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Abstract—Traffic Engineering (TE) is a widely-adopted net-
work operation to optimize network performance and resource
utilization. Destination-based routing is supported by legacy
routers and more readily deployed than flow-based routing,
where the forwarding entries could be frequently updated by
TE to accommodate traffic dynamics. However, as the network
size grows, destination-based TE could render high time com-
plexity when generating and updating many forwarding entries,
which may limit the responsiveness of TE and degrade network
performance. In this paper, we propose a novel destination-
based TE solution called FlexEntry, which leverages emerging
Reinforcement Learning (RL) to reduce the time complexity
and routing update overhead while achieving good network
performance simultaneously. For each traffic matrix, FlexEntry
only updates a few forwarding entries called critical entries for
redistributing a small portion of the total traffic to improve
network performance. These critical entries are intelligently
selected by RL with traffic split ratios optimized by Linear
Programming (LP). We find out that the combination of RL and
LP is very effective. Our simulation results on six real-world
network topologies show that FlexEntry reduces up to 99.3%
entry updates on average and generalizes well to unseen traffic
matrices with near-optimal load balancing performance.

Index Terms—Reinforcement learning, traffic engineering,
destination-based routing, routing update overhead, linear pro-
gramming.

I. INTRODUCTION

TRAFFIC Engineering (TE) is a network operation
adopted by service providers to improve network per-

formance under different network conditions and service
requirements. With a common optimization objective (e.g.,
minimizing the maximum link utilization in the network),
TE computes an optimal routing strategy and configures the
routing across Wide-Area Networks (WANs) to control traffic
distribution accordingly [1]–[4]. One typical TE solution is
flow-based routing, where each flow refers to a unique source-
destination pair in the network [5], [6]. Given a set of pre-
generated paths in the network, each flow can be forwarded
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along the paths with different traffic split ratios based on
the forwarding entries installed in the routing table of each
router. Upon traffic changes, the centralized controller would
compute a new routing strategy to accommodate the traffic
dynamics, and then update the flow-based forwarding entries
to facilitate deliberate routing policies and realize fine-grained
traffic control.

However, flow-based routing may suffer from scalability
issues. For a network with P prefixes, each router has to store
O(P 2) forwarding entries in the worst case to distinguish the
source and destination addresses of the packets. Over recent
years, the size of the Internet routing table has increased
superlinearly [7]. As reported in [7], today’s routing tables
could include approximately 900,000 entries, which poses a
great challenge to storing a huge number of forwarding entries
in a router. To support flow-based routing with high-speed
packet processing, a complex Ternary Content-Addressable
Memory (TCAM)-based routing table is used by routers [8].
Due to the high cost-to-density ratio and high power consump-
tion of TCAM [9], [10], a router usually has limited TCAM
resources [11] and thus cannot accommodate a huge number
of forwarding entries [8], [12]. Moreover, looking up a route
in a large routing table with a huge number of forwarding
entries may increase the forwarding delay of the packets [13].

An alternative solution for TE is to use destination-based
routing, where routers make forwarding decisions based on
the destination address of the packets [3], [4], [14]. With
destination-based forwarding, each router only needs to main-
tain a forwarding table with at most O(P ) entries for a network
with P prefixes, which can effectively reduce the forward-
ing complexity compared to flow-based routing. Moreover,
destination-based forwarding has been widely implemented in
legacy routers with simple Random-Access Memories (RAMs)
that are cheaper and more energy-efficient compared to
TCAMs [14]. Traditional destination-based routing protocols
(e.g., Open Shortest Path First [15]) usually forward the pack-
ets along the shortest paths with low link costs. To responsively
accommodate dynamic traffic variations, destination-based TE
needs to update routing frequently. For example, in Amazon’s
inter-region backbone network, TE operations are performed
at a time scale of seconds by rerouting traffic to satisfy diverse
requirements of applications [16].

However, destination-based routing faces several challenges.
First, generating optimal traffic split ratios for all entries could
be time-consuming since the computation complexity of solv-
ing traffic rerouting optimization problems in large networks
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is generally high [4], [17]. Second, frequently updating a large
number of forwarding entries at each router requests high
management overhead and introduces a long delay for routing
updates. One promising solution is to selectively update a
few forwarding entries when traffic changes. However, given
the numerous solution space and dynamic network conditions,
it would be very challenging to design a heuristic algorithm
for identifying such “critical” forwarding entries to improve
network performance with low routing update overhead.

In this paper, we propose FlexEntry, a destination-based
TE solution to achieve near-optimal network performance and
mitigate routing update overhead simultaneously. FlexEntry
forwards majority traffic using Equal-Cost Multi-Path (ECMP)
[18] and then selectively and dynamically redistributes a small
portion of total traffic by installing a few critical entries as
traffic changes. Here, critical entries can be viewed as a set of
destination-based forwarding entries that contribute the most to
improving network performance. For each given Traffic Matrix
(TM), FlexEntry employs Reinforcement Learning (RL) to
learn a policy for efficiently and effectively selecting an
appropriate number of critical entries, and then obtains the
corresponding loop-free rerouting split ratios by formulating
and solving a Linear Programming (LP) optimization problem.
Since most of the traffic is forwarded by static ECMP, the com-
putation complexity of TE optimization and time complexity
of entry updates would be greatly reduced.

The main contributions of this paper are summarized as
follows:

1) We customize a 2-stage RL approach with a carefully
designed reward function to identify flexible numbers of
critical entries in different network scenarios.

2) We adopt LP to produce reward signals for RL and
optimize traffic split ratios for the selected critical entries
to control traffic distribution. This RL + LP combined
approach turns out to be effective in mitigating routing
update overhead during frequent TE operations.

3) We evaluate FlexEntry by conducting extensive simula-
tions on six real-world network topologies with both real
and synthesized traffic. The simulation results show that
FlexEntry achieves near-optimal performance with good
generalization over unseen traffic scenarios and saves at
most 99.3% forwarding entry updates on average.

The remainder of this paper is organized as follows. Section
II lists the related works. Section III provides an overview of
our system design and describes the workflow of FlexEntry.
Section IV explains the proposed 2-stage RL model in detail.
Section V presents the LP formulations for traffic rerouting
optimization. Section VI evaluates the effectiveness of our
scheme. Section VII concludes the paper and discusses future
work.

II. RELATED WORKS

Flow-based routing has been adopted by TE to support fine-
grained traffic control and improve network performance. In
Multiprotocol Label Switching (MPLS) networks, a routing
problem is typically formulated as an optimization problem,
where explicit paths are obtained for each source-destination

pair to distribute flows [1], [2]. Dynamic hybrid routing [5]
realizes load balancing for multiple traffic scenarios by dynam-
ically re-balancing traffic to accommodate traffic fluctuations
with a preconfigured routing policy. SMORE [6] adopts an
oblivious routing algorithm to generate a set of preconfigured
paths for each flow and further solves an optimization problem
to optimize the path split ratios for all flows. In the inter-
datacenter WANs of Google [19] and Microsoft [20], flow-
based TE solutions have been deployed to achieve high utiliza-
tion. However, to distinguish source and destination addresses,
flow-based TE would suffer from scalability issues with a huge
number of forwarding entries installed in the routing table.

An alternative solution for TE is destination-based routing,
which is widely supported by legacy routers. Using OSPF
and ECMP protocols, [3], [21], [22], and [23] attempt to
balance link utilization of the network by carefully adjusting
the link costs to select path in ECMP. However, it has been
shown that it is an NP-hard problem to optimize the link costs
for a network [21], [23], while the even traffic distribution
imposed by ECMP introduces additional limitations on routing
optimization [4]. One recent work [24] leverages the emerging
segment routing techniques to perform joint optimization of
link costs and segments that specifies the intermediate way-
points. However, the above-mentioned related works would
update link costs at routers and wait for OSPF reconvergence,
which may lead to potential network disturbance and service
disruption [25]. To improve the performance of destination-
based TE, weighted ECMP [4] extends ECMP by allowing
weighted traffic splitting at each node to achieve significant
performance improvement over ECMP. For a given TM, Zhang
et al. [14] proved that an arbitrary flow-based routing can be
converted to a loop-free destination-based routing without any
performance penalty, which is guaranteed to achieve optimal
performance. However, these existing works do not consider
the adversary impact of routing updates under frequent TE
operations. In contrast, by updating a small set of critical
entries in the network, FlexEntry can avoid the potential
network disturbance caused by OSPF reconvergence with low
routing update overhead.

