and identify the critical
flows simultaneously based on different network conditions,
as later shown in Section IV.

FlexDATE takes 2 consecutive TMs and a topology Connec-
tivity Matrix (CM) as an input to select a few critical flows
for rerouting. In addition, the previous routing strategy and
critical flow selection are also provided as input information
to assist RL in making better decisions. This is because
the measurement of network disturbance is dependent on
the difference between the updated routing strategy and the
previous routing strategy to obtain the rerouted traffic. Given
the critical flow selection from RL, FlexDATE solves an LP
optimization problem with the objective to minimize MLU in
the network and obtains the optimal routing strategy for critical
flows. For the remaining non-critical flows, they should follow
a default static routing strategy to avoid network disturbance.
To ensure robust performance and keep the routing simple,
we first leverage Räcke’s oblivious routing algorithm [20] to
generate a set of diverse and low-stretch preconfigured paths
for all source-destination pairs and set the path budget to 4
as reported in [21]. Then, we optimize routing with respect
to all possible traffic demands based on the LP formulation
described in [27] with some customizations to support the
usage of preconfigured paths (see Section V-A). The resulting
optimal oblivious routing strategy is taken as the default static
routing strategy for non-critical flows to bound the worst-
case performance, which is more robust compared to other
traditional routing strategies (e.g., Equal-Cost Multi-Path). As
for the critical flows, we solve a modified Multi-Commodity
Flow (MCF) problem described in Section V-B to obtain
the optimal path split ratios when traffic/connectivity changes
(e.g., new TM or link failure). Then, the SDN controller would
update the path split ratios of the critical flows accordingly at
the sender side to reroute the critical flows. Note that the SDN
entries for the previously selected critical flows in the last time
interval will timeout when performing routing updates.

Fig. 2 illustrates FlexDATE’s system design. FlexDATE
is located together with an SDN controller and consists of
RL and LP modules. The SDN controller is responsible
for collecting TMs periodically from the network and up-
dating the network topology CM if any changes (e.g., link
failure/recovery). Given the input from the SDN controller,
FlexDATE identifies critical flows and performs flow rout-
ing/rerouting to accommodate traffic variations captured by
TMs and network connectivity changes reflected by CM. For
example, as depicted in Fig. 2, flow 〈1, 3〉 is selected as a
critical flow under the current network condition while flow
〈5, 3〉 is forwarded by the default oblivious routing as a non-
critical flow. To achieve better load balancing performance
with low disturbance, FlexDATE only needs to update the
path split ratios of the critical flow 〈1, 3〉 at node 1 such that
less amount of traffic would be routed on the two paths that
share the same links with flow 〈5, 3〉’s paths. When a link
failure occurs, some of the preconfigured paths that include
the broken link may be temporarily unavailable. Therefore, a
simple local recovery mechanism can be implemented to time
out existing SDN entries for critical flows and revert to the
default oblivious routing. The traffic demands routed on the
broken paths should also be rescaled to the available paths to
avoid traffic loss. In the meantime, the CM would be updated
according to link failures and sent to the FlexDATE system
in the SDN controller. Then, TE-level resilience can be per-
formed immediately by FlexDATE to select and reroute a new
set of critical flows to maintain good network performance.
The evaluation results in Section VII show that FlexDATE
is able to achieve near-optimal network performance with
mitigated network disturbance in the presence of dynamic
traffic and different single link failures.

IV. LEARNING TO SELECT CRITICAL FLOWS

In this section, we explain how to learn a critical flow
selection policy using a customized RL approach coupled with
GNN architecture.

A. Reinforcement Learning Formulation

Input / State Space: It is important for an RL agent
to take actions based on observed network conditions, in-
cluding topology connectivity, traffic changes, and routing
strategies. At time step t, an RL agent takes a state st =
(CM,TMt, TMt−1, Rt−1, CFt−1) as an input, where CM
is the topology connectivity matrix and (TMt, TMt−1) are
traffic matrices at time step t and t − 1 representing traffic
changes, respectively. Rt−1 is the routing strategy optimized
at the previous time step t − 1, which can be interpreted as
path split ratios. Since all flows are routed/rerouted based on a
set of preconfigured paths with a path budget of 4, the routing
strategy can be viewed as four N × N matrices where each
routing matrix represents the split ratios of all flows on one
of the preconfigured paths. For each flow, the path split ratios
distributed over four routing matrices should sum up to 1. In
addition, CFt−1 is an N×N matrix indicating the critical flow
selection at the previous time step t − 1. If the flow 〈s, d〉 is
selected as a critical flow in the last time step, the entry (s, d)

5

of the critical flow matrix CFt−1 is set to 1; otherwise, it is
set to 0. Thus, the input dimension should be N ×N × 8.

Action Space: For each state st, FlexDATE will select K
critical flows to accommodate dynamic traffic and different
link failure scenarios, which is divided into two steps of action.
At first, FlexDATE needs to determine the number of critical
flows K to be rerouted. Given that there are N ∗(N−1) flows
in a network with N nodes, the number of critical flows K can
be ranged from 1 to N ∗ (N − 1). However, there is no need
to identify a large number of critical flows since near-optimal
network performance can be achieved by rerouting only a few
critical flows [28]. Therefore, we run a series of experiments
for each topology in Section VII-A to find an appropriate upper
bound value Kub to reduce the action space, where Kub should
be much smaller than N∗(N−1). In other words, the agent can
take an action from the reduced action space {1, 2, ..., Kub}
to determine the number of critical flows to be selected at each
time step t (i.e., a0t). Once the value of K is determined, RL
should select K critical flows from all possible N ∗ (N − 1)
candidates in the second step, which requires a large action
space of size CKN∗(N−1). Inspired by [29], [30], we define the
action space as {0, 1, ..., N ∗ (N − 1) − 1} and allow the
agent to sample K different actions in each time step t (i.e.,
a1t , a

2
t , ..., a

K
t).

Reward: After sampling K different critical flows fK for a
given state st, FlexDATE reroutes these critical flows and
obtains the MLU U by solving the rerouting optimization
problem (11) described in Section V-B. By comparing the up-
dated routing with the previous routing, the incurred network
disturbance DB can be calculated using Eq. (2). To measure
how far the resulting routing strategy is from the optimal
routing strategy, we define a performance ratio as follows:

PR =
Uoptimal

U
, (3)

where Uoptimal is the MLU achieved by an optimal explicit
routing for all flows. Since U cannot be lower than Uoptimal,
the value of PR is always capped at 1. PR = 1 means
that FlexDATE achieves the same performance as optimal
routing. The higher the PR, the better the performance. With
consideration of achieving near-optimal network performance
PR and mitigating network disturbance DB, we design a
reward function as shown below:

r =

{
PR− λ ∗DB if PR < PRtg

PR− µ ∗DB if PR ≥ PRtg
(4)

where PRtg is a preset network performance target, λ and
µ are penalty factors on network disturbance at different
training stages that can be adjusted to trade off performance
and disturbance. In our reward function design, we adopt a
performance target PRtg as a criterion to separate different
training stages. The core idea is to encourage the selection of
critical flows that can achieve the performance target with low
network disturbance. When PR < PRtg , the network perfor-
mance target cannot be satisfied. Therefore, the penalty factor
λ on network disturbance should be set to a smaller value
such that RL would benefit more from improving network
performance. In other words, RL would focus on improving

network performance at the early training stage to learn a
good policy. Once the network performance target is achieved
(i.e., PR ≥ PRtg), we should impose a higher penalty µ on
network disturbance such that RL would focus on mitigating
network disturbance while ensuring good performance. In our
evaluation, we set PRtg = 0.9 with an aim to achieve near-
optimal performance (i.e., 90% of optimal performance), while
λ and µ are configured as 0.5 and 1, respectively. We discuss
the impact of different penalty factor settings in Section VII-B.

B. Training Algorithm

The K value selection policy is represented by a neural
network (denoted as K-net), and the critical flow selection
policy is represented by another neural network (denoted as
CF -net). Both two policy networks take a shared state st =
(CM,TMt, TMt−1, Rt−1, CFt−1) as an input and output a
probability distribution over all available actions. For K-net,
we sample an action from the probability distribution π(a0t |st)
for each state st to determine the K value. As for CF -net,
since K different actions are sampled from the probability
distribution π(at|st) for each state st and their order doesn’t
matter, we define a solution atK = (a1t , a

2
t , ..., a

K
t) as a

combination of K sampled actions. For selecting a solution
atK with a given state st, a stochastic policy π(atK |st)
parameterized by θ can be approximated as follows3:

πθ(atK |st) ≈
K∏
i=1

πθ(a
i
t|st). (5)

The goal of training is to achieve near-optimal network perfor-
mance and mitigate network disturbance over various network
conditions (i.e., to maximize the expected reward E[rt]). Thus,
we optimize E[rt] with gradient ascend, using REINFORCE
algorithm with a baseline b(st). It is worth mentioning that
a good baseline b(st) reduces gradient variance and thus
increases the speed of learning. In this paper, we use a learned
estimate of the value function V πθ (st) from a critic network as
the baseline b(st). The critic network parameter θv is updated
according to the following equation:

θv ← θv − αv
∑
t

∇θv (rt − V πθθv (st))
2, (6)

where V πθθv (·) is outputted by the critic network as the estimate
of V πθ (·), and αv is the learning rate for the critic network.
Note that the critic network is only trained to estimate the
expected reward rt, and solely helps train the policy networks.
Once training is done, only the two policy networks K-net and
CF -net are required to execute the action selection. To ensure
that the RL agent explores the action space adequately during
training to discover good policies, the entropy of the policy π
is added to improve the exploration by discouraging premature
convergence to suboptimal deterministic policies [31]. Then,
the policy parameter θk of K-net and the policy parameter θ

3To select K distinct actions, we conduct the action sampling without
replacement. The right-hand side of Eq. (5) is the probability of the solution
when sampling with replacement, where Eq. (5) is used to approximate the
probability of the solution atK given a state st for simplicity.

