
LARRI: Learning-based Adaptive Range Routing
for Highly Dynamic Traffic in WANs

Minghao Ye†, Junjie Zhang‡, Zehua Guo§*, H. Jonathan Chao†
†New York University ‡Fortinet, Inc. §Beijing Institute of Technology

Abstract—Traffic Engineering (TE) has been widely used
by network operators to improve network performance and
provide better service quality to users. One major challenge
for TE is how to generate good routing strategies adaptive to
highly dynamic future traffic scenarios. Unfortunately, existing
works could either experience severe performance degradation
under unexpected traffic fluctuations or sacrifice performance
optimality for guaranteeing the worst-case performance when
traffic is relatively stable. In this paper, we propose LARRI,
a learning-based TE to predict adaptive routing strategies for
future unknown traffic scenarios. By learning and predicting
a routing to handle an appropriate range of future possible
traffic matrices, LARRI can effectively realize a trade-off between
performance optimality and worst-case performance guarantee.
This is done by integrating the prediction of future demand
range and the imitation of optimal range routing into one step.
Moreover, LARRI employs a scalable graph neural network
architecture to greatly facilitate training and inference. Extensive
simulation results on six real-world network topologies and traffic
traces show that LARRI achieves near-optimal load balancing
performance in future traffic scenarios with up to 43.3% worst-
case performance improvement over state-of-the-art baselines,
and also provides the lowest end-to-end delay under dynamic
traffic fluctuations.

Index Terms—traffic engineering, range routing, supervised
learning, graph neural networks, routing prediction

I. INTRODUCTION

Traffic Engineering (TE) aims to optimize network per-
formance and resource utilization by configuring the routing
across Wide Area Networks (WANs) to control traffic dis-
tribution. Traditional TE solutions [1]–[9] usually formulate
and solve a routing optimization problem to balance the load
on network links for given traffic demands. Although traffic
demands among network nodes are relatively stable most of
the time in a WAN, highly dynamic traffic fluctuations have
been observed in real life [10]. A typical way to deal with
unexpected traffic fluctuations is to update routing periodically
based on the most recent traffic demands between all node
pairs, which are known as Traffic Matrices (TMs), to improve
network performance [11]–[14]. The TMs can be periodically
measured and collected during the past time interval (e.g., ev-
ery 5 minutes) using network measurement techniques, such as
SNMP [15] and NetFlow [16]. However, once the future traffic
demands deviate considerably from previously measured TMs,
the current routing strategy might become incompatible since
it is optimized based on previous TMs. In this situation, the
network performance could degrade dramatically1.

*Corresponding author.
1In terms of load balancing performance, which is verified through exper-

iment results with real-world network topologies and TMs in Section II.

To accommodate highly dynamic traffic and address the
routing incompatibility issue, one straightforward approach is
to frequently update routing to catch up with traffic changes.
However, it could introduce severe network service disruption
[17], [18] and high routing update overhead [19], [20]. Another
way to work around this issue is to adopt oblivious routing
approaches [21], [22], which provide a strong worst-case
performance guarantee for all TMs without routing updates.
Although oblivious routing can handle unexpected traffic
changes, it tends to be too conservative and performs sub-
optimal on each TM [22]. To balance performance optimality
and worst-case performance guarantee, one interesting idea is
to periodically compute an optimal routing targeting a range of
TMs instead of all TMs [10], [22]. However, it is very difficult,
if not impossible, to obtain an accurate range of future traffic
demands in advance. As a result, an inaccurate demand range
may compromise the performance of these methods.

Recently, emerging Machine Learning (ML) techniques
provide new opportunities to improve network performance
under future traffic variations. Existing works usually predict
future TMs based on historical traffic demand measurements
[23]–[26], but a predicted TM only records the average traffic
demands within a future time period and cannot effectively
capture fine-grained future traffic variations. In this situation,
ML could be applied to predict the future demand range for
the above-mentioned range routing approaches [10], [22] to
optimize routing with consideration of future traffic variations.
However, there are two main challenges. First, good demand
range predictions do not necessarily result in promising routing
performance. Since demand range prediction is decoupled
from range routing optimization, small prediction errors might
result in undesired routing decisions. As shown in [24], [25],
a relatively accurate demand prediction could still lead to
poor routing performance under actual future traffic demands.
Second, the computation complexity of range routing is pro-
hibitively high. Even though the demand range is assumed to
be accurately predicted, it would be very time-consuming to
compute a range routing strategy. As we verified in Section
V-F, more than 24 hours are required for computing range
routing [10], [22] in the Google Cloud network [27] with 42
nodes and 156 links, which inevitably limits timely routing
updates and thus cannot accommodate future traffic variations.