In recent years, machine learning techniques have been used
in TE design to improve network performance. In [26], an
automatic network protocol is designed for backbone networks
using semi-supervised deep learning. To minimize signaling
delay in large-scale networks, QoS-aware Adaptive Routing
[27] uses a distributed three-level control plane architecture
coupled with RL. Xu et al. [28] employ RL to optimize
network performance (i.e., throughput and delay). CFR-RL
[29] and DATE [30] leverage RL to identify and reroute
critical flows in the network to reduce network disturbance.
In multi-region networks, Geng et al. [31] adopt multi-agent
RL to obtain routing decisions for each network region in
a distributed manner, while FedTe [32] combines supervised
learning and graph neural network to predict the optimal
distributions of cross-region traffic at each network region.
However, all of the above-mentioned related works do not
take mitigating routing update overhead as an objective.

While many existing works adopt fully learning-based
approaches to determine routing policies with a focus on
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network performance, the novelty of our approach relies on
the combination of the emerging RL techniques and traditional
LP optimization methods to reduce routing update overhead.
Indeed, it could be a good choice to leverage the agility of
learning-based methods to make TE solutions more adaptive.
However, LP also has a unique advantage to allocate net-
work traffic in an efficient and optimal way. Thus, we aim
at combining these two powerful techniques to address the
existing routing update overhead problem that is not well-
studied in the past from the perspective of TE. Moreover, we
adopt a novel 2-stage RL design that pre-trains several sub-
models to select different numbers of critical entries and uses
a single model to select a suitable sub-model for different
traffic scenarios. It is worth mentioning that our 2-stage RL
design might be similar to the recently studied meta-learning
[33] and ensemble learning [34] schemes. However, the sub-
models in meta-learning could be trained along with the
single model with different types of datasets and tasks, while
ensemble learning aims at constructing a single good model by
aggregating multiple sub-models trained with different splits of
dataset or algorithms. On the contrary, the training procedure
of FlexEntry is performed sequentially and all the sub-models
are trained with the same dataset and objective function.

III. SYSTEM DESCRIPTION

In this section, we explain our motivation, overview Flex-
Entry’s design, and provide an illustrative example to describe
the advantages of critical entry updates.

A. Motivation

To identify critical entries for a given TM, four problems
should be solved:

1) How many critical entries should be installed to guaran-
tee promising network performance?

2) At which routers should critical entries be installed?
3) To which destinations the traffic belongs should be re-

distributed, once the routers for installing critical entries
are determined?

4) How to redistribute the selected traffic among available
next hops?

Once the critical entries are identified, it is relatively simple
to address the problem (4) by formulating and solving an
LP optimization problem. However, it is not trivial to solve
problems (1), (2), and (3) due to the large solution space.
Given a network with N routers, there would be a total of
N ∗ (N − 1) candidate router-destination pairs (i.e., entries).
With consideration of all possible critical entry numbers K,
there are a total of

∑N∗(N−1)
K=1

(
N∗(N−1)

K

)
possible combi-

nations in the solution space. For a network with N = 10
nodes1, the solution space for selecting a combination of
K = 9 critical entries has

(
90
9

)
≈ 706 billion combinations.

Considering all possible combinations, it is very challenging
to design a heuristic algorithm to solve problems (1)-(3) based
on fixed and simple rules, as later shown in Section VI-B.

1Each router can be viewed as a network node. We use these two terms
interchangeably.

One possible way to address the above-mentioned problems
is to incorporate the selection of critical entries into traditional
routing optimization problems. The objective of this joint
optimization problem is to minimize the number of critical
entry updates and the maximum link utilization in the network
simultaneously. In addition to the destination-based routing
variables to be solved, it is necessary to determine for each
candidate entry whether it should be selected for routing
updates or not. If yes, such entry would be treated as a critical
entry and the corresponding traffic split ratios should be
optimized; otherwise, the entry would forward the traffic based
on a default routing scheme (e.g., ECMP). Such critical entry
indicators can only take binary values, which can be viewed as
integer constraints. As a result, this joint optimization problem
is formulated as a Mixed-Integer Linear Programming (MILP)
problem, which is proved to be NP-hard [35].

Emerging RL sheds light on problems (1)-(3) for critical
entry selection, and FlexEntry receives the benefits of RL from
three aspects. First, RL can model complex selection policies
as neural networks and provide a scalable and expressive
way to incorporate various “raw” observations (e.g., TMs)
into the selection policy. Second, RL is able to train for
objectives that lack precise models and are thus hard to
optimize directly, as long as reward signals exist and correlate
with the objective. Third, by continually learning to make
better selections through reinforcement in the form of reward
signals, RL can optimize its selection policy under varying
network scenarios.

We use LP to solve the problem (4) because of two reasons.
First, given that only a few critical entries are selected, the
set of rerouting split ratios would be relatively small. LP
can optimally solve the rerouting problem with fewer routing
variables. Second, traffic split ratios are continuous numbers.
Existing works show that the RL methods for continuous
action domain [36], [37] would lead to slow and ineffective
learning when the number of output parameters is relatively
large [28], [38]. In other words, applying RL methods to solve
the problem (4) may suffer from scalability issues.

B. Overview

For a given TM, the tasks of FlexEntry are to (1) decide
how many critical entries (i.e., K) are required to achieve near-
optimal performance with the lowest routing update overhead,
(2) select a good combination of K router-destination pairs as
critical entries, and (3) redistribute the selected traffic among
admissible next hops2 to balance link utilization of the network
based on critical entries. Overall, “““““a very challenging task,
considering the variety of the TM and the complexity of the
network topology.

To achieve the objective, we exploit an RL + LP combined
approach with a two-stage RL design. In the beginning, we
train multiple RL sub-models in the first training stage, where
each sub-model is responsible for identifying a unique number
of critical entries (e.g., K = 10 for one sub-model and
K = 20 for another sub-model). The settings of K value

2An admissible next hop is defined as a next hop that would not cause a
forwarding loop.
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Fig. 1. Illustrative example of FlexEntry to redistribute traffic with critical
entries. Each link is bidirectional with link cost and capacity equal to 10.

for different sub-models are later discussed in Section VI-B1.
Each sub-model learns a selection policy over a rich variety of
historical TMs, where TMs can be measured and collected by
a centralized controller periodically [39]. The selection policy
of each sub-model is represented as a neural network that maps
a “raw” observation (e.g., a given TM) to a combination of K
different critical entries.

Once the first training stage is done, we train a single model
in the second training stage to find a proper K value for the
task (1), which will be responsible for determining which sub-
model should be used to generate the corresponding K critical
entries for the task (2). This single model also learns over the
same TM dataset in the first training stage, but its selection
policy is represented as a different neural network from the
sub-models, which maps the input to one of the sub-models to
be used (i.e., pj). For both two training stages, we formulate
and solve an LP optimization problem (described in Section
V-A) to generate the optimal traffic split ratios for critical
entries for the task (3), and obtain the resulting maximum
link utilization as part of the reward signal (see Section IV).
Through reinforcement in the form of reward signal, all neural
networks are trained based on REINFORCE algorithm [40]
with some customizations.

The whole training procedure can take place in an offline
server with a TM dataset collected in advance. After that,
FlexEntry can be deployed in a centralized controller. Given
a newly measured TM, FlexEntry would leverage the single
model trained in the second stage to choose an appropriate
sub-model, where the selected sub-model is responsible for
identifying the corresponding K critical entries under the
current traffic scenario. Then, the optimal rerouting split ratios
for critical entries can be derived by solving the LP opti-
mization problem (9a) presented in Section V-A, such that the
centralized controller would install/update new critical entries
at the corresponding routers to redistribute traffic accordingly.
Note that the critical entries installed in the previous period
would timeout automatically.

C. Updating Critical Entries

FlexEntry aims to effectively balance link utilization of
the network by smartly installing/updating a small set of
critical destination-based forwarding entries at some routers.

We illustrate how FlexEntry works with a simple example in
Fig. 1, where each link is bidirectional with link cost and
capacity equal to 10. Assuming that node 0 sends 2 units of
traffic to node 6 and 1 unit of traffic to node 10, respectively.
Similarly, node 3 sends 3 units of traffic to node 6 and 2 units
of traffic to node 10, respectively. In addition, node 7 sends
2 units of traffic to node 9. Initially, all traffic is distributed
along the shortest paths according to default ECMP routing,
and the traffic load on each link is shown in Fig. 1(a). Given
that ECMP routing is static and not traffic-aware, link ⟨3, 6⟩
becomes the bottleneck link with 80% link utilization under
the current traffic scenario.