6

0 2.2 3.6 1

0 2.2 3.6 0

0 2.2 3.6 0

0 2.2 3.6 0

Decoder

...

Topology connectivity matrix

Encoder

0 1.8 3.8 2.8

3.2 00 .1 4.9

6.2 3.9 00 2.4

3.2 1.6 5.6 0

0 2.2 3.6 4.3

3.2 0 4.1 5.2

6.2 3.9 0 1.1

3.2 1.6 5.6 0
Multi-head
attention

✕ H

Traffic
matrices

Node features

Node embedding
s ↦ d Source-destination pair

hi

h0 h0 h0

h1

h2

h3

h1 h1

h2 h2

h3 h3

0 2

1 3

Message

0 ↦ 1

...

Concatenation

Policy (CF-net)

3 ↦ 2

...

Value

...

Feed
forward

Softm
ax

Feed
forward

1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1

0 2.2 3.6 2.8

0 2.2 3.6 4.9

0 2.2 3.6 2.4

0 2.2 3.6 0

0 2.2 3.6 4.3

3.2 0 4.1 5.2

6.2 3.9 0 1.1

3.2 1.6 5.6 0

0 0.2 0.3 0.2

3.2 00 .1 0.1

6.2 3.9 00 0.5

3.2 1.6 5.6 0

0 0.2 0.1 0.1

3.2 0 4.1 0.1

6.2 3.9 0 0.1

3.2 1.6 5.6 0

0 0.3 0.2 0.5

3.2 00 .1 0.1

6.2 3.9 00 0.3

3.2 1.6 5.6 0

0 0.3 0.4 0.2

0.4 0 0.3 0.7

0.5 0.4 0 0.1

0.2 0.6 0.1 0

Routing (Path
split ratios)

0 0 0 1

0 0 1 0

1 0 0 0

0 1 0 0

Critical
flows

...

1
Policy (K-net)

4

...
Softm

ax

...
...

Fig. 3. GNN-based actor-critic architecture. The encoder computes initial node embeddings using a shared Feed-Forward (FF) layer based on the node features
concatenated from input states, and then updates per-node embeddings using H attention layers according to the topology connectivity matrix. Each attention
layer consists of a Multi-Head Attention (MHA) layer and a node-wise fully connected FF layer. The final node embeddings are concatenated and fed into
the decoder for K-net and CF -net policy networks to generate probability distributions over actions, and for the critic network to predict the baseline.

of CF -net are updated according to the following equations:
θk ← θk + αk

∑
t

∇θk logπθk(a0t |st)(rt − V
πθ
θv

(st))

+βk∇θkH(πθk(·|st)),
(7)

θ ← θ + α
∑
t

∇θlogπθ(atK |st)(rt − V
πθ
θv

(st))

+β∇θH(πθ(·|st)),
(8)

where αk and α are the learning rates for the policy networks
K-net and CF -net, respectively, and H is the entropy of the
policy (the probability distribution over actions). The hyperpa-
rameters βk and β are set to control the strength of the entropy
regularization term. Intuitively, Eq. (8) can be explained as
follows. (rt − V πθθv (st)) indicates how much better the reward
of a specific solution is compared to the expected reward for
a given state st according to the policy πθ. If (rt − V πθθv (st))
is positive, πθ(atK |st) (i.e., the probability of the solution
atK) is increased by updating the policy parameters θ in the
direction∇θlogπθ(atK |st) with a step size of α(rt−V πθθv (st)).
Otherwise, the probability of the solution is decreased. For K-
net, Eq. (7) can be explained in a similar way. Overall, the net
effect of Eqs. (7) and (8) is to reinforce actions that empirically
lead to better rewards. Algorithm 1 shows the pseudo-code for
the training algorithm.

C. Actor-Critic Network Architecture

Fig. 3 shows the architecture of the GNN-based actor-critic
network. The inputs to the network are node features and
topology connectivity matrix, where the features for a given
node are: (1) a series of demands originated from that node,
(2) the previous routing (i.e., path split ratios) of all flows
generated from that node, and (3) which flows originated
from that node are previously selected as critical flows. The
encoder computes the initial node embedding using a shared
Feed-Forward (FF) layer, and then each node’s embedding is
updated by exchanging messages with its neighbors. Similar to
the transformer model presented in [30], [32], the embedding
update module consists of a stack of H identical attention
layers. Each attention layer is composed of two sub-layers.

Algorithm 1 Training Algorithm
Initialize θk, θ, θv
for each iteration do
{st} ← Sample a batch of states with size B
for t = 1, ..., B do

Sample an action a0t according to policy πθk(a0t |st)
K ← a0t
Sample a solution atK according to policy πθ(atK |st)
Receive reward rt

end for
Update θk and θ according to Eqs. (7) and (8)
Update θv according to Eq. (6)

end for

The first is a Multi-Head Attention (MHA) layer that performs
message exchanges between neighbor nodes, and the second is
a node-wise fully connected FF layer that performs a nonlinear
transformation. In addition, a skip connection [33] and layer
normalization [34] are applied to each sub-layer. For a given
node v, the node embedding hv is updated iteratively with
a message function f(·) that is parameterized by GNN to
aggregate the messages passed from its neighbors [30], [32]:

hl+1
v =

∑
w∈χv

f(hlv, h
l
w, θ

l
f), (9)

where χv is the set of nodes that exchange messages with
node v, and θf denotes learnable function parameters.

Employing H attention layers can be interpreted as execut-
ing H iterations of the embedding update process, and one
iteration of the embedding update process can be essentially
considered as a feature propagation. After H iterations, each
node’s embedding would include H hops away neighbors’
information. Thus, when H is set to the number of max hops
in the network, it would be enough for each node to capture
the complete information of the whole network. All node
embeddings outputted by the encoder are then concatenated
to form a graph embedding, which is passed to the two
policy networks K-net and CF -net to generate probability
distributions over actions and passed to the critic network to
predict the baseline of the input state.

7

TABLE I
NOTATIONS

G(V,E)
network with nodes V and directed

links E (|V | = N, |E| =M)
fK selected critical flows
ce the capacity of link e (e ∈ E)
le the traffic load on link e (e ∈ E)

Ds,d the traffic demand from source s to
destination d (s, d ∈ V , s 6= d)

P s,d the preconfigured path set from source s
to destination d (s, d ∈ V , s 6= d)

σs,d
p

the percentage of traffic demand from source s to
destination d routed on the preconfigured path p

(p ∈ P s,d, s, d ∈ V, s 6= d)

δs,dp,e

= 1, if link e belongs to the preconfigured path p
from source s to destination d; 0, otherwise

(e ∈ E, p ∈ P s,d, s, d ∈ V, s 6= d)
ρ(e, e∗) the weight for link pair (e, e∗) (e, e∗ ∈ E)

ϕs,d(e)
the path length from source s to destination d

according to link weights ρ(e, e∗) for
all link e∗ (e ∈ E, s, d ∈ V, s 6= d)

V. REROUTING CRITICAL FLOWS

In this section, we describe how to reroute the selected
critical flows to balance the link utilization of the network.
The notations used in this section are listed in Table I.

A. Optimal Oblivious Routing

By default, traffic is distributed according to optimal obliv-
ious routing, which is oblivious to the actual traffic demands.
The original oblivious routing LP model presented in [27]
computes a routing that specifies the fraction of demands of
each flow routed on each link, which requires O(MN2) rout-
ing variables to be solved. To reduce the computation overhead
and the complexity of routing input to RL, we modify the
LP formulation to route all flows on the preconfigured paths
computed by [20] and set the path budget to 4 [21]. The
resulting optimal oblivious routing is represented as traffic
split ratios of each flow on its corresponding preconfigured
path set with at most 4N2 routing variables.

Given a topology G(V,E) with a set of preconfigured paths
{P s,d} for each source-destination pair, the objective of the
oblivious routing problem is to obtain the optimal path split
ratios {σs,dp }, so that the oblivious performance ratio OR with
respect to all possible demands {Ds,d ≥ 0} is minimized.
Then, the oblivious routing problem can be formulated as an
optimization problem as follows.

minOR (10a)

subject to
σs,dp ≥ 0 p ∈ P s,d, s, d ∈ V, s 6= d (10b)∑
p∈P s,d

σs,dp = 1 s, d ∈ V, s 6= d (10c)

∑
e∗∈E

ce∗ · ρ(e, e∗) ≤ OR e ∈ E (10d)

∑
p∈P s,d

δs,dp,e · σs,dp ≤ ce · ϕs,d(e)

e ∈ E, s, d ∈ V, s 6= d

(10e)

∑
e∗∈p

ρ(e, e∗)− ϕs,d(e) ≥ 0

e ∈ E, p ∈ P s,d, s, d ∈ V, s 6= d

(10f)

ρ(e, e∗) ≥ 0 e, e∗ ∈ E (10g)

ϕs,d(e) ≥ 0 e ∈ E, s, d ∈ V, s 6= d (10h)

Eqs. (10b) and (10c) are the path split ratio constraints.
Eqs. (10d)-(10h) are the constraints for oblivious routing with
preconfigured paths. Note that ρ(e, e∗) and ϕs,d(e) are two
auxiliary variables used for simplifying the optimal oblivious
routing problem as a single polynomial-sized LP. For simplic-
ity, we omit the LP duality analysis that introduces these two
auxiliary variables. Please refer to [27] for more details.