In this paper, we propose Learning-based Adaptive Range
RoutIng (LARRI), which enables time-efficient and adaptive
routing prediction to accommodate highly dynamic future
traffic scenarios. By integrating demand range prediction and
range routing imitation into one step, LARRI directly predicts

a routing based on historically measured traffic demands to
handle an appropriate range of possible TMs in terms of future
traffic fluctuations. During the offline training, LARRI learns
from the target routing strategies provided by our proposed
path-based range routing Linear Programming (LP) model
(simplified and reformulated based on [22]), where the target
future demand range can be obtained from a pre-collected TM
dataset for training purposes. In the online deployment, future
traffic demands are unknown beforehand when making routing
decisions. Instead of expensively solving for range routing
[10], [22] with an inaccurate demand range, a well-trained
LARRI model can predict a routing for large networks in
seconds to accommodate future traffic variations. When future
traffic dramatically fluctuates, LARRI would predict a robust
routing to handle a wide range of future possible TMs to
avoid severe performance degradation. When future traffic is
predicted to be relatively stable, a routing targeting a narrow
range of future possible TMs would be generated by LARRI
to ensure performance optimality. Such routing strategies can
be deployed through existing Software-Defined Networking
(SDN) [28] techniques to facilitate flexible and timely routing
updates. Moreover, we utilize graph representation learning
techniques and message passing frameworks offered by Graph
Neural Networks (GNNs) [29], [30] to design a scalable
routing prediction model with unique advantages in modeling
network topologies and characterizing traffic demands.

The contributions of this paper are summarized as follows:
• We propose an ML-based routing scheme called LARRI

that for the first time directly predicts appropriate routing
strategies for future unknown traffic scenarios in WANs.

• We formulate a path-based range routing LP model to
provide good performance for a range of TMs with re-
duced computation complexity, which is used to generate
target routing strategies for training LARRI.

• We customize a scalable GNN-based architecture to re-
duce the complexity of the prediction model and accel-
erate the training and inference processes.

• Extensive simulation results in six real-world network
topologies and traffic traces show that LARRI can im-
prove the worst-case load balancing performance by up
to 43.3% compared to state-of-the-art baselines, and also
provides the lowest end-to-end delay in extreme cases to
ensure good service quality.

The rest of the paper is organized as follows. Section II
explains our motivation with experiment results. Section III
introduces our proposed path-based range routing LP model.
Section IV details the design of LARRI’s routing prediction
model. Section V evaluates LARRI’s performance. Section VI
lists related work, and Section VII concludes this paper.

II. MOTIVATION

Routing incompatibility. Existing TE solutions usually
optimize and update routing every 5 minutes based on the re-
cently measured 5-minute TM [11]–[14]. To verify the routing
incompatibility issue and its impact on network performance,
we evaluate typical routing update methods on the BRAIN

0 1 2 3 4 5 6 7 8 9 10

TM 1 TM
2.1

TM
2.2

TM
2.3

TM
2.4

TM
2.5

Optimize Routing

Tr
af

fic
 D

em
an

ds

Time (minute)

5~6
min

(a) Typical routing update (e.g., every
5 minutes) leads to routing incompat-
ibility and performance degradation.

0 1 2 3 4 5 6 7 8 9 10

TM
2.1

Optimize Routing

Tr
af

fic
 D

em
an

ds

Time (minute)

TM
1.5

(b) Frequent routing update (e.g., ev-
ery minute) introduces high manage-
ment overhead and disturbance.