FlexEntry can install a few critical entries3 at several routers
to effectively improve network performance with low routing
update overhead. As depicted in Fig. 1(b), FlexEntry updates
a critical destination-based forwarding entry at router 1 to
reroute 2 units of traffic originated from node 0 and destined
to node 6 by specifying an admissible next hop router 2. Once
the rerouted traffic arrives at router 2, it would be forwarded
to its destination node 6 along the shortest path according to
ECMP routing. In this situation, the congestion of link ⟨3, 6⟩
would be alleviated by leveraging previously underutilized
links. Similarly, the traffic destined to node 10 aggregated
at router 3 can be rerouted to next hop router 5 instead of
ECMP next hop router 6 to reduce the load of the bottleneck
link ⟨3, 6⟩ with a critical entry at router 3. Moreover, when
the rerouted traffic reaches router 5, it can be further split
between admissible next hops router 7 and router 8 with
different weights to achieve better load balancing performance
according to the critical entry. By forwarding 1 unit of traffic
(33.3%) to router 7 and 2 units of traffic (66.6%) to router 8,
the maximum link utilization in the network can be reduced to
30%, while the remaining traffic is still distributed by the static
ECMP routing. Thus, the above example shows that FlexEntry
can achieve load balancing by complementing ECMP routing
with only three critical destination-based forwarding entries.

IV. PROPOSED MODEL

In this section, we provide the details of our proposed
2-stage RL design, including RL problem formulations and
training procedures to learn a critical entry selection policy
and a sub-model selection policy.

A. Learning a Critical Entry Selection Policy
1) First-Stage RL Formulation: In the first RL training

stage, there are m sub-models (i.e., p1, p2, ..., pm) to be trained
with different K value settings (e.g., Kj for sub-model pj).
The detailed settings can be found in Section VI-B1. The goal
of each sub-model pj is to learn a policy π that selects a
combination of Kj “right” router-destination pairs for each
given TM, such that the network performance is maximized
after redistributing traffic according to the selected critical
entries at the corresponding nodes.

Input: An input instance s is represented as a traffic ma-
trix TM , which consists of traffic demands for all source-
destination pairs in a certain period.

3Critical entries take strict precedence over ECMP entries.
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Fig. 2. First training stage with m sub-models to be trained in parallel. Each
sub-model pj samples a unique number of Kj critical entries.

Action Space: For a given instance s, each sub-model pj
needs to select Kj router-destination pairs as critical entries.
For a network with N nodes, N − 1 destination-based for-
warding entries can be inserted into each router to forward the
traffic to the remaining N−1 destination nodes, which means
there are a total of N ∗ (N − 1) candidate router-destination
pairs. In this scenario, this RL problem would require a large
action space of size

(
N∗(N−1)

Kj

)
for each sub-model pj . Inspired

by [41] and [42], we define the action space as {0, 1, ...,
N ∗ (N − 1)− 1} and allow each sub-model pj to sample Kj

different actions for each instance s (i.e., a1, a2, ..., aKj ).

Reward: For each sub-model pj , Kj different router-
destination pairs would be sampled for a given instance s.
Then, the LP optimization problem (9a) described in Section
V-A can be solved for each sub-model to obtain the maximum
link utilization U . To evaluate how far the performance of the
derived routing is being from optimal routing, a performance
ratio is applied and defined as below:

PR =
Uoptimal

U
, (1)

where Uoptimal is the maximum link utilization achieved by the
optimal destination-based routing. Such an optimal solution is
derived from the LP formulations presented in [14] by optimiz-
ing the traffic split ratios for all destination-based forwarding
entries, which is proved to achieve the same performance as
optimal flow-based explicit routing. A higher PR indicates
that the derived routing can achieve better performance and is
closer to optimal routing. When PR = 1, it achieves the same
performance as optimal routing. For the first training stage, our
objective is to select the best Kj entries for each sub-model
pj to improve network performance as much as possible.
Therefore, we define the reward function as r = PR for each
sub-model, which is set to reflect the network performance
after redistributing traffic according to the selected critical
entries. The greater reward r, the higher PR and thus better
performance.

2) First-Stage Training Algorithm: For the first training
stage, we need to train m sub-models. For each sub-model

pj , we use a neural network to represent the policy, where
the policy network takes a TM as an input and outputs a
probability distribution π(a|s) over all available actions. Fig.
2 provides the details of the first training stage, including the
actor-critic architecture of all m sub-models. Note that the
hyperparameter settings are listed in Section VI-A3. For each
sub-model pj with Kj actions to be selected (j = 1, 2, ...,m),
we define a solution aKj = (a1, a2, ..., aKj ) as a combination
of Kj sampled actions since we do not care about the order of
the sampled actions. In other words, when selecting a solution
aKj

with a given instance s, a stochastic policy π(aKj
|s)

parameterized by θj can be approximated as follows4:

πθj (aKj |s) ≈
Kj∏
i=1

πθj (a
i|s). (2)

Recall that the goal of each sub-model pj is to find a policy
πθj that maximizes the network performance over various
TMs for a given Kj , i.e., maximizes the expected reward
Eπθj

(aKj
|s)[r]. Thus, we optimize Eπθj

(aKj
|s)[r] by gradient

ascend, using REINFORCE algorithm with a baseline b(s):

∇θjEπθj
(aKj

|s)[r] = Eπθj
[∇θj logπθj (aKj

|s)(r− b(s))]. (3)

A good baseline b(s) reduces gradient variance and thus
increases the speed of learning. For each sub-model pj , we
use a learned estimate of the value function V πθj (s) as the
baseline b(s). The critic network of each sub-model pj in
Fig. 2 is trained to learn an estimate of V πθj (s), and the critic
network parameter θvj is updated according to the following
equation:

θvj ← θvj
− αvj

∑
s

∇θvj
(r − V

πθj

θvj
(s))2, (4)

where V
πθj

θvj
(·) is outputted by the critic network of sub-model

pj as the estimate of V πθj (·), and αvj is the learning rate for
the critic network of sub-model pj . Note that the critic network
is only trained to estimate the expected reward r, and solely
helps train the policy network. Once training is done, only the
policy network is required for each sub-model to execute the
action selection.

To ensure that each sub-model explores the action space
adequately during training to discover good policies, we add
the entropy of the policy π to Eq. (3). This technique improves
exploration by discouraging premature convergence to sub-
optimal deterministic policies [43]. Then, the policy network
parameter θj of each sub-model pj is updated according to
the following equation:

θj ← θj + αj

∑
s

∇θj logπθj (aKj
|s)(r − V

πθj

θvj
(s))+

βj∇θjH(πθj (·|s)),
(5)

where αj is the learning rate for the policy network of sub-
model pj , and H is the entropy of the policy (the probability
distribution over actions). The hyperparameter βj controls the

4To select Kj distinct actions for the j-th sub-model, we perform action
sampling without replacement. The right side of Eq. (2) is the solution
probability when sampling with replacement, but we still use Eq. (2) to
approximate the probability of solution aKj

given an instance s for simplicity.
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Algorithm 1 First-Stage Training Algorithm for Sub-Model
Initialize θj , θvj for the j-th sub-model with Kj actions to
be sampled
for each iteration do
∆θj ← 0, ∆θvj ← 0
{si} ← Sample a batch of instances with size B
for i = 1, ..., B do

Sample a solution aiKj
based on policy πθj (aiKj

|si)
Receive reward ri

end for
for i = 1, ..., B do

∆θj ← ∆θj+αj(∇θj logπθj (aiKj
|si)(ri−V

πθj

θvj
(si))+

βj∇θjH(πθj (·|si)))
∆θvj ← ∆θvj − αvj∇θvj

(ri − V
πθj

θvj
(si))

2

end for
θj ← θj +∆θj , θvj ← θvj +∆θvj

end for

strength of the entropy regularization term for the j-th sub-
model. Algorithm 1 shows the pseudo-code for the sub-model
training algorithm in the first stage.

B. Learning a Sub-model Selection Policy

1) Second-Stage RL Formulation: Once the first training
stage is completed, we can obtain several well-trained sub-
models with different K settings. Then, we need to train a
single model in the second stage to learn a policy π that
decides how many critical entries are required (i.e., which
sub-model should be selected) for each given TM to ensure a
near-optimal network performance with the smallest number
of critical entries. Since each well-trained sub-model pj can be
taken as a module that identifies the best Kj critical entries, the
single model can focus on how many critical entries K should
be selected and choose the corresponding sub-model without
worrying about potential performance degradations caused by
inappropriate critical entry selection from sub-models.

Input: An input instance s for the second stage is the same
as the first stage, which is a traffic matrix TM .