B. Explicit Routing for Critical Flows

In FlexDATE, non-critical flows are routed by the static
optimal oblivious routing derived from Eq. (10). For the
selected critical flows fK , we can reroute these critical flows
by conducting explicit routing optimization.

The critical flow rerouting problem can be described as
follows. Given a network G(V,E) with a set of traffic demands
{Ds,d} and preconfigured paths {P s,d} for the selected critical
flows (∀〈s, d〉 ∈ fK), our objective is to obtain the optimal
explicit routing ratios {σs,dp } of each critical flow such that
U is minimized. Note that the background link load {l̄e} is
contributed by the remaining non-critical flows with the default
oblivious routing. Therefore, we formulate the critical flow
rerouting problem as an optimization problem as follows.

minU (11a)

subject to
σs,dp ≥ 0 p ∈ P s,d, s, d : 〈s, d〉 ∈ fK (11b)∑
p∈P s,d

σs,dp = 1 s, d : 〈s, d〉 ∈ fK (11c)

le =
∑

〈s,d〉∈fK

∑
p∈P s,d

δs,dp,e · σs,dp ·Ds,d + l̄e e ∈ E (11d)

le ≤ ce · U e ∈ E (11e)

Eqs. (11b) and (11c) are the path split ratio constraints for
the selected critical flows. Eq. (11d) indicates that the traffic
load on link e is contributed by the traffic demands of critical
flows routed by explicit routing and the traffic demands of
non-critical flows routed by the default oblivious routing. Eq.
(11e) is the link capacity utilization constraint.

After solving the above problem using LP solvers (e.g.,
Gurobi [35]), we can obtain the optimal explicit routing
strategy {σs,dp } (∀〈s, d〉 ∈ fK) for the selected critical flows.
Then, the SDN controller would update the path split ratios of
the rerouted critical flows at their source nodes accordingly.

VI. IMPLEMENTATION

In this section, we describe the experimental setup and
implementation details of FlexDATE.

8

A. Dataset

In our evaluation, we use five different real-world network
topologies, including the Abilene network, CERNET network,
GÉANT network, and two ISP networks collected by Rocket-
fuel [36]. The numbers of nodes, directed links, and source-
destination pairs of the five networks are listed in Table II.

The Abilene, CERNET, and GÉANT networks are the re-
search and education networks from the United States, China,
and Europe, respectively. For the Abilene network, the network
topology information (such as link connectivity, costs, and
capacities) and measured TMs can be found in [37]. For the
CERNET network, both the network topology and real TMs
are obtained from [38]. Since the Abilene TMs and CERNET
TMs are measured every 5 minutes, there are a total of 2016
continuous TMs each week. To evaluate the performance of
FlexDATE and correctly measure network disturbance with
consecutive TMs in the Abilene network, we choose a total
of 2016 TMs in the first week (starting from Mar. 1st, 2004)
as our training set and test our scheme on the TMs in the
following week (starting from Mar. 8th, 2004). Similarly, we
use the first week’s CERNET TMs (starting from Feb. 19th,
2013) for training and the second week’s CERNET TMs
(starting from Feb. 26th, 2013) for evaluation. For the GÉANT
network, the topology information including link capacities
and costs are provided in [39]. The GÉANT TMs are available
at [40] and they are collected every 15 minutes. We select a
total of 672 continuous TMs in the first week (starting from
Jan. 1st, 2005) as our training set and test our scheme on the
TMs in the following week (starting from Jan. 8th, 2005).

For the Sprintlink and Tiscali networks collected by Rock-
etfuel, only the link costs are given while the link capacities
are not provided. Therefore, we infer the link capacities as
the inverse of link costs based on the default link cost setting
in Cisco routers, which is a commonly adopted approach
in literature [41]–[43]. Since there are no measured TMs
available for these two networks, we synthesize a series
of spatiotemporal TMs using the Modulated Gravity Model
(MGM) [44], [45]. MGM can construct spatial properties with
gravity-model-like constraints and utilize sinusoids to reflect
the cyclical nature of TMs, which is suitable for emulating
the characteristics of real traffic. To evaluate FlexDATE in
different traffic scenarios, we combine hourly and daily traffic
patterns in MGM and use different parameters to control traffic
variations. Specifically, half of the TMs are generated with
large traffic variations to represent dynamic traffic scenarios,
and the rest of the TMs are relatively stable with small traffic
variations. For stable TMs, the daily and hourly Peak-to-Mean
(PM) ratios are separately configured as 1.1 and 1.05 to limit
traffic variations, and the spatial variance of daily traffic is only
1.5. As for dynamic TMs, we use a higher spatial variance
of 3 for daily traffic and set the daily and hourly PM ratios
to 5 and 1.5, respectively. To simulate extreme conditions,
we further introduce an exponential model [44] for dynamic
TMs to increase traffic variations. In our evaluation, both the
training set and test set include 100 dynamic TMs and 100
stable TMs.

TABLE II
REAL-WORLD NETWORK TOPOLOGIES FOR EVALUATION

Topology Nodes Directed Links S-D Pairs
Abilene 12 30 132

CERNET 14 32 182
GÉANT 23 74 506

Sprintlink (US) 44 166 1892
Tiscali (Europe) 49 172 2352

B. Hyperparameters

The GNN-based actor-critic architecture is implemented
using TensorFlow [46]. For the encoder, we set the embedding
dimension to 64 and the number of attention heads to 8.
For the FF sub-layer in each attention layer, the intermedi-
ate layer dimension is set to 256. Besides, the number of
attention layers H is set to the number of max hops in
each network to ensure complete message exchange. With
fewer attention layers, the training speed could be slightly
increased, but the performance of FlexDATE would also be
degraded due to potential information loss. For the decoder,
the intermediate layer dimension is set to 128 with Leaky
ReLU as the activation function. The FF layer of the K-
net policy network has an output dimension of Kub (i.e., the
maximum number of critical flows), where the value of Kub

for each topology is later shown in Table III. For the CF -
net policy network, the FF layer has an output dimension of
N∗(N−1), which represents the number of source-destination
pairs in the network since N is the number of network nodes.
A softmax function is applied to the output of each policy
network to generate the probabilities for all available actions.
The critic network is similar to the policy networks except
that the last layer is a fully connected linear layer with only
one neuron corresponding to the baseline b(st). Additionally,
the learning rates αk, α, and αv are initially configured as
0.0001 with a decay rate of 0.96 every 500 iterations, while
the entropy factors βk and β are set to 0.1. We do not
use sophisticated hyperparameter tuning methods [47] and fix
all these hyperparameters throughout our experiments. The
experiment results in Section VII demonstrate that FlexDATE
works well in different network conditions with a single set
of hyperparameters.

C. Parallel Training

To speed up training, we spawn multiple actor agents in
parallel as suggested by [31]. Each actor agent is configured
to experience a different subset of the training set. Then, these
agents continually forward their tuples (state, action, reward)
to a central learner agent, which aggregates them to train the
policy networks and critic network. The central learner agent
performs a gradient update using Eqs. (6)-(8) according to
the received tuples and then sends back the updated network
parameters to the actor agents. In our evaluation, we use 20
actor agents with 21 CPU cores (one 2.9 GHz core for each
agent) and 32 GB memory to train FlexDATE in a high-
performance computing cluster. The training process is greatly
facilitated due to our scalable neural network architecture
design. It takes approximately 8 hours to train a FlexDATE
model from scratch for small networks (i.e., Abilene and

9

CERNET) with 8,000 iterations. In the GÉANT network,
15,000 iterations are needed to reach convergence with 15
hours of training. For the remaining ISP networks with more
than 40 nodes, it requires less than 1 day’s training to converge
since the action space is much larger. It is also worth noting
that all the training costs are incurred offline and the resource
consumption can be adjusted based on different hardware
specifications (e.g., 4 CPU cores in a server). Once the training
is done, we can deploy FlexDATE in the SDN controller,
where the inference time is less than one second and the
resource consumption is relatively low (see Section VII-E).

D. Baselines

Traditional TE solutions introduce considerable QoS degra-
dation due to frequent and substantial flow rerouting in the
network without consideration of network disturbance. To
demonstrate the advantages of FlexDATE in mitigating net-
work disturbance and improving network performance, we
compare FlexDATE to the following schemes:

1) Optimal Oblivious Routing (OR): optimizes a routing
with respect to all possible TMs using an LP formulation
described in Eq. (10) that is modified from [27], and
distributes traffic on the preconfigured paths according
to optimal oblivious routing without the knowledge of
actual traffic demands.

2) Equal-Cost Multi-Path (ECMP) [48]: distributes traffic
evenly among available next hops along the shortest
paths based on the link cost settings.

3) DATE [26]: customizes an actor-critic RL approach to
select 20% of total flows as critical flows and further
utilizes LP to reroute these critical flows, while non-
critical flows are routed by ECMP. A fixed network
disturbance target is specified during RL training to limit
network disturbance.

4) DATE-OR: modifies DATE [26] by leveraging OR to
forward non-critical flows instead of using ECMP.

5) Top-K: selects K flows with the largest demand volume
from a given TM and reroutes these flows using the
LP formulation in Eq. (11), where the value of K is
determined by the K-net policy network of FlexDATE.
This heuristic method is based on the assumption that
elephant flows would have a dominant impact on net-
work performance.

6) SMORE [21]: computes a path set using an oblivious
routing algorithm [20] and deploys a centralized con-
troller to dynamically adapt the split ratios of all flows
for each TM according to these preconfigured paths.