0 1 2 3 4 5 6 7 8 9 10

TM
2.1

TM
2.2

TM
2.3

TM
2.4

TM
2.5

Tr
af

fic
 D

em
an

ds

Time (minute)

Optimize
 Range
Routing

Pred.
Range

(2)

(1)

(c) Demand range prediction-based
TE suffers from high computation
overhead for solving the range routing
LP problem.

0 1 2 3 4 5 6 7 8 9 10

TM
2.1

TM
2.2

TM
2.3

TM
2.4

TM
2.5

Tr
af

fic
 D

em
an

ds

Time (minute)

Predict
 Range
Routing

(d) Our proposed LARRI directly pre-
dicts a range routing to accommodate
future traffic fluctuations with low
computation overhead.

Fig. 1: Different TE solutions for addressing the routing incompatibil-
ity issue under highly dynamic future traffic fluctuations. The inputs
for routing optimization and the future TMs for routing evaluation
are marked in green and red colors, respectively.

network [31], [32] with real traffic traces. Fig. 1(a) provides
an illustrative example of typical TE solutions, which optimize
routing every 5 minutes (e.g., at time = 5) based on recent
TMs (e.g., TM 1). Here, TM 1 records the average traffic
demands of all source-destination pairs in the past 5 minutes
(e.g., time = 0-5), and the routing is optimized by solving
a Multi-Commodity Flow (MCF) problem [33] to minimize
the Maximum Link Utilization (MLU), which is a common
objective for load balancing (i.e., minmaxe∈E(le/ce), see
Table I). Then, the routing optimized for TM 1 would be
evaluated in the next 5 minutes in terms of MLU. Each of the
future TMs (e.g., TM 2.1-2.5) is a 1-minute TM representing
fine-grained future traffic variations. With the above settings,
we conduct experiments on the entire TM dataset and present
the evaluation results in Fig. 2, which demonstrates that
the load balancing performance could significantly degrade
in many future traffic scenarios. For example, we observe
more than 30% performance degradation2 in 28.7% of the
future TMs. In other words, the network could experience
significant performance degradation for around 7 hours per
day (24 hours ∗ 28.7%) on average. Moreover, the routing
incompatibility issue would cause even more than 70% per-
formance degradation in extreme cases when traffic fluctuates
dramatically (e.g., unexpected traffic spikes). As a result, such
incompatible routing could overload WAN links and lead to
severe network congestion with increased delay and packet
loss rate [10].

Limitation of existing solutions. One possible way to work

2Compared to the optimal load balancing performance (MLU), where the
routing is optimized and applied on the exact same future TM.

0 20% 40% 60% 80% 100%
Performance Degradation

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
D

F

Typical routing update (5 min)
Frequent routing update (1 min)
TM range prediction-based TE

Fig. 2: Routing performance degradation under dynamic traffic fluc-
tuations in the BRAIN network with different TE solutions.

around the routing incompatibility issue is to update routing
more frequently (e.g., in a per-minute level) in the hope that
the routing could closely adhere to traffic changes, as shown
in Fig. 1(b). Unfortunately, frequent routing updates cannot
fundamentally solve the routing incompatibility issue under
highly dynamic traffic fluctuations. As shown in Fig. 2, the
performance improvement of frequent 1-minute updates over
typical 5-minute updates is negligible, and the network could
still experience significant performance degradation. Besides,
there are several potential drawbacks: (1) leads to significant
network disturbance and service disruption [17], [18]; (2)
introduces additional routing update overhead [19], [20]. We
also evaluated other TE solutions (e.g., oblivious routing, TM
prediction-based TE) and presented the results in Section V,
which verify their limitations as described in Section I.