Action Space: Given an instance s, the single model should
decide how many critical entries K to be selected. In other
words, it determines which sub-model should be chosen. Since
there are a total of m sub-models, the action space should be
{1, 2, ..., m} that allows the single model to select one of the
sub-models for each instance s.

Reward: In the second stage, the single model is responsible
for selecting a K value (i.e., choosing one of the sub-models)
for a given instance s. After that, the selected sub-model pj
would be used to identify the best Kj critical entries based
on the input TM. Then, the LP optimization problem (9a)
can be solved to obtain the optimal traffic split ratios for the
critical entries as well as the maximum link utilization U .
As mentioned in the previous section, we can compute the
performance ratio PR according to Eq. (1). Since our goal is
to achieve near-optimal network performance with the lowest
routing update overhead, the single model needs to trade off

... ...

...
0 2.2 3.6 6

3.2 0 6.8 8

6.3 8.9 0 3

3.1 2.4 6 0

Traffic Matrix

Value

Actor / Policy Network

Critic Network

Sub-Model 
Selection Policy

Fig. 3. Training a single model in the second stage to select an appropriate
sub-model pj with Kj critical entries to be identified.

the number of critical entries K and network performance
PR. Thus, we design a reward function for the single model
as follows:

r =


PR2 if PR < PRTH

1− λ ∗ K

N ∗ (N − 1)
if PR ≥ PRTH

(6)

where PRTH is a preset performance target, λ is a penalty
factor on the number of critical entries, and K

N∗(N−1) rep-
resents the percentage of total entries that are identified as
critical entries. In our evaluation, we set the performance target
PRTH to 0.9 to achieve near-optimal performance (i.e., above
90% of optimal performance). For the penalty factor λ, it can
be viewed as a knob that adjusts the trade-off between network
performance and routing update overhead. We will discuss the
impact of network topologies on λ settings in Section VI-B2.

Intuitively, the ideas of our reward function design can be
explained as follows. When RL cannot achieve a satisfactory
performance (i.e., PR < PRTH ), the reward signal solely
relies on the performance ratio without consideration of the
number of critical entries K. Based on the quadratic function
of PR, RL would benefit more from better performance and
thus focus on selecting an appropriate sub-model to improve
network performance. Once the performance target is achieved
(i.e., PR ≥ PRTH ), the reward function only depends on the
number of critical entries K. If a sub-model with a higher K
value is selected, RL would receive a smaller reward regardless
of the performance improvements since there is a penalty
imposed on the number of critical entries. Therefore, RL
should learn to reduce the number of critical entries as much
as possible when the performance target can be satisfied.

2) Second-Stage Training Algorithm: For the second train-
ing stage, we only need to train a single model. Similar to the
sub-models in the first stage, this single model also uses an
actor-critic architecture and takes a TM as an input, as shown
in Fig. 3. However, the policy network of the single model
would output π(a0|s) as a probability distribution over all can-
didate sub-models that may be selected. Here, the stochastic
policy π(a0|s) is parameterized by θ. We can sample an action
a0 from the action space {1, 2, ..., m} to choose one of the
sub-models pj for generating the corresponding Kj critical
entries. Similar to the first stage, the critic network parameter
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Algorithm 2 Second-Stage Training Algorithm for Single
Model

Initialize θ and θv
for each iteration do
∆θ ← 0, ∆θv ← 0
{si} ← Sample a batch of instances with size B
for i = 1, ..., B do

Sample an action a0i according to policy πθ(a
0
i |si)

Obtain Ka0
i

critical entries from sub-model pa0
i

Receive reward ri
end for
for i = 1, ..., B do

∆θ ← ∆θ + α(∇θlogπθ(a
0
i |si)(ri − V πθ

θv
(si)) +

β∇θH(πθ(·|si)))
∆θv ← ∆θv − αv∇θv (ri − V πθ

θv
(si))

2

end for
θ ← θ +∆θ, θv ← θv +∆θv

end for

θv of the single model is updated as follows:

θv ← θv − αv

∑
s

∇θv (r − V πθ

θv
(s))2, (7)

where αv is the learning rate for the critic network. The policy
network parameter θ of the single model is updated as follows:

θ ← θ+α
∑
s

∇θlogπθ(a
0|s)(r−V πθ

θv
(s))+β∇θH(πθ(·|s)),

(8)
where α is the learning rate for the policy network, and β is
the entropy factor. Algorithm 2 shows the pseudo-code for the
single model training algorithm in the second stage.

V. TRAFFIC SPLIT RATIO OPTIMIZATION

In this section, we describe how to formulate and solve
the traffic split ratio optimization problem in FlexEntry. The
notations used in this section are listed in Table I.

A. Rerouting Optimization Problem

As described in Section III, traffic is either distributed
evenly among the default ECMP next hops or split unevenly
among admissible next hops according to the critical entries.
Given a network G(V,E) with a TM and selected critical
entries τK , our objective is to obtain the weighted split ratios
{σd

i,j} for the selected τdi ∈ τK , such that the maximum link
utilization U is minimized and the routing is loop-free. To
achieve this objective, we first obtain the optimal destination-
based traffic allocation {ydi,j}, where ydi,j stands for the traffic
destined to d routed on link ⟨i, j⟩. Then, we can derive {σd

i,j}
from {ydi,j}. We formulate the destination-based rerouting
problem as an optimization problem as follows:

minimize U (9a)

subject to ∑
d∈V

ydi,j = li,j i, j : ⟨i, j⟩ ∈ E (9b)

TABLE I
NOTATIONS

G(V,E)
network with nodes V and directed

edges E (|V | = N, |E| = M )
ci,j the capacity of link ⟨i, j⟩ (⟨i, j⟩ ∈ E)
li,j the traffic load on link ⟨i, j⟩ (⟨i, j⟩ ∈ E)

ts,d
the traffic demand originated from
s destined to d (s, d ∈ V , s ̸= d)

τdi
the traffic destined to d at node i

(i, d ∈ V , i ̸= d, |{τdi }| = N ∗ (N − 1))

τK
a combination of K selected τdi (|τK | = K),

e.g., τ61 , τ103 , and τ105 in Fig. 1(b)

τN∗(N−1)−K
the set of remaining τdi

(|τN∗(N−1)−K | = N ∗ (N − 1)−K)

ENHd
i

the set of ECMP next hops for
destination d at node i (i, d ∈ V ),

e.g., ENH10
1 = {3}, ENH10

3 = {6} in Fig. 1(b)

ydi,j
the traffic destined to d routed

on link ⟨i, j⟩ (d ∈ V, ⟨i, j⟩ ∈ E)

σd
i,j

the split ratio at node i to node j for the
traffic destined to node d (d ∈ V, ⟨i, j⟩ ∈ E),

e.g., σ10
5,8 = 66.6% in Fig. 1(b)

li,j ≤ ci,j · U i, j : ⟨i, j⟩ ∈ E (9c)∑
k:⟨k,i⟩∈E

ydk,i −
∑

k:⟨i,k⟩∈E

ydi,k = −ti,d i, d : τdi ∈ τK (9d)

ydi,k =


∑

n:⟨n,i⟩∈E

ydn,i + ti,d

|ENHd
i |

if k ∈ ENHd
i

0 otherwise

i, d : τdi ∈ τN∗(N−1)−K , k : ⟨i, k⟩ ∈ E

(9e)

∑
k:⟨k,d⟩∈E

ydk,d −
∑

k:⟨d,k⟩∈E

ydd,k =
∑

s∈V,s̸=d

ts,d d ∈ V (9f)

ydi,j ≥ 0 d ∈ V, i, j : ⟨i, j⟩ ∈ E (9g)

(9c) is the link capacity utilization constraint. (9d), (9e),
and (9f) are the flow conservation constraints for the selected
τdi , for the remaining τdi , and at destinations, respectively.
By solving problem (9) using LP solvers (e.g., Gurobi [44]),
we can obtain the optimal destination-based traffic allocation
{ydi,j}. In case there exist forwarding loops, we can use the
techniques in [14] to eliminate the loops. Then, {σd

i,j} can be
derived according to the following equation:

σd
i,j =

ydi,j∑
k:⟨i,k⟩∈E

ydi,k
i, d : τdi ∈ τK , j : ⟨i, j⟩ ∈ E. (10)

Note that traffic is distributed evenly among ECMP next hops
for the remaining τdi ∈ τN∗(N−1)−K .