It is worth mentioning that FlexDATE, DATE-OR, Top-K,
and OR are using the same preconfigured paths as SMORE.
Both FlexDATE, DATE-OR, and Top-K take OR as the
default routing strategy for non-critical flows, while DATE
uses ECMP to forward non-critical flows. To compare the
performance of FlexDATE and baseline methods to optimal
routing, we compute the performance ratio PR of each TE
solution according to Eq. (3). Besides, the corresponding
network disturbance DB is calculated using Eq. (2) in our
evaluation to measure the impact of flow rerouting caused

by different TE solutions. Note that OR and ECMP would
not incur any network disturbance since they do not perform
routing updates when traffic changes.

VII. EVALUATION

Extensive simulations are conducted based on five real-
world network topologies and their TMs to evaluate the perfor-
mance of FlexDATE in dynamic traffic conditions and single
link failure scenarios. We compare FlexDATE to state-of-the-
art TE solutions to show the effectiveness of FlexDATE in
mitigating network disturbance while achieving near-optimal
network performance.

A. The Number of Critical Flows
It is important for FlexDATE to select and reroute a proper

number of critical flows K to achieve the predefined net-
work performance target with low network disturbance. If the
number of critical flows is too small, it might be difficult to
achieve good network performance. On the contrary, rerouting
too many critical flows may introduce considerable network
disturbance. To investigate the influence of rerouting different
numbers of critical flows, we conduct a series of experiments
with an increasing number of critical flows selected as a
fraction of the total flows. Meanwhile, we need to determine
an appropriate upper bound value Kub for each network to
reduce the action space of K-net as described in Section
IV-A. To find a good candidate for Kub, we temporarily
disable K-net and train FlexDATE with a unique K value
that is fixed for all TMs in each experiment. Besides, we
also temporarily remove the penalty on disturbance in the
reward function such that FlexDATE would aim at maximizing
network performance without considering network disturbance
in these experiments. The reason is that FlexDATE needs to
ensure good performance in the worst case when K = Kub,
even though it could introduce high network disturbance at
the moment. Note that the comparison is mainly performed
on the training dataset of the Abilene and Sprintlink networks
since the test dataset should be unknown when we determine
the Kub value for RL training. The results for other networks
are similar.

Trade-off between performance and disturbance. Fig. 4
shows the average performance ratio and network disturbance
of FlexDATE with an increasing number of critical flows
selected in the Abilene and Sprintlink networks, where the
X-axis is the percentage of total flows selected as critical
flows. Recall that the total number of flows in the network
is N ∗ (N − 1), where N is the number of network nodes.
Thus, 10% of total flows selected means that the number of
critical flows is K = 10% ∗ N ∗ (N − 1). From Fig. 4, we
can see that the average performance ratio becomes higher as
FlexDATE selects and reroutes more critical flows in the two
networks. However, the corresponding network disturbance is
also increasing as K grows up, which demonstrates the trade-
off between network performance and disturbance.

Configuration of upper bound value. As depicted in Fig.
4(a), the worst-case performance ratio is above the perfor-
mance target PRtg = 0.9 when FlexDATE selects 30% of

10

10% 20% 30%
Percentage of Total Flows Selected

0.6

0.7

0.8

0.9

1.0
Av

g.
 P

er
fo

rm
an

ce
 R

at
io

10% 20% 30%
Percentage of Total Flows Selected

0

5%

10%

15%

20%

25%

30%

35%

Av
g.

 N
et

w
or

k
D

is
tu

rb
an

ce

(a) Network performance and disturbance in the Abilene network.

5% 10% 15%
Percentage of Total Flows Selected

0.7

0.8

0.9

1.0

Av
g.

 P
er

fo
rm

an
ce

 R
at

io

5% 10% 15%
Percentage of Total Flows Selected

0

5%

10%

15%

Av
g.

 N
et

w
or

k
D

is
tu

rb
an

ce

(b) Network performance and disturbance in the Sprintlink network.

Fig. 4. Evolution of FlexDATE’s average performance ratio and network
disturbance with an increasing number of critical flows K selected and
rerouted in the Abilene and Sprintlink networks. The error bars span from
the average value to the highest/lowest value achieved on the training dataset.

TABLE III
UPPER BOUND FOR THE NUMBER OF CRITICAL FLOWS

Topology Max Critical Flows Kub % of Total Flows
Abilene 40 30%

CERNET 36 20%
GÉANT 51 10%

Sprintlink 284 15%
Tiscali 118 5%

total flows for rerouting. Thus, we set Kub = 30%∗N∗(N−1)
for the Abilene network. Similarly, we configure the maximum
number of critical flows to Kub = 15% ∗ N ∗ (N − 1) for
the Sprintlink network. Such Kub settings are demonstrated
to work well in the test dataset, as later shown in Section
VII-C. Once the upper bound Kub is determined, FlexDATE
can be trained to choose a K value from 1 to Kub and then
select K critical flows for rerouting, which provides more
flexibility to handle different network scenarios. As shown in
Fig. 4(b), when selecting 5% of total flows in the Sprintlink
network, FlexDATE can achieve PR = 1 in the extreme cases.
It means that K = 5% ∗ N ∗ (N − 1) is good enough for
some Sprintlink TMs to achieve optimal performance with
low disturbance. However, the worst-case performance ratio
is only 0.75 with 5% of total flows rerouted, which implies
that FlexDATE should reroute more flows (e.g., 15% of total
flows) in some traffic scenarios to maintain good performance.
In the following experiments, the upper bound value Kub for
each network is set to a portion of total flows as shown in Table
III, such that FlexDATE can ensure good network performance
with reduced network disturbance.

Sensitivity analysis of upper bound value. One potential
issue is that it could be too conservative if we determine
the upper bound value Kub based on the training dataset.
Even though the Kub settings in Table III work well in
our evaluation, FlexDATE may need to reroute more critical
flows than the current upper bound value Kub to maintain
good performance in unexpected traffic scenarios during online
deployment. Therefore, we need to consider the trade-off

0 200 400 600
Traffic Matrix Index

0

50

100

150

200

250

N
um

be
r

of
 C

ri
tic

al
 F

lo
w

s

10% 30% 50%

(a) Number of critical flows K.

0 200 400 600
Traffic Matrix Index

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rf

or
m

an
ce

 R
at

io

PR (10%)
PR (30%)
PR (50%)

0.0

0.1

0.2

0.3

N
et

w
or

k
D

is
tu

rb
an

ce

DB (10%)
DB (30%)
DB (50%)

(b) Performance and disturbance.

Fig. 5. Sensitivity analysis of FlexDATE with different upper bound value
Kub settings (10%, 30%, and 50% of total flows) in the GÉANT network.

between performance guarantee in unexpected traffic scenarios
and RL model complexity/convergence when determining the
Kub value. To understand the effect of different Kub settings,
we perform a sensitivity analysis based on the test dataset of
the GÉANT network, where FlexDATE is trained with Kub =
10%, 30%, and 50% of total flows in the network, respectively.
It is worth noting that Kub = 10% of total flows is generally
good enough for FlexDATE to achieve the performance target
for all GÉANT TMs, as shown in Table III. In other words,
the Kub settings with 30% or 50% of total flows are much
larger than required.

Fig. 5 shows the number of critical flows selected for each
test TM and the corresponding network performance and dis-
turbance in the GÉANT network under different Kub settings.
From Fig. 5(a), we can see that the number of critical flows
K becomes larger as Kub increases, and the K value is also
changing more drastically and frequently. Although FlexDATE
does not converge to a smaller K value when a large Kub is
configured, it is still able to achieve the performance target in
most cases with low network disturbance incurred, as shown
in Fig. 5(b). Compared to the original 10% Kub setting,
FlexDATE incurs lower network disturbance with more critical
flows selected under the 30% Kub setting. This interesting
observation reveals that a large K value does not essentially
lead to high disturbance, especially when K is much higher
than required. To explain this, we can refer to Definitions 1 and
2, where network disturbance is measured as the percentage
of total rerouted traffic by comparing the difference between
the updated routing and the previous routing. If the updated
routing does not change too much compared to the previous
routing (e.g., RL selects similar critical flows or LP’s solution
is similar), the resulting network disturbance could be lower
even though the number of critical flows K is larger. Given
the rich information from input states and the effective reward
function design for balancing performance and disturbance,
FlexDATE can learn a good policy under different Kub settings
to achieve good performance with mitigated disturbance.

Another interesting observation from Fig. 5(b) is that there
are more traffic scenarios in the test dataset where FlexDATE
cannot achieve the performance target (PRtg = 0.9) with
a larger Kub value employed. This is because the model
complexity of RL becomes higher as Kub increases, and thus
is more difficult for RL to reach convergence with a higher
training overhead. Even though a larger Kub may be useful to
guarantee performance in future unexpected traffic scenarios,
it would lead to a much larger solution space to explore during
the training procedure. Given a network with N nodes, there
are N ∗ (N − 1) flows in the network and

∑Kub
K=1 C

K
N∗(N−1)

11

0.75 0.8 0.85 0.9 0.95 1.0
Performance Ratio

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

λ= 0.5, µ= 1

λ= 0.25, µ= 1

λ= 0.75, µ= 1

λ= 0.5, µ= 1.5

λ= 0.5, µ= 2

0 5% 10% 15% 20% 25% 30%
Network Disturbance

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

λ= 0.5, µ= 1

λ= 0.25, µ= 1

λ= 0.75, µ= 1

λ= 0.5, µ= 1.5

λ= 0.5, µ= 2

Fig. 6. CDF of performance ratio and network disturbance in the Abilene
network with different penalty factor settings in FlexDATE’s reward function.

possible combinations of critical flows with consideration of
flexible K values, which makes the critical flow selection
problem extremely difficult if we configure a large Kub value.
In this situation, it is necessary to reduce the action space
with a proper upper bound value Kub to ensure convergence.
Since we have similar observations in the other four networks,
we adopt a relatively conservative method to decide the Kub

value as shown in Table III, which is demonstrated to work
well in the following experiments. When it comes to actual
deployment, network operators can consider using a Kub value
that is slightly higher than needed to balance performance
guarantee and model complexity.