B. Traffic Splitting

By leveraging the existing IP router’s forwarding table
lookup architecture, we can easily expand it to accommodate
the function of forwarding traffic to each destination node with
different split ratios at the output ports. IP lookup usually uses
a RAM-based proprietary data structure to perform the longest
prefix matching. When an incoming packet’s destination IP
address matches with the longest prefix, the result is a pointer
pointing to an entry of another table storing next hop informa-
tion (let us call the table NHIT). Each entry of the NHIT can,
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for instance, store the next hop’s IP address and an output port
number. To facilitate our proposed TE solution, the NHIT can
be slightly modified to a so-called Traffic Split Ratio Table
(TSRT). It has N entries, each corresponding to a destination
node, and each entry has a flag and H split ratios σd

i,j (H =
the number of output ports, e.g., 64). When the flag is set,
up to H split ratios provided by the centralized controller are
used to split traffic destined to the corresponding destination
node at the output ports of the router; otherwise, traffic is
evenly distributed among ECMP next hops ENHd

i . In practice,
packets belonging to a TCP (or UDP) session follow a single
path to avoid packet misordering. An approximation to the
traffic splitting is to hash the 5-tuple packet header fields and
then allocate TCP (or UDP) flows to one of the output ports
based on the hash results and split ratios (refer to RFC 2992
[45] and the standard hashing technique [46]).

VI. EVALUATION

In this section, we conduct extensive simulations using
six different real-world network topologies to evaluate the
performance of FlexEntry and demonstrate its effectiveness
in mitigating routing update overhead5.

A. Evaluation Setup

1) Simulation Environment: In our evaluation, the actor-
critic architecture for 2-stage RL is implemented using Ten-
sorFlow [47]. All the training tasks are conducted in a high-
performance computing cluster to accelerate the training pro-
cess. We spawn multiple actor agents (e.g., 20 agents) in
parallel to experience different subsets of the training set and
aggregate their (state, action, reward) tuples to a central RL
agent for performing gradient updates. To train the sub-models
as well as the single model, we assign a 2.9 GHz CPU core
to each RL agent with a total of 32 GB memory allocated.
It is worth mentioning that we train multiple sub-models with
different K settings in parallel to speed up the training process
during the first RL training stage. In practice, the number
of CPU cores and memory allocated for RL training can be
adjusted based on actual hardware specifications.

Once the training is done, we conduct all simulation tests
on a Linux server with a 4-core Intel 3.4 GHz CPU and
16 GB memory. The server is running an Ubuntu 16.04.2
LTS system with Gurobi optimizer v9.1.1 [44] installed to
solve LP for FlexEntry and other baseline methods mentioned
in Section VI-A4. To simulate network environments, we
use Python 3.8 and the NetworkX library [48] to construct
networks based on the six real-world network topologies listed
in Table II. Given the real TMs and synthetic TMs described
in Section VI-A2, traffic flows with different demand volumes
are fed into the network accordingly to simulate various
traffic scenarios. Then, we can implement FlexEntry and the
baselines to control traffic distributions and evaluate the load
balancing performance. It is worth mentioning that the critical
entries installed in the previous time period (i.e., for the last

5The source codes of FlexEntry and the datasets used in our evaluation are
publicly available at GitHub (https://github.com/yanghu-bit/FlexEntry).

TABLE II
NETWORK TOPOLOGIES USED IN EVALUATION

Topology Nodes Directed Links
Abilene 12 30

Nobel-Germany 17 52
EBONE (Europe) 23 76
Sprintlink (US) 44 166
Tiscali (Europe) 49 172

Germany50 50 176

TABLE III
PARAMETER SETTINGS OF SYNTHESIZED TMS

Parameters Dynamic TMs Stable TMs
Hourly Peak-to-Mean Ratio 1.5 1.05
Daily Peak-to-Mean Ratio 5 1.1
Hourly Spatial Variance 1 1
Daily Spatial Variance 3 1.5

TM) would be removed when performing routing updates for
the current traffic scenario, as we discussed in Section III-B.
Given that FlexEntry performs routing updates when traffic
changes (e.g., a new TM is measured), each entry update
would last for the same time as the TM measurement interval
in each network.

2) Dataset: In our evaluation, we use six real-world net-
work topologies, including the Abilene network, two networks
(i.e., Nobel-Germany and Germany50) from SNDlib [49], and
three service provider networks (i.e., EBONE, Sprintlink, and
Tiscali) collected by Rocketfuel [50]. The numbers of nodes
and directed links of all six topologies are shown in Table II.

For the Abilene network, the topology information (such
as link connectivity, costs, and capacities) and measured TMs
are available at [51]. Since Abilene TMs are measured every
5 minutes, there are a total of 288 TMs per day. To evaluate
the performance of FlexEntry, we choose the total 2016 TMs
in the first week (starting from Mar. 1st, 2004) as our training
set, and then test our scheme in the following week (starting
from Mar. 8th, 2004). For the Nobel-Germany and Germany50
networks, both the link capacities and costs are not provided.
We refer to [31], [32] to set the link capacities and link costs.
Specifically, all link costs are set to 10 and the capacity of
each link is configured based on the degrees of the two directly
connected nodes. If at least one of the directly connected nodes
has a degree larger than three, the link capacity is set to 10
Gbps; otherwise, the link capacity would be 5 Gbps. Since
there are limited real TMs measured in one day for each of
these two networks [52], we take the first 85% of total TMs to
train FlexEntry and use the remaining 15% TMs for evaluation.

For the Rocketfuel topologies, the link costs are given while
the link capacities are not provided. Therefore, we infer the
link capacities as the inverse of link costs, which are based on
the default link cost setting of Cisco routers. In other words,
the link costs are inversely proportional to the link capacities.
This approach is commonly adopted in literature [14], [53].
Given that there are no measured TMs available for the three
service provider networks from Rocketfuel, we synthesize a
series of spatiotemporal TMs for each of the three networks
using the Modulated Gravity Model (MGM) [54], [55]. On the
one hand, MGM can effectively construct spatial properties
for synthesized TMs based on gravity-model-like constraints.
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On the other hand, MGM utilizes sinusoids to reflect the
cyclical nature of TMs and generates TM sequences with
temporal correlations. Thus, MGM is capable of emulating
the characteristics of real TMs. In our simulation, we combine
daily and hourly traffic patterns to synthesize TMs. To evaluate
FlexEntry in different traffic scenarios, we tune the MGM
parameters to adjust traffic variations in the generated TM
sequences. The detailed parameter settings are shown in Table
III. Note that we also introduce an exponential model [55]
to generate traffic spikes in dynamic TMs. For each of the
three networks, we synthesize 50 dynamic TMs and 50 stable
TMs as the training set following the parameter settings in
Table III. To better evaluate the generalization of FlexEntry,
we use a different set of parameters to generate a total of 100
synthetic test TMs in a similar manner (e.g., slightly increase
the peak-to-mean ratios and use different random seeds).

3) RL Implementation: For the first stage, the policy neural
network of each sub-model consists of three layers, where
the first layer is a convolutional layer with 128 filters, the
corresponding kernel size is 3 × 3, and the stride is set to 1.
The second layer is a fully connected layer with 128 neurons,
and the activation function used for the previous two layers
is Leaky Relu [56]. The last layer is a fully connected linear
layer (without activation function) with N ∗ (N − 1) neurons
corresponding to all possible actions (i.e., router-destination
pairs). A softmax function is applied upon the output of the
final layer to generate the probabilities for all available actions.
The critic network of each sub-model is similar to the policy
network except that the last layer is a fully connected linear
layer with only one neuron corresponding to the baseline b(s).
For each sub-model pj , the learning rates αj and αvj

are
initially configured as 0.0001 with a decay rate of 0.96 every
500 iterations. Additionally, the entropy factor βj is set to 0.1.

For the single model in the second stage, the policy neural
network is almost the same as sub-models except for the last
layer. With an action space of {1, 2, ...,m}, the last layer of the
single model is a fully connected linear layer (without activa-
tion function) with m neurons corresponding to all candidate
sub-models. The critic network and hyperparameter settings in
the second stage are the same as in the first stage. It is worth
mentioning that we reach the above hyperparameter settings
through a grid search procedure, as later shown in Section
VI-B5. Additionally, the performance target PRTH in the
reward function Eq. (6) is configured to 0.9 with an objective
to achieve at least 90% of optimal performance. As for the
penalty factor settings, λ is configured with consideration of
network topology effects as later shown in Section VI-B2.
Except for λ, we fixed all these hyperparameters throughout
our simulations. The simulation results show that FlexEntry
works well on different network topologies with a single set
of fixed hyperparameters.

4) Baselines: For comparison, we evaluate six different
destination-based TE solutions as follows:

1) FlexEntry: leverages a combination of 2-stage RL and
LP to control traffic distributions with a flexible number
K of critical entries selected for each TM. This is our
proposed approach to achieve near-optimal performance
and low routing update overhead.