B. Penalty Factor Settings

The reward function design in Eq. (4) is essential for Flex-
DATE to learn a good critical flow selection policy towards
near-optimal performance and low disturbance. One of the key
aspects is to assign appropriate values to the penalty factors
λ and µ on network disturbance at different training stages.
Thus, we conduct a series of experiments to investigate the
impact of penalty factor settings in the Abilene network.

Fig. 6 shows the Cumulative Distribution Function (CDF) of
network performance and disturbance with FlexDATE under
different penalty factor settings. When λ is fixed to 0.5,
FlexDATE would achieve lower network performance and
disturbance as µ increases from 1 to 2. Intuitively, larger
µ means that RL would be more sensitive to network dis-
turbance when the performance target is satisfied, so the
learned policy would avoid high disturbance at the cost of
slight performance degradation. When µ is fixed to 1, network
disturbance is decreasing as λ increases from 0.25 to 0.75. This
is reasonable since RL would prioritize disturbance mitigation
over performance improvement with a larger penalty factor.
However, there is a pivot at λ = 0.5 where FlexDATE would
achieve the best performance. Given that λ is activated when
the performance target is not satisfied, it would affect RL
training in the early training stage when RL is exploring the
action space without concrete ideas about how to identify
critical flows to achieve the performance target. Therefore,
it is essential to find a good balance between performance
and disturbance to facilitate the training process and achieve
convergence. In this scenario, λ = 0.5 and µ = 1 is suitable
for FlexDATE with almost all TMs satisfying the performance
target. Since we have similar observations in the other four
networks, we adopt λ = 0.5 and µ = 1 as the default penalty
factor settings in our evaluation.

C. Comparison of Performance and Disturbance
For comparison, we calculate the performance ratio of

FlexDATE and the baseline methods according to Eq. (3) and
measure the corresponding network disturbance using Eq. (2).
As mentioned in Section IV-A, we set the performance target
PRtg to 0.9 such that FlexDATE can achieve near-optimal
performance (i.e., 90% of optimal performance) and mitigate
network disturbance. For DATE and DATE-OR, we use a
disturbance target of 15% to balance network performance and
disturbance as described in [26].

Performance analysis of FlexDATE. Fig. 7 illustrates the
comparison of different schemes in terms of performance
ratio and network disturbance in the Abilene, CERNET, and
GÉANT networks. For the three networks with real traffic
traces, FlexDATE can achieve near-optimal performance and
satisfy the performance target of PRtg = 0.9 for 99% of the
test TMs in the second week, where the average performance
ratio in the three networks is 95.8%, 97.5%, and 99.5%,
respectively. Meanwhile, the average network disturbance in-
curred by FlexDATE is only 5.13%, 1.83%, and 2.96% in
the Abilene, CERNET, and GÉANT networks, respectively.
In other words, FlexDATE has the lowest average network
disturbance among different TE solutions in the CERNET
and GÉANT networks except for the static OR and ECMP,
which demonstrates the effectiveness of FlexDATE to mitigate
network disturbance and service disruptions. This is because
FlexDATE is able to adaptively adjust the number of critical
flows K and properly select and reroute a set of critical flows
for different TMs to accommodate dynamic traffic changes. As
depicted in Fig. 8, the number of critical flows K selected by
FlexDATE is ranging between 21-40 for the Abilene network
and 26-36 for the CERNET network in accordance with
various traffic scenarios to achieve the performance target with
reduced network disturbance.

Comparison against baseline methods. For the baseline
methods, DATE can effectively limit network disturbance
in the extreme cases with a preset disturbance target (i.e.,
15%). In the Abilene network, DATE incurs low network
disturbance on average that is comparable to FlexDATE,
while the maximum network disturbance of DATE is only
17.5%, which is the lowest value among all TE solutions
that require routing updates. However, DATE would expe-
rience severe performance degradation in the extreme cases
even though the average performance looks promising. In
the Abilene, CERNET, and GÉANT networks, DATE only
achieves a performance ratio of 78%, 66.7%, and 62.7% in
the worst case, respectively, which reveals the limitation of
DATE when dealing with drastic traffic changes. By substitut-
ing the default ECMP routing with the robust OR, DATE-
OR can achieve better worst-case performance with lower
disturbance compared to the original DATE. However, due to
the strict restriction on network disturbance and fixed number
of critical flows, both DATE and DATE-OR lack the agility
to adapt to large traffic variations and their routing updates
are less effective. In contrast, FlexDATE can select flexible
numbers of critical flows with two policy networks and use
a performance target instead to ensure good performance in

12

0.5 0.6 0.7 0.8 0.9 1.0
Performance Ratio

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

FlexDATE
DATE
DATE-OR
Top-K
SMORE
OR
ECMP

0 10% 20% 30% 40% 50%
Network Disturbance

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

FlexDATE
DATE
DATE-OR
Top-K
SMORE
OR
ECMP

(a) Abilene network.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Performance Ratio

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

FlexDATE
DATE
DATE-OR
Top-K
SMORE
OR
ECMP

0 10% 20% 30% 40% 50% 60%
Network Disturbance

0.2

0.4

0.6

0.8

1.0

C
D

F
FlexDATE
DATE
DATE-OR
Top-K
SMORE
OR
ECMP

(b) CERNET network.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Performance Ratio

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

FlexDATE
DATE
DATE-OR
Top-K
SMORE
OR
ECMP

0 5% 10% 15% 20% 25% 30%
Network Disturbance

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

FlexDATE
DATE
DATE-OR
Top-K
SMORE
OR
ECMP

(c) GÉANT network.

Fig. 7. Comparison of performance ratio and network disturbance in CDF
among FlexDATE and the baseline methods in the second week of the three
networks with real traffic traces. Note that OR and ECMP are static routing
strategies without network disturbance.

different traffic scenarios. As shown in Fig. 7, the worst-
case performance of FlexDATE in the three networks is 87%,
which can outperform DATE and DATE-OR by at most 24.3%
and 3.8%, respectively. Although DATE-OR can achieve a
comparable worst-case performance ratio as FlexDATE, there
is no guarantee for DATE-OR to achieve a performance target
since it only constrains network disturbance in the reward
function. In Fig. 7(b), there are 37.3% of traffic scenarios
in the CERNET network where DATE-OR cannot provide
near-optimal performance (i.e., PR < 0.9), while FlexDATE
can satisfy the performance target for 99% of test TMs.
Thus, FlexDATE achieves a better trade-off between network
performance and disturbance compared to DATE-OR with an
improved RL design.

For Top-K, the value of K is determined by FlexDATE’s
K-net policy network. From Fig. 7, we can see that Top-K
achieves similar performance as FlexDATE but with much
higher network disturbance. This is because Top-K would
reroute K flows with the largest traffic demands. Such ob-
servations demonstrate the importance of the CF -net policy
network in FlexDATE to select a proper set of critical flows for
rerouting, given that the K value determined by K-net alone
cannot effectively mitigate network disturbance when com-
bined with a heuristic approach. SMORE can achieve almost
the same performance as optimal routing, which demonstrates
the feasibility and good properties of the preconfigured paths
used by SMORE. However, SMORE would also incur high
network disturbance when updating the path split ratios of
all flows in the network. Compared to SMORE, FlexDATE
can reduce the average and maximum network disturbance

0 500 1000 1500 2000
Traffic Matrix Index

0

10

20

30

40

N
um

be
r

of
 C

ri
tic

al
 F

lo
w

s

(a) Abilene network (Kub = 40).

0 500 1000 1500 2000
Traffic Matrix Index

0

9

18

27

36

N
um

be
r

of
 C

ri
tic

al
 F

lo
w

s

(b) CERNET network (Kub = 36).

Fig. 8. Number of critical flows K selected by FlexDATE for each test TM
in the second week of the Abilene and CERNET networks.

by 2.9%-9.1% and 19.2%-29.6% in the three networks listed
in Fig. 7, respectively. Thus, rerouting a small set of critical
flows is a good choice to trade off network performance
and disturbance. As for the static routing strategies, their
performance ratios are not very promising since there are
no routing updates when traffic changes. However, OR can
provide a better worst-case performance guarantee compared
to ECMP. By forwarding non-critical flows with OR, the
worst-case performance of FlexDATE and DATE-OR becomes
much better than DATE. Therefore, OR is suitable to serve as
the default routing strategy for non-critical flows in FlexDATE.

Generalization over different traffic variations. To validate
the capability of FlexDATE in handling different traffic fluc-
tuation scenarios in large networks, we conduct experiments
in the Sprintlink and Tiscali networks with synthesized TMs
as described in Section VI-A. Fig. 9 shows the performance
and disturbance comparison on each synthesized test TM with
different traffic variations, where the first 100 TMs represent
dynamic traffic scenarios and the remaining 100 TMs are
relatively stable in terms of traffic variation. When it comes
to the comparison of different traffic fluctuation scenarios,
we can observe more frequent performance degradation and
higher network disturbance for several TE solutions in the
dynamic TMs compared to the stable TMs. For instance, the
performance ratio of DATE could be lower than OR with
dynamic TMs in the Tiscali network, as illustrated in Fig. 9(b).
Due to drastic traffic changes, the routing optimized based on
previous traffic conditions would be less effective in dynamic
traffic scenarios, which requires more routing changes to
maintain good performance with higher disturbance.

Unlike DATE, FlexDATE can achieve the performance
target PRtg = 0.9 for all TMs with a worst-case performance
ratio of 97.6% and 93.2% in the Sprintlink and Tiscali net-
works, respectively. As shown in Fig. 10, FlexDATE tends to
select different numbers of critical flows in dynamic scenarios
to accommodate drastic traffic changes, while the K values in
stable scenarios are relatively constant. Moreover, the average
performance ratio of FlexDATE is 99.9% in the two networks
while rerouting less than 5.1% of the total network traffic
on average, which demonstrates the capability of FlexDATE
to accommodate different traffic fluctuation scenarios. One
interesting finding is that FlexDATE would incur higher dis-
turbance in the stable TMs compared to the dynamic TMs
in the Tiscali network. This observation also holds for other
approaches that reroute a small set of flows, such as Top-K and
DATE. One possible reason is that the performance of OR and

13

0 50 100 150 200
Traffic Matrix Index

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pe
rf

or
m

an
ce

 R
at

io
 Large Variation Small Variation

FlexDATE
DATE
DATE-OR

Top-K
SMORE

OR
ECMP

0 50 100 150 200
Traffic Matrix Index

0
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

N
et

w
or

k
D

is
tu

rb
an

ce

 Large Variation Small Variation
FlexDATE
DATE
DATE-OR

Top-K
SMORE

OR
ECMP

(a) Sprintlink network.

0 50 100 150 200
Traffic Matrix Index

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pe
rf

or
m

an
ce

 R
at

io

 Large Variation Small Variation

FlexDATE
DATE
DATE-OR

Top-K
SMORE

OR
ECMP

0 50 100 150 200
Traffic Matrix Index

0
5%

10%
15%
20%
25%
30%
35%

N
et

w
or

k
D

is
tu

rb
an

ce

 Large Variation Small Variation
FlexDATE
DATE
DATE-OR

Top-K
SMORE

OR
ECMP

(b) Tiscali network.

Fig. 9. Comparison of performance ratio and network disturbance on each
test TM of the Sprintlink and Tiscali networks with different traffic variations.
The first 100 TMs represent dynamic traffic scenarios with large variations,
while the remaining 100 TMs are relatively stable with small variations.

0 50 100 150 200
Traffic Matrix Index

0

100

200

300

N
um

be
r

of
 C

ri
tic

al
 F

lo
w

s Large Variation Small Variation

(a) Sprintlink network (Kub = 284).

0 50 100 150 200
Traffic Matrix Index

0

40

80

120

N
um

be
r

of
 C

ri
tic

al
 F

lo
w

s Large Variation Small Variation

(b) Tiscali network (Kub = 118).

Fig. 10. Number of critical flows K selected by FlexDATE for each test TM
with different traffic variations in the Sprintlink and Tiscali networks.

ECMP are also lower in stable traffic scenarios. Since these
TE solutions use OR or ECMP as the default routing strategy
for non-critical flows, they might need to reroute flows with
larger traffic demands to maintain good performance at the cost
of incurring higher network disturbance. Another observation
is that DATE-OR can achieve comparable performance and
disturbance as FlexDATE. As depicted in Fig. 9, DATE-OR
achieves similar performance with slightly higher disturbance
than FlexDATE in the Sprintlink network. For the Tiscali
network, DATE-OR’s performance in stable traffic scenarios
is worse than FlexDATE, but the corresponding disturbance
is also lower than FlexDATE. Since the performance of the
original DATE is relatively well in these two networks, it
is reasonable for DATE-OR to achieve good performance
by employing the robust OR for non-critical flows. Overall,
the simulation results show that FlexDATE can generalize to
different traffic scenarios with near-optimal performance and
low disturbance by selecting and rerouting flexible numbers
of critical flows.

D. Resilience

For TE operations, it is important to maintain good net-
work performance in the presence of link failures. When
link failure happens, FlexDATE is able to perform TE-level
resilience and adapt to different link failure scenarios. This
is because the GNN architecture adopted by FlexDATE can
effectively model network topology and perform message
exchanges between neighboring nodes according to network

Abilene CERNET GÉANT Sprintlink Tiscali0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pe
rf

or
m

an
ce

 R
at

io

FlexDATE
DATE

DATE-OR
Top-K

SMORE
OR

ECMP

(a) Network performance with different single link failures.

Abilene CERNET GÉANT Sprintlink Tiscali
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
et

w
or

k
D

is
tu

rb
an

ce

FlexDATE
DATE
DATE-OR
Top-K

SMORE
OR
ECMP

(b) Network disturbance with different single link failures.

Fig. 11. Performance ratio and network disturbance comparison in random
single link failure scenarios. The upper and lower whiskers are the highest and
lowest value achieved on the entire test set, respectively. The box is drawn
from the 25th percentile to the 75th percentile value with a horizontal line in
the box representing the median value.

connectivity. When there is a link failure, such information
can be fed into FlexDATE through the updated network CM.
Then, the direct information exchange between the network
nodes connected to the failed link would be temporarily
disabled in GNN. Therefore, FlexDATE can effectively absorb
link failure information when selecting and rerouting a new
set of critical flows. To reveal the potential of FlexDATE’s
GNN architecture in handling link failures, we evaluate the
resilient routing provided by FlexDATE under various single
link failure scenarios4. Note that FlexDATE is trained without
any knowledge of link failures. For the Abilene, CERNET,
and GÉANT networks, we randomly fail one link every hour,
which means that twelve Abilene/CERNET TMs and four
GÉANT TMs are evaluated before switching to the next link
failure scenario. As for the Sprintlink and Tiscali networks, we
randomly fail a unique link every 2 TMs. If some of the flows
are affected by link failure (e.g., some preconfigured paths
become unavailable), they must be rerouted to prevent traffic
loss. In this scenario, the rerouted traffic of these affected
flows should not be counted towards network disturbance
measurement of FlexDATE and the baseline methods.

Fig. 11 presents the performance ratio and network dis-
turbance of different TE solutions under various single link
failure scenarios. We can see that FlexDATE performs the
best all the time. As shown in Fig. 11(a), FlexDATE can
adapt to different link failure scenarios and achieve above 90%
of optimal performance for almost all test TMs in the five
networks. The only exceptions are two Abilene TMs with a
performance ratio of 88.9% and 89.7%, respectively. In terms
of network disturbance, the results in Fig. 11(b) illustrate

4For single-degree nodes, failures on their inbound/outbound links are
excluded from the link failure scenarios since any failure on these links will
result in traffic loss.

14

that FlexDATE has the lowest median network disturbance
among all dynamic TE solutions except DATE-OR in the
five networks, which matches the objective of FlexDATE
to achieve near-optimal network performance and mitigate
network disturbance. Meanwhile, we can find the limitations
of the baseline methods through observations. For example,
DATE would incur low disturbance in the extreme cases with
restrictions on network disturbance, but at the cost of achieving
bad performance in some link failure scenarios. Compared to
DATE, FlexDATE achieves 7.99%-45.4% worst-case perfor-
mance improvement in the five networks. Even though DATE-
OR’s performance is much better than DATE with similar
disturbance as FlexDATE, FlexDATE can still provide better
worst-case performance than DATE-OR in the five networks
with up to 8.7% performance improvement. As for Top-K,
it can achieve good performance in most cases by rerouting
a proper number of elephant flows. However, Top-K would
experience performance degradation in the Sprintlink network
and also incur high network disturbance. For SMORE, 73.3%
of total traffic could be rerouted with severe service disruption
in the GÉANT network to maintain network performance
under link failures, while FlexDATE would cause 38.6% less
network disturbance in the worst case compared to SMORE.
As a result, FlexDATE can utilize the capability of RL and
GNN with a reasonable reward function design to achieve
good generalization in unseen single link failure scenarios.

E. Execution Time

To catch up with dynamic traffic changes and responsively
react to unexpected link failures, it is important for Flex-
DATE to achieve high efficiency in computation during online
deployment. Therefore, we measure the execution time of
FlexDATE in the five networks and list the measurement
results in Table IV, including the RL inference time for
identifying critical flows and the LP solving time for obtaining
the optimal path split ratios of the critical flows. Note that all
the time measurements are performed on a Linux server with a
4-core Intel 3.4 GHz CPU and 16 GB memory, where Gurobi
optimizer v9.1.1 [35] is configured as an LP solver.

From Table IV, we can see that the overall execution
time of FlexDATE is relatively low. Considering all traffic
scenarios in the five networks, FlexDATE can infer critical
flows and solve for optimal routing in less than 500 ms. Thus,
FlexDATE is able to catch up with dynamic traffic changes
with efficient RL inference and LP solving. There are several
reasons for FlexDATE’s high efficiency in computation. First,
unlike traditional optimal explicit routing that computes the
optimal traffic split ratio on each link, we adopt a path-
based LP formulation with fewer routing variables and lower
computation overhead. Second, FlexDATE’s LP only needs to
optimize the path split ratios of a set of critical flows instead
of all flows, which also reduces the time complexity of LP.

Besides, there are some interesting findings from Table IV.
For example, the Tiscali network is slightly larger than the
Sprintlink network (see Table II), but the RL inference time
and LP execution time in the Tiscali network are smaller
than that of the Sprintlink network. To analyze the possible

TABLE IV
EXECUTION TIME IN DIFFERENT NETWORKS

Topology Avg. K Kub
RL Inference (ms) LP Solving (ms)
Avg. Range Avg. Range

Abilene 39.0 40 1.4 1.2-5.1 28.4 19.6-116.0
CERNET 34.8 36 2.1 1.5-4.1 25.8 16.7-124.6
GÉANT 47.2 51 2.6 2.2-4.0 38.4 28.9-121.9

Sprintlink 259.0 284 5.3 4.3-10.3 266.5 258.9-431.7
Tiscali 94.0 118 3.9 3.6-5.6 88.5 70.4-98.5

causes, we list the average number of critical flows K for
each network and the corresponding upper bound value Kub

in Table IV. On the one hand, a larger Kub leads to the
higher complexity of the K-net policy network in RL, and
thus increases the RL inference time in the Sprintlink network.
On the other hand, FlexDATE selects more critical flows in
the Sprintlink network, which means there are more routing
variables to be solved by LP with higher computation com-
plexity. Thus, the computation overhead of FlexDATE in the
Sprintlink network is larger than that of the Tiscali network.
From the above analysis, we can see that the execution time
of FlexDATE is not only affected by topology size but also the
number of critical flows selected, which further demonstrates
the advantages of critical flow rerouting in FlexDATE.