2) SmartEntry [57]: exploits RL to select a fixed number
of critical entries (i.e., 10% of total entries) and redis-
tribute a small portion of total traffic accordingly with
LP to improve network performance.

3) ECMP [18]: distributes traffic evenly among available
next hops along the shortest paths. The link cost setting
for each network was discussed in Section VI-A2.

4) Weighted ECMP (W-ECMP) [4]: extends ECMP to
allow weighted traffic splitting among available next
hops along the shortest paths. The corresponding op-
timal weighted split ratios are obtained by the method
proposed in [4].

5) Top-K: selects the top K destination-based forward-
ing entries that forward the most traffic under ECMP
routing, and then adopts the LP formulation in (9) to
optimize the traffic split ratios for these entries. This
heuristic is designed based on the assumption that the
entries forwarding larger traffic volumes would have a
dominant impact on network performance. Note that the
value of K is the same as FlexEntry.

6) Link Cost Optimization (LCO) [21]: uses a local
search heuristic to find good link cost settings that
achieve promising load balancing performance with
ECMP routing, which is implemented by REPETITA
[58]. Unlike the static link costs used in the above-
mentioned baselines, LCO changes link costs adaptively
for each TM.

B. Simulation Results

1) The Number of Critical Entries: The goal of FlexEntry
is to achieve near-optimal network performance (i.e., PR ≥
PRTH ) while effectively mitigating routing update overhead.
Thus, we need to train multiple candidate sub-models with
different K settings that provide more flexibility for the single
model to adapt to different traffic scenarios. Specifically, we
need to ensure that there exists at least one sub-model whose
worst-case performance is above PRTH = 0.9, such that we
can guarantee near-optimal performance for all TMs. Thus,
we conduct a series of simulations with different numbers of
critical entries.

Fig. 4 shows the average performance ratio achieved by
each sub-model with an increasing percentage of total entries
selected as critical entries in the first four networks. Each data
point in Fig. 4 represents a sub-model with a distinct K value.
For example, in a network with N nodes, 5% of total entries
selected means that K = 5% ∗ N ∗ (N − 1). For each sub-
model, we also plot an error bar that spans from the lowest to
the highest performance ratio. From Fig. 4, we can see that
the performance ratio is improving as the number of critical
entries K increases in all four networks. This is because LP
can reroute more traffic to improve network performance as K
grows, but it would also incur higher routing update overhead
since FlexEntry needs to update more critical entries.

To determine an appropriate set of candidate sub-models for
each network, it is important for the sub-model with the lowest
K value to achieve PRTH = 0.9 for at least one TM, while
the sub-model with the highest K value should achieve above
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(b) Nobel-Germany network

2% 3% 4% 5% 6% 7%
Percentage of Total Entries Selected

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 P
er

fo
rm

an
ce

 R
at

io

(c) EBONE network
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(d) Sprintlink network

Fig. 4. Evolution of the average performance ratio of FlexEntry with an
increasing number of critical entries in the first four networks.

90% of optimal performance for all TMs. The reason is that
we need to provide flexible solutions to accommodate various
TMs. For instance, as illustrated in Fig. 4(a), we train 5 sub-
models with K ranging from 5% to 25% of total entries as
the candidates in the Abilene network. For some of the TMs,
it is good enough to select 5% of total entries to achieve
the performance target with low routing update overhead.
Meanwhile, we have to choose 25% of total entries for some
TMs to maintain promising network performance. Based on
the above-mentioned selection criteria, we can determine the
lower bound and upper bound for the K value.

Another important aspect is to define the number of sub-
models m and their corresponding K values with consid-
eration of the training complexity and the flexibility under
different traffic scenarios. If we use fewer sub-models, it would
require less training time and resource consumption. However,
FlexEntry might not be able to adapt to different traffic sce-
narios since the action space in the second stage RL is limited.
Suppose we only have 3 sub-models for the Abilene network
with K = 5%, 15%, and 25% of total entries, respectively.
Then, it is possible that updating 5% of total entries cannot
guarantee near-optimal performance for a certain TM, while
15% of entry updates would result in unnecessary routing
update overhead. In contrast, if we use more sub-models,
FlexEntry would be more effective in mitigating routing update
overhead with a wider range of candidate K values. However,
it may lead to higher training complexity with a larger solution
space to explore. Throughout our simulation, we found that 4-
6 sub-models would be sufficient to achieve a good trade-off
between flexibility and overhead. Thus, we empirically choose
several candidate sub-models with different K values for each
network, as shown in Table IV.

2) Topology Effects and Penalty Factor Settings: From
Fig. 4 and Table IV, one interesting observation is that less
percentage of total entries (i.e., K

N(N−1) ) is required to achieve
promising network performance as the topology size increases.
In Fig. 4(a), we can see that 25% of total entries should be
installed in the Abilene network to satisfy the performance

TABLE IV
PARAMETER SETTINGS FOR DIFFERENT NETWORKS

Topology λ Critical Entries Percentage of Sub-Models
Abilene 0.05 5%, 10%, 15%, 20%, 25%

Nobel-Germany 0.8 2.5%, 5%, 7.5%, 10%
EBONE 1 2%, 3%, 4%, 5%, 6%, 7%

Sprintlink 5 1%, 1.25%, 1.5%, 1.75%
Tiscali 6 0.5%, 0.75%, 1%, 1.25%

Germany50 8 0.25%, 0.5%, 0.75%, 1%
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Fig. 5. Comparison of average performance ratio and average number of
critical entries with different penalty factor λ settings in the Abilene network.

target (i.e., PR ≥ PRTH ) for all TMs, while it only requires
7% of total entries for FlexEntry to achieve near-optimal
performance in all cases of the EBONE network, as shown
in Fig. 4(c). Such observation holds for all six real-world
networks. One possible reason is that each entry would control
more traffic/flows in larger networks to improve network
performance more effectively. Given that a critical entry τdi
is installed in router i with a specified destination d, it is re-
sponsible for controlling all traffic destined to d that aggregates
at router i. With consideration of all possible source nodes, a
carefully selected τdi could control more source-destination
pairs in larger networks and thus become more effective in
improving network performance. As a result, FlexEntry can
achieve the performance target with less percentage of total
entries selected as critical entries in larger networks.

Due to the topology effects on the number of critical entries,
we have different sub-model configurations for the six real-
world network topologies. For example, as shown in Fig. 4,
the K interval for the sub-models of the Abilene network is set
to 5%, while the sub-models in the Sprintlink network have a
K interval of 0.25%. When tuning the penalty factor λ in the
reward function Eq. (6) to achieve good performance and low
overhead, we need to consider the above-mentioned topology
effects and sub-model configurations. Moreover, λ is designed
as a knob to balance network performance and routing update
overhead. To investigate the influence of penalty factor λ on
FlexEntry, we run several experiments in the Abilene network
with 5 different λ settings (i.e., 0.01, 0.025, 0.05, 0.1, and 0.2).
As depicted in Fig. 5, we can find that both the average perfor-
mance ratio and average critical entry number would gradually
decrease with an increasing λ in the Abilene network. This
is reasonable since λ controls the strength of penalty on
critical entries percentage K

N(N−1) . Given a high λ value, RL
would prioritize the reduction of critical entry number over the
improvement of network performance; otherwise, RL would be
more tolerant to a high K value such that it can achieve better
performance by rerouting more traffic. Since our objective
is to achieve the performance target with consideration of
mitigating routing update overhead, we believe that FlexEntry
should provide near-optimal performance for at least 95% of
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Fig. 6. Comparison of performance ratio PR among different destination-based TE solutions with the Abilene test TMs from days 2, 3, 5, and 6 in week 2.
The higher PR, the better performance.
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(d) Day 6

Fig. 7. The number of critical entries K selected by FlexEntry for each Abilene test TM from days 2, 3, 5, and 6 in week 2. A smaller K value indicates
lower routing update overhead. For clarity, we use the percentage of total entries selected as critical entries to represent K values.

traffic scenarios with less critical entries selected under the λ
settings. Therefore, we configure an appropriate penalty factor
λ for each topology in Table IV based on the above-mentioned
criterion to effectively trade off PR and K. In the following
experiments, we fix the parameter settings as shown in Table
IV.

3) Performance Comparison: To demonstrate the perfor-
mance of FlexEntry, we compute the performance ratio of each
baseline method according to Eq. (1) for comparison. Fig. 6
shows the performance ratio achieved by each TE solution on
week 2’s test TMs in the Abilene network. Fig. 7 provides the
number of critical entries selected by FlexEntry for each test
TM in the Abilene network.

Since there is only one shortest path available for each
flow in the Abilene network, W-ECMP cannot utilize multiple
shortest paths with weighted split ratios to improve network
performance. In Fig. 6, W-ECMP achieves the same perfor-
mance as ECMP, which is far from optimal performance. By
optimizing link costs for each TM, LCO can far outperform
ECMP since ECMP uses static pre-defined link costs that
cannot adapt to traffic changes. However, the performance
of LCO is not stable and we can find severe performance
degradations in many traffic scenarios. Due to the restriction
of the shortest paths and equal split rules, the performance of
LCO could be limited compared to the optimal solution.

For the other schemes, we can see that FlexEntry achieves
the performance target in most cases with better worst-case
performance compared to SmartEntry. For example, as de-
picted in Fig. 6(a), we can find that the performance ratio
of SmartEntry is only 75.6% for the 175th TM on day 2. This
is because SmartEntry selects a fixed number of critical entries
(i.e., 10% of total entries) without considering topology effects
and traffic dynamics. As shown in Section VI-B1, near-optimal
performance cannot be guaranteed for all Abilene TMs when
selecting 10% of total entries. Thus, SmartEntry cannot adapt

to different traffic scenarios and suffers from performance
degradation. In contrast, FlexEntry achieves optimal perfor-
mance for the same TM with a performance improvement of
24.4% over SmartEntry. As shown in Fig. 7(a), FlexEntry
avoids performance degradation by selecting more critical
entries (i.e., 25% of total entries) for the 175th Abilene TM in
day 2. Similarly, it could be too much for SmartEntry to select
10% of total entries in certain traffic scenarios. As shown in
Figs. 6(b) and 7(b), even though SmartEntry achieves better
performance in the 51st TM on day 3 compared to FlexEntry,
FlexEntry only needs to select 5% of total entries to achieve
near-optimal performance with lower routing update overhead.
Therefore, FlexEntry is able to choose an appropriate sub-
model for each test TM as shown in Fig. 7 to adapt to traffic
dynamics.

Another interesting finding is that Top-K can only provide
a marginal performance improvement over ECMP. In some
traffic scenarios, Top-K achieves the same performance as
ECMP after updating the top K entries that forward the most
traffic, while ECMP does not require any routing updates. In
other words, such entry updates from Top-K are ineffective
since the network congestion cannot be alleviated. This is
because a simple rule-based heuristic cannot adapt to the
changes in TMs and network dynamics. On the contrary, with
the exact same number of entry updates, FlexEntry is able to
achieve near-optimal performance with intelligently selected
critical entries, which demonstrates the effectiveness of our
2-stage RL design.

For the Nobel-Germany and Germany50 networks, Fig.
8 illustrates the performance comparison among different
destination-based TE solutions. Compared to the Abilene
network, there are fewer TMs in the training set of these two
networks (i.e., the first 85% TMs in a single day). Therefore,
it could be more difficult for RL to capture the complete daily
traffic patterns with limited data. However, as shown in Fig.
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(a) Nobel-Germany network
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(b) Germany50 network

Fig. 8. Performance ratio comparison based on the test TMs of the Nobel-
Germany and Germany50 networks.

TABLE V
COMPARISON OF AVERAGE CRITICAL ENTRY NUMBERS

Topology FlexEntry SmartEntry
Nobel-Germany 8.2 (3% of total) 27 (10% of total)

Germany50 18 (0.7% of total) 245 (10% of total)

8, FlexEntry achieves the performance target PRTH = 0.9 in
most cases in the two networks except for two TMs in the
Nobel-Germany network. Moreover, the lowest PR achieved
by FlexEntry is 84.2%, which is not far from the performance
target.

For the baseline methods, W-ECMP can outperform ECMP
with optimized weighted traffic splitting among ECMP next
hops. However, W-ECMP is still constrained by the shortest
paths with 14.9% and 27.2% average performance degradation
compared to FlexEntry in the Nobel-Germany and Germany50
networks, respectively. For LCO and Top-K, there exist per-
formance fluctuations in the Nobel-Germany network, which
is similar to our previous observation in the Abilene network.
However, both LCO and Top-K can achieve surprisingly good
performance in the Germany50 network and even slightly
outperform FlexEntry. One possible reason is that FlexEntry
only targets 90% of optimal performance, while LCO and
Top-K benefit from this specific network topology and TM
distribution by rerouting a large amount of traffic. For Smar-
tEntry, it can achieve close-to-optimal network performance
with 10% of total entries selected as critical entries. How-
ever, as shown in Table V, FlexEntry only selects 3% and
0.7% of total entries on average for the Nobel-Germany and
Germany50 networks, respectively. In other words, FlexEntry
achieves near-optimal performance while saving up to 99.3%
entry updates on average. This is because FlexEntry aims at
achieving a preset performance target with consideration of
mitigating routing update overhead, while SmartEntry solely
focuses on maximizing network performance. As a result,
FlexEntry can generalize to unseen TMs while ensuring near-
optimal performance with low routing update overhead.

4) Generalization Over Different Traffic Variations: As
described in Section VI-A2, we synthesize a series of TMs for
the EBONE, Sprintlink, and Tiscali networks. In the test set
of each network, the first 50 TMs represent dynamic traffic
scenarios with large traffic variations, and the remaining 50
TMs are relatively stable. Fig. 9 demonstrates the comparison
results for each test TM of the three networks. Compared to
the stable TMs, it is obvious that there are more frequent
performance fluctuations for all TE solutions in the dynamic
traffic scenarios (i.e., the first 50 TMs), where FlexEntry
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(a) EBONE network
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(b) Sprintlink network
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(c) Tiscali network

Fig. 9. Comparison of performance ratio and critical entries percentage in
the EBONE, Sprintlink, and Tiscali networks with different traffic variations.

tends to select more critical entries for these dynamic TMs to
maintain good network performance. For the second half of
TMs with small traffic variations, the performance is relatively
stable and FlexEntry tends to select less critical entries to
mitigate routing update overhead. As shown in Fig. 9, Flex-
Entry performs consistently well in both dynamic and stable
traffic scenarios with an average performance ratio of 94.6%
- 99.1% in the three networks. Meanwhile, FlexEntry flexibly
selects different numbers of critical entries based on network
conditions and effectively reduces the average entry updates
by up to 99% in the three networks. For instance, FlexEntry
can achieve the performance target for all Tiscali test TMs
with only 1% of total entries selected on average. As for the
baseline methods, the performance ratios of Top-K, W-ECMP,
and ECMP are not promising while SmartEntry introduces
more entry updates compared to FlexEntry. Even though
LCO achieves relatively good performance compared to other
traditional baseline methods, it also requires updating all link
costs and waiting for OSPF reconvergence, which may lead to
network disturbance and service disruption during the routing
updates. Overall, FlexEntry can generalize well to different
traffic variations with promising network performance as well
as low routing update overhead.

5) Hyperparameters: To investigate the impact of different
hyperparameter settings on FlexEntry’s performance, we per-
form a grid search on the learning rate α and the entropy factor
β. Table VI lists the average performance ratio of FlexEntry
with different α and β settings in the Abilene network. Since
the results for other network topologies are similar, we only
present the results for the Abilene network. For each set of
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TABLE VI
AVERAGE PERFORMANCE RATIO WITH DIFFERENT HYPERPARAMETERS

β = 0.01 β = 0.1 β = 1
α = 0.001 (with decay) 0.932 0.939 0.927

α = 0.0001 (with decay) 0.948 0.965 0.960
α = 0.00001 (with decay) 0.946 0.953 0.952

TABLE VII
OFFLINE TRAINING TIME FOR DIFFERENT NETWORK TOPOLOGIES

Topology First Stage (hours) Second Stage (hours)
Abilene 3.5 1.5

Nobel-Germany 4.5 2.5
EBONE 6 4.5

Sprintlink 13.5 7
Tiscali 17 8

Germany50 18 9

hyperparameters, we train a 2-stage RL model with 10000
iterations and evaluate the well-trained RL model in the entire
test set of the Abilene network. Note that we use the same
hyperparameters for both the sub-models and the single model
since they have similar neural network architectures.