VIII. RELATED WORKS

A. Traditional TE Solutions

Multiple network techniques are used for traditional TE
design. For instance, [1] and [2] use Multi-Protocol Label
Switching (MPLS) and route flows by solving an optimization
problem to obtain the flows’ explicit paths. [3], [49], and
[50] leverage Open Shortest Path First (OSPF) and ECMP
to dynamically select ECMP paths to balance link utiliza-
tion. OSPF-OMP [51] exchanges special traffic-load control
messages to adaptively allocate traffic among multiple equal-
cost paths. Weighted ECMP [4] extends ECMP by splitting
traffic based on carefully designed weights at each node to
significantly improve performance. Two-phase routing [43],
[52] chooses a set of intermediate nodes and tunes the traffic
split ratios to the nodes to optimize routing performance.

Another line of work focus on oblivious routing that pro-
vides strong performance guarantees for all possible traffic
demands. Räcke’s oblivious routing [20] constructs diverse
forwarding paths based on tree-structured overlays and com-
putes a probability distribution on these paths to forward the
traffic without any knowledge of traffic demands. Applegate
and Cohen [27] formulate an LP problem for optimal oblivious
routing that is optimized with respect to all possible TMs,
which can provide promising worst-case performance bounds.
However, these methods are still far from optimal.

B. SDN-based TE Solutions

SDN-based TE is widely applied to optimize network per-
formance with a global view of the network. Dynamic hybrid
routing [41] relies on a flexible routing policy from SDN
and dynamically re-balances traffic to accommodate traffic
fluctuations for better load balancing. Agarwal et al. [53]
consider a network with partially deployed SDN switches

15

and improve network utilization by strategically placing SDN
switches. Guo et al. [54] design a TE solution named SOTE
to achieve load balancing in an SDN/OSPF hybrid network.
Xu et al. [55] focus on real-time routing update issues by
jointly optimizing route selection and update scheduling to
reduce the route update delay. SMORE [21] generates a set
of paths using an oblivious routing algorithm [20] and then
utilizes LP to dynamically adapt the split ratios of all flows
based on these preconfigured paths. Additionally, SDN-based
TE solutions have been deployed in the industry to achieve
high utilization in inter-data center WANs, including Google’s
B4 [56] and Microsoft’s SWAN [57]. However, none of the
above works takes mitigating the impact of flow rerouting into
account when designing TE solutions.

C. Machine Learning-based TE Solutions
Machine learning has been used to design different TE

solutions. To minimize signaling delay in large SDNs, Lin
et al. [58] propose QoS-aware adaptive routing, which em-
ploys RL for designing a distributed three-level control plane
architecture. Xu et al. [59] use RL to optimize performance
metrics (i.e., throughput and delay) in backbone networks. For
multi-region networks, MRTE [60] utilizes multi-agent RL to
model each network region as individual RL agents, where
each region can control terminal and outgoing traffic to make
routing decisions in a distributed manner. To reduce routing
update overhead, SmartEntry [61] and FlexEntry [62] leverage
RL to identify critical entries for destination-based routing
updates with considerable entry update savings.

As an efficient graph representation learning framework,
GNN is recently applied in TE solutions to model network
topology with good generalization. For distributed TE in
multi-region networks, FedTe [24] develops a two-layer GNN
architecture in accordance with different levels of network
abstraction and uses Supervised Learning (SL) to predict
the optimal cross-region traffic distribution for local routing
optimization. Bernárdez et al. [25] combine multi-agent RL
and GNN to perform message exchanges between neighboring
links, which results in effective link weight settings for OSPF
to reduce network congestion. However, these existing works
do not consider the impact of flow rerouting on existing
services or take mitigating network disturbance as an objective.

IX. CONCLUSION

In this paper, we apply a new QoS metric called network
disturbance to measure the impact of flow rerouting on WANs.
To incorporate network disturbance in TE design, we propose a
flexible and disturbance-aware TE solution named FlexDATE,
which leverages RL and GNN to learn a flexible critical
flow selection policy that can accommodate dynamic network
traffic and different link failure scenarios. For each given TM,
FlexDATE smartly selects a small set of critical flows with
RL and reroutes them with LP to balance link utilization of
the network while mitigating network disturbance. Extensive
evaluations show that FlexDATE is able to achieve near-
optimal load balancing performance and effectively mitigate
network disturbance in dynamic traffic conditions as well as
single link failure scenarios.

REFERENCES

[1] Y. Wang and Z. Wang, “Explicit routing algorithms for internet traffic
engineering,” in IEEE ICCCN, 1999, pp. 582–588.

[2] E. D. Osborne and A. Simha, Traffic engineering with MPLS. Cisco
Press, 2002.

[3] J. Chu and C.-T. Lea, “Optimal link weights for ip-based networks
supporting hose-model vpns,” IEEE/ACM ToN, vol. 17, no. 3, pp. 778–
788, 2009.

[4] J. Zhang, K. Xi, L. Zhang, and H. J. Chao, “Optimizing network
performance using weighted multipath routing,” in IEEE ICCCN, 2012,
pp. 1–7.

[5] C. Hare, “Simple network management protocol (snmp).” 2011.
[6] R. Sommer and A. Feldmann, “Netflow: Information loss or win?” in

ACM SIGCOMM IMW, 2002, pp. 173–174.
[7] “Tiktok,” 2021. [Online]. Available: https://www.tiktok.com/
[8] “Kuaishou,” 2021. [Online]. Available: https://www.kuaishou.com/en
[9] “Vimeo,” 2021. [Online]. Available: https://www.vimeo.com/

[10] “Google lens,” 2021. [Online]. Available: https://lens.google.com/
[11] P. Bosshart et al., “P4: Programming protocol-independent packet pro-

cessors,” ACM SIGCOMM CCR, vol. 44, no. 3, pp. 87–95, 2014.
[12] “AT&T picks barefoot networks for programmable switches,” 2017.

[Online]. Available: https://www.sdxcentral.com/articles/news/att-picks-
barefoot-networks-programmable-switches/2017/04/

[13] Y. Li et al., “Hpcc: High precision congestion control,” in ACM
SIGCOMM, 2019, pp. 44–58.

[14] C. Kim et al., “In-band network telemetry via programmable data-
planes,” in ACM SIGCOMM, vol. 15, 2015.

[15] N. McKeown et al., “Openflow: enabling innovation in campus net-
works,” ACM SIGCOMM CCR, vol. 38, no. 2, pp. 69–74, 2008.

[16] N. Van Tu, J. Hyun, and J. W.-K. Hong, “Towards onos-based sdn
monitoring using in-band network telemetry,” in APNOMS, 2017, pp.
76–81.

[17] J. Hyun, N. Van Tu, and J. W.-K. Hong, “Towards knowledge-defined
networking using in-band network telemetry,” in IEEE/IFIP NOMS,
2018, pp. 1–7.

[18] W. Reda et al., “Path persistence in the cloud: A study of the effects
of inter-region traffic engineering in a large cloud provider’s network,”
ACM SIGCOMM CCR, vol. 50, no. 2, pp. 11–23, 2020.

[19] R. Carpa, M. D. de AssunçÃo, O. Glück, L. LefÈvre, and J.-C. Mignot,
“Evaluating the impact of sdn-induced frequent route changes on tcp
flows,” in IEEE CNSM, 2017, pp. 1–9.

[20] H. Räcke, “Optimal hierarchical decompositions for congestion mini-
mization in networks,” in ACM STOC, 2008, p. 255–264.

[21] P. Kumar et al., “Semi-oblivious traffic engineering: The road not taken,”
in USENIX NSDI, 2018, pp. 157–170.

[22] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” arXiv preprint arXiv:1706.02216, 2018.

[23] P. Veličković et al., “Graph attention networks,” arXiv preprint
arXiv:1710.10903, 2018.

[24] M. Ye, J. Zhang, Z. Guo, and H. J. Chao, “Federated traffic engineering
with supervised learning in multi-region networks,” in IEEE ICNP, 2021,
pp. 1–12.

[25] G. Bernárdez et al., “Is machine learning ready for traffic engineering
optimization?” in IEEE ICNP, 2021, pp. 1–11.

[26] M. Ye, J. Zhang, Z. Guo, and H. J. Chao, “Date: Disturbance-aware
traffic engineering with reinforcement learning in software-defined net-
works,” in IEEE/ACM IWQoS, 2021, pp. 1–10.

[27] D. Applegate and E. Cohen, “Making intra-domain routing robust to
changing and uncertain traffic demands: Understanding fundamental
tradeoffs,” in ACM SIGCOMM, 2003, p. 313–324.

[28] J. Zhang, M. Ye, Z. Guo, C. Y. Yen, and H. J. Chao, “Cfr-rl: Traffic
engineering with reinforcement learning in sdn,” IEEE JSAC, vol. 38,
no. 10, pp. 2249–2259, 2020.

[29] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource man-
agement with deep reinforcement learning,” in ACM HotNets, 2016, pp.
50–56.

[30] W. Kool et al., “Attention, learn to solve routing problems!” in ICLR,
2018.

[31] V. Mnih et al., “Asynchronous methods for deep reinforcement learning,”
in ICML, 2016, pp. 1928–1937.

[32] A. Vaswani et al., “Attention is all you need,” in NIPS, 2017, pp. 5998–
6008.

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016, pp. 770–778.

[34] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv
preprint arXiv:1607.06450, 2016.

16

[35] Gurobi Optimization LLC, “Gurobi optimizer reference manual,” 2021.
[Online]. Available: https://www.gurobi.com/

[36] N. Spring, R. Mahajan, and D. Wetherall, “Measuring isp topologies
with rocketfuel,” ACM SIGCOMM CCR, vol. 32, no. 4, pp. 133–145,
2002.

[37] Yin Zhang’s Abilene TM. [Online]. Available:
https://www.cs.utexas.edu/~yzhang/research/AbileneTM

[38] B. Zhang, J. Bi, J. Wu, and F. Baker, “Cte: Cost-effective intra-domain
traffic engineering,” ACM SIGCOMM CCR, vol. 44, no. 4, pp. 115–116,
2014.

[39] S. Uhlig, B. Quoitin, J. Lepropre, and S. Balon, “Providing public in-
tradomain traffic matrices to the research community,” ACM SIGCOMM
CCR, vol. 36, no. 1, pp. 83–86, 2006.

[40] GÉANT. The TOTEM project. [Online]. Available:
https://totem.info.ucl.ac.be/dataset.html

[41] J. Zhang, K. Xi, M. Luo, and H. J. Chao, “Dynamic hybrid routing:
Achieve load balancing for changing traffic demands,” in IEEE/ACM
IWQoS, 2014, pp. 105–110.

[42] J. Zhang, K. Xi, M. Luo, and H. J. Chao, “Load balancing for multiple
traffic matrices using sdn hybrid routing,” in IEEE HPSR, 2014, pp.
44–49.

[43] M. Kodialam, T. Lakshman, J. B. Orlin, and S. Sengupta, “Oblivious
routing of highly variable traffic in service overlays and ip backbones,”
IEEE/ACM ToN, vol. 17, no. 2, pp. 459–472, 2008.

[44] TMgen: Traffic Matrix Generation Tool. [Online]. Available:
https://tmgen.readthedocs.io/en/latest/

[45] P. Tune and M. Roughan, “Spatiotemporal traffic matrix synthesis,” in
ACM SIGCOMM CCR, vol. 45, no. 4, 2015, pp. 579–592.

[46] M. Abadi et al., “Tensorflow: A system for large-scale machine learn-
ing,” in USENIX OSDI, 2016, pp. 265–283.

[47] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in AISTATS, 2010.

[48] D. Thaler and C. Hopps, “Multipath Issues in Unicast and Multicast
Next-Hop Selection,” IETF RFC 2991, November 2000.

[49] B. Fortz and M. Thorup, “Optimizing ospf/is-is weights in a changing
world,” IEEE JSAC, vol. 20, no. 4, pp. 756–767, 2002.

[50] K. Holmberg and D. Yuan, “Optimization of internet protocol network
design and routing,” Networks: An International Journal, vol. 43, no. 1,
pp. 39–53, 2004.

[51] C. Villamizar, “Ospf optimized multipath (ospf-omp),” IETF
Internet-Draft, draft-ietf-ospf-omp-03.txt, 1999. [Online]. Available:
https://ci.nii.ac.jp/naid/10026755527/en/

[52] M. Antic, N. Maksic, P. Knezevic, and A. Smiljanic, “Two phase load
balanced routing using ospf,” IEEE JSAC, vol. 28, no. 1, pp. 51–59,
2009.

[53] S. Agarwal, M. Kodialam, and T. Lakshman, “Traffic engineering in
software defined networks,” in IEEE INFOCOM, 2013, pp. 2211–2219.

[54] Y. Guo, Z. Wang, X. Yin, X. Shi, and J. Wu, “Traffic engineering in
sdn/ospf hybrid network,” in IEEE ICNP, 2014, pp. 563–568.

[55] H. Xu, Z. Yu, X.-Y. Li, C. Qian, L. Huang, and T. Jung, “Real-time
update with joint optimization of route selection and update scheduling
for sdns,” in IEEE ICNP, 2016, pp. 1–10.

[56] S. Jain et al., “B4: Experience with a globally-deployed software defined
wan,” ACM SIGCOMM CCR, vol. 43, no. 4, pp. 3–14, 2013.

[57] C.-Y. Hong et al., “Achieving high utilization with software-driven wan,”
in ACM SIGCOMM, 2013, pp. 15–26.

[58] S.-C. Lin, I. F. Akyildiz, P. Wang, and M. Luo, “Qos-aware adaptive
routing in multi-layer hierarchical software defined networks: A rein-
forcement learning approach,” in IEEE SCC, 2016, pp. 25–33.

[59] Z. Xu et al., “Experience-driven networking: A deep reinforcement
learning based approach,” in IEEE INFOCOM, 2018, pp. 1871–1879.

[60] N. Geng, T. Lan, V. Aggarwal, Y. Yang, and M. Xu, “A multi-agent
reinforcement learning perspective on distributed traffic engineering,” in
IEEE ICNP, 2020, pp. 1–11.

[61] J. Zhang, Z. Guo, M. Ye, and H. J. Chao, “Smartentry: Mitigating routing
update overhead with reinforcement learning for traffic engineering,” in
ACM SIGCOMM NetAI, 2020, pp. 1–7.

[62] M. Ye, Y. Hu, J. Zhang, Z. Guo, and H. J. Chao, “Mitigating routing
update overhead for traffic engineering by combining destination-based
routing with reinforcement learning,” IEEE JSAC, vol. 40, no. 9, pp.
2662–2677, 2022.

Minghao Ye (Graduate Student Member, IEEE)
received the B.Eng. degree in microelectronic sci-
ence and engineering from Sun Yat-sen University,
Guangzhou, China, the B.Eng. degree (Hons.) in
electronic engineering from The Hong Kong Poly-
technic University, Hong Kong, in 2017, and the
M.S. degree in electrical engineering from New York
University, New York, NY, USA, in 2019, where
he is currently pursuing the Ph.D. degree with the
Department of Electrical and Computer Engineering.
His research interests include traffic engineering,

network optimization, software-defined networking, and machine learning for
networking.

Junjie Zhang (Member, IEEE) received the B.S.
degree in computer science from Nanjing University
of Posts & Telecommunications, China, in 2006,
the M.S. degree in computer science and the Ph.D.
degree in electrical engineering from New York
University, New York, NY, USA, in 2010 and 2015,
respectively.

He has been with Fortinet, Inc., Sunnyvale, CA,
USA, since 2015. He holds two US patents in the
area of computer networking. His research interests
include network optimization, traffic engineering,

machine learning, and network security.

Zehua Guo (Senior Member, IEEE) received B.S.
degree from Northwestern Polytechnical University,
Xi’an, China, M.S. degree from Xidian University,
Xi’an, China, and Ph.D. degree from Northwestern
Polytechnical University. He was a Research Fel-
low at the Department of Electrical and Computer
Engineering, New York University Tandon School
of Engineering, New York, NY, USA, and a Re-
search Associate at the Department of Computer
Science and Engineering, University of Minnesota
Twin Cities, Minneapolis, MN, USA. His research

interests include programmable networks (e.g., software-defined networking,
network function virtualization), machine learning, and network security. Dr.
Guo is an Associate Editor for IEEE Systems Journal and the EURASIP
Journal on Wireless Communications and Networking (Springer), and an
Editor for the KSII Transactions on Internet and Information Systems. He
is serving as the TPC of several journals and conferences (e.g., Elsevier
Computer Communications, AAAI, IWQoS, ICC, ICCCN, ICA3PP). He is
a Senior Member of IEEE, China Computer Federation, China Institute of
Communications, and Chinese Institute of Electronics, and a Member of
ACM.

17

H. Jonathan Chao (Life Fellow, IEEE) received the
B.S. and M.S. degrees in electrical engineering from
National Chiao Tung University, Taiwan, in 1977
and 1980, respectively, and the Ph.D. degree in elec-
trical engineering from The Ohio State University,
Columbus, OH, USA, in 1985. He was the Head
of the Electrical and Computer Engineering (ECE)
Department at New York University (NYU) from
2004 to 2014. He has been doing research in the
areas of machine learning for networking, real-time
communications, datacenter networks, high-speed

packet scheduling/switching/routing, software-defined networking, network
function virtualization, and network security. During 2000-2001, he was the
Co-Founder and a CTO of Coree Networks, Tinton Falls, NJ, USA. From
1985 to 1992, he was a Member of Technical Staff at Bellcore, Piscataway, NJ,
USA, where he was involved in transport and switching system architecture
designs and application-specified integrated circuit implementations, such as
the world’s first SONET-like framer chip, ATM layer chip, sequencer chip (the
first chip handling packet scheduling), and ATM switch chip. He is currently a
Professor of ECE at NYU, New York City, NY, USA. He is also the Director of
the High-Speed Networking Lab. He has co-authored three networking books,
Broadband Packet Switching Technologies-A Practical Guide to ATM Switches
and IP Routers (New York: Wiley, 2001), Quality of Service Control in High-
Speed Networks (New York: Wiley, 2001), and High-Performance Switches
and Routers (New York: Wiley, 2007). He holds 63 patents and has published
more than 280 journal and conference papers. He is a fellow of the IEEE
and the National Academy of Inventors. He was a recipient of the Bellcore
Excellence Award in 1987. He was a co-recipient of the 2001 Best Paper
Award from the IEEE TRANSACTION ON CIRCUITS AND SYSTEMS
FOR VIDEO TECHNOLOGY.