The results in Table VI show that FlexEntry achieves the
best average performance ratio with α = 0.0001 and β = 0.1,
which are the hyperparameter settings we adopted in our
simulation. If the initial learning rate α is too large (e.g.,
α = 0.001), the training process would be unstable with
a negative impact on RL convergence. On the contrary, a
small learning rate (e.g., α = 0.00001) may lead to slow
convergence with a longer training time. Thus, we believe that
α = 0.0001 would be a good choice to balance training stabil-
ity and convergence speed. Regarding the entropy factor β, it
determines the trade-off between exploration and exploitation
during RL training. A large entropy factor will encourage
exploration for long-term benefit but at the risk of making
bad decisions. In contrast, a small entropy factor can focus on
exploitation and avoid potential bad decisions. However, RL
might be trapped in a sub-optimal policy with a small β since
it cannot discover potential better decisions. Thus, we consider
the above-mentioned trade-offs and empirically reach a good
set of hyperparameters for FlexEntry, which is demonstrated
to work well in different network scenarios.

6) Time Complexity and Routing Update Overhead: Table
VII lists the training time of FlexEntry for the first and second
training stages in the six networks. From Table VII, we can
observe that it is usually faster to train a single model in the
second stage compared to the sub-model training in the first
stage. This is because the action/solution space of the single
model is much smaller than that of sub-models, given that
each sub-model needs to learn a combination selection policy
while the single model learns to select one of the sub-models.
Besides, as the network size grows, there are more router-
destination pairs in the network with larger action/solution
space. Thus, the training time is positively correlated with
the network topology size. For the smallest Abilene network,
only a total of 5 hours are required to train FlexEntry. As
for the largest Tiscali and Germany50 networks, we need
approximately one day to train FlexEntry. However, it is worth
mentioning that all the training costs are incurred offline. To
keep FlexEntry up-to-date, the sub-models and single model

TABLE VIII
ONLINE EXECUTION TIME FOR DIFFERENT NETWORK TOPOLOGIES

Topology RL Inference (ms) LP Optimization (ms) SavingAvg. Range Avg. Range
Abilene 4.2 2.8-32.9 12.4 11.2-104.4 64.0%

Nobel-Germany 17.9 3.4-31.9 28.2 26.1-96.3 65.2%
EBONE 19.2 7.6-95.5 44.1 40.4-126.1 83.8%

Sprintlink 80.3 24.5-103.4 155.8 133.2-244.4 91.8%
Tiscali 97.5 92.2-175.7 193.3 161.4-266.9 90.0%

Germany50 114.8 89.6-243.9 259.6 214.6-342.3 86.8%
*Note: “Saving” means the average LP time savings of FlexEntry compared
to the optimal destination-based routing LP method for all entries [14].

can also be retrained periodically (e.g., once a week) based
on newly collected TMs to absorb various traffic patterns.

Another important aspect that makes FlexEntry a practical
solution is the low time complexity and routing update over-
head during online deployment. For each of the six networks,
we list the average online execution time of FlexEntry along
with the upper bound and lower bound of the execution time in
Table VIII. From the perspective of RL, the inference time to
select critical entries would be longer in larger networks. This
is because the dimension of input TMs and the size of each
sub-model’s output layer would become larger if the number
of network nodes increases. As for the LP optimization time,
the size of the LP problem is also related to the network
size. Since the destination-based entries would forward the
traffic in a hop-by-hop manner, the degree of network nodes
should be considered when measuring the size of the LP
problem presented in (9). Suppose the maximum degree in
a network G = (V,E) is denoted as ∆(G). Then, we
have at most O(N2∆(G)) routing variables to be solved
and O(N2∆(G) + M) constraints to be considered in the
LP formulation of FlexEntry, where N and M stand for the
number of nodes and links, respectively (please refer to Table
II). As shown in Table VIII, the execution time for LP opti-
mization would become longer as the network size increases.
However, it is also worth mentioning that the optimal traffic
split ratio for critical entries can be efficiently solved by LP
under different network scenarios. In the largest Germany50
network with 50 nodes and 176 links, it only takes less than
400 ms on average for FlexEntry to identify critical entries
and compute the corresponding optimal routing solution. Such
low execution time should be credited to RL’s critical entry
selection since LP only needs to optimize the traffic split ratios
for a small portion of total entries. Compared to the optimal
destination-based routing LP method for all entries, FlexEntry
can achieve 64.0%-91.8% of average LP time savings in the
six networks, which would be more critical in large networks
as the LP complexity increases. More importantly, FlexEntry
only needs to install a few critical entries at some routers with
much lower routing update overhead (e.g., updating 0.7% of
total entries on average in the Germany50 network). Overall,
FlexEntry can achieve good scalability in large networks by
performing routing updates in a responsive manner with low
time complexity and management overhead.

VII. CONCLUSION AND FUTURE WORK

To achieve near-optimal load balancing performance and
mitigate routing update overhead, we proposed FlexEntry, a
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destination-based TE solution that learns to intelligently and
flexibly identify a few critical entries using RL and then
redistributes the selected traffic by solving an LP optimization
problem. FlexEntry is trained with a 2-stage RL approach
to accommodate various traffic scenarios and realize a good
trade-off between network performance and forwarding entry
savings. Extensive simulation results on six real-world network
topologies show that FlexEntry can effectively reduce entry
updates and achieve the performance target in most cases
with good generalization over unseen TMs and different traffic
variations.

Yet, it would be of interest to discuss several aspects
that may help improve the performance and generalization
capability of the proposed FlexEntry in future work.

Objectives: The major performance metric considered by
FlexEntry in this work is the minimization of the maximum
link utilization in the network. As such, the critical entry
selection and traffic rerouting procedure are carried out to
achieve near-optimal load balancing performance with miti-
gated routing update overhead. However, it is possible that
the resulting routing strategy would lead to higher forwarding
delay since it is not considered an objective during RL training
and LP solving. On the one hand, we can set a higher load
balancing performance target (e.g., PRTH = 0.95) and a
smaller λ value in the reward function, such that FlexEntry will
give more priority to improving load balancing performance
over mitigating routing update overhead to prevent potential
high forwarding delay. On the other hand, FlexEntry could be
re-formulated with an objective to minimize the overall end-
to-end delay in the network. This can be done by modifying
the objective and constraints of LP formulation as well as
the performance metric in RL’s reward function. In practice,
the objective of FlexEntry can be customized based on actual
requirements (e.g., better load balancing, lower forwarding
delay, higher throughput).

QoS Requirements: In the foreseeable future, it would be
important for TE solutions to take the Quality of Service
(QoS) requirements of different applications into consider-
ation. For instance, high priority traffic could have certain
requirements on end-to-end delay with low link utilization
along the routing paths, while low priority traffic is relatively
tolerant to higher latency. Such traffic with different priorities
can be distinguished by tagging the packet headers at the
sender to indicate the priority level [20], [59]. In addition to
the priority queues implemented at the data plane, optimized
routing decisions at the control plane are also required for
good QoS provisioning. Under the assumption that FlexEntry
can operate in legacy routers with slight modifications, we can
further extend FlexEntry to satisfy the QoS requirements of
different applications using a 2-step optimization approach. To
achieve this, the original TM can be decomposed into a high
priority TM and a low priority TM for optimization purposes.
In general, FlexEntry would install critical destination-based
entries for traffic with different priorities, and the critical
entries for high priority traffic should take strict precedence
over those for low priority traffic. In the first step, FlexEntry
only considers the optimal allocation of high priority traffic

with a specific objective designed in accordance with the
QoS requirements. For example, given the high priority TM,
FlexEntry would selectively install some critical destination-
based entries to minimize the end-to-end delay. Once the
allocation of high priority traffic is determined, the second
step is to obtain the routing strategy for the remaining low
priority traffic. While FlexEntry can target load balancing
performance to allocate low priority traffic in this step, it is
necessary to modify the link capacity constraints in the LP
formulation since part of the bandwidth is already reserved for
high priority traffic. As a result, FlexEntry can install some
additional critical entries for low priority traffic to improve
network performance with good QoS provisioning for high
priority traffic.

Robustness: During the online deployment, a good TE solu-
tion should be able to provide robust routing strategies against
unexpected link failures and topology changes. In the current
design of FlexEntry, we only take TM as an input and assume
that the topology remains unchanged. Although FlexEntry can
implicitly learn how traffic flows affect each other in the
network from the reward signals, it would be essential to
incorporate topology information into RL design to enhance
the robustness of FlexEntry. One promising solution is to
adopt the emerging Graph Neural Network (GNN) techniques
[60], [61] that are suitable for processing graph-structured
data (e.g., network topology). GNN has strong generalization
capability over link failures and topology changes [32], [62].
By leveraging the message passing framework in GNN, each
network node can efficiently exchange messages with neigh-
boring nodes to capture both topology and traffic information
during the training and inference stages. In our future work, we
will investigate possible directions to improve the robustness
and generalization capability of FlexEntry with GNN.
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