Our insight. To fundamentally solve the routing incom-
patibility issue, TE should take future traffic variations into
consideration and provide an appropriate routing to handle dy-
namic traffic fluctuations during the future time interval (e.g.,
next 5 minutes). We initially considered a promising solution
as shown in Fig. 1(c), which can be divided into two steps:
(1) predicts a demand range for the future time interval; (2)
optimizes a range routing with LP [22] based on the predicted
demand range. As a result, the routing should be more robust
to dynamic traffic variations in the future. Unfortunately,
the computation complexity of the original range routing LP
model [22] is prohibitively high, as we mentioned in Section
I. Therefore, we simplify and reformulate the original LP
model with a few diverse preconfigured paths to reduce the
computation cost. The promising results in Fig. 2 demonstrate
the effectiveness of our proposed path-based LP model under
the assumption that the demand range can be accurately
predicted. However, it is still computationally expensive to
solve the path-based LP model for practical large topologies
during online deployment, as later shown in Section V-F.
Besides, it is impossible to predict the future demand range
without any error in practice. In this situation, demand range
prediction-based TE is prone to prediction errors since the
prediction and optimization are separated. Thus, we integrate
demand range prediction and range routing imitation into one
step and propose LARRI. As depicted in Fig. 1(d), LARRI
can directly learn and predict a range routing to accommodate
future traffic fluctuations with low computation overhead.

TABLE I: Notations
G(V,E) network topology with nodes V and directed links

E (|V | = N, |E| = M).
Ds,d the traffic demand from source s to destination d

(s, d ∈ V).
P s,d the set of preconfigured paths from source s to

destination d (s, d ∈ V , s ̸= d, |P s,d| ≤ K).
σs,d
p the percentage of traffic demand from source s to

destination d routed on path p (p ∈ P s,d, s, d ∈
V, s ̸= d).

δs,dp,e = 1, if link e belongs to path p; 0, otherwise (p ∈
P s,d, e ∈ E).

le the traffic load on link e (e ∈ E).
ce the capacity of link e (e ∈ E).

III. PATH-BASED RANGE ROUTING

In this section, we introduce the range routing strategy used
as the training target for LARRI and detail its LP formulation.
Table I shows the notations used in this section.

A. Overview

With consideration of management overhead and network
disturbance, LARRI performs routing updates at 5-minute in-
tervals, which is a common routing update frequency adopted
by other TE solutions [11]–[14]. Given a sequence of past
measured traffic traces, LARRI is trained to predict a target
routing strategy that is optimized to accommodate an appro-
priate range of possible TMs within the future routing update
interval, as shown in Fig. 1(d). Here, a range of possible TMs
is a set of possible TMs with demand range restrictions. Let
Ds,d

+ and Ds,d
− denote the upper and lower demand bounds for

a source-destination pair ⟨s, d⟩, respectively. Then, a range of
possible TMs can be represented as follows.
{TM}range ={TM |Ds,d∈TM, Ds,d

− ≤Ds,d≤Ds,d
+ , s, d∈V }.

Assume that a continuous period of traffic traces is available,
then Ds,d

+ and Ds,d
− can be determined according to the

traffic fluctuations within the routing update interval (details
in Section V-A2). Given the demand range Ds,d

+ and Ds,d
− for

each source-destination pair ⟨s, d⟩, a target routing strategy
is obtained by solving a range routing optimization problem
described in Section III-B. We leverage an oblivious routing
algorithm [21], [34] to compute and preconfigure a set of
diverse forwarding paths {P s,d} for each source-destination
pair, where the path budget K is usually set to 4 [4]. It has
been shown that the combination of diverse preconfigured for-
warding paths and flexible path split ratios is good enough to
achieve close-to-optimal performance in real-world topologies
and TMs [4]. In the following subsection, we will focus on
the range routing problem with preconfigured paths.

B. Range Routing Optimization Problem

Given a single TM and a routing R, the performance ratio
PR is defined to measure how far R is from being optimal:

PRR(TM) = UR(TM)/Uopt(TM), (1)
where UR(TM) is the MLU achieved by R, and Uopt(TM)
is the MLU achieved by an optimal routing on the given
TM. Note that a lower performance ratio indicates that the
performance of R is closer to the optimal performance.

PRR(TM) = 1 means that R achieves optimal performance.
By extending PRR(TM) to be PRR({TM}) with respect to a
set of TMs {TM}, PRR can be defined as

PRR({TM}) = max
TM∈{TM}

PRR(TM). (2)

A routing R is optimal for the set of TMs {TM}, if and only
if PRR({TM}) is minimal. PRR({TM}) is always at least 1.
Since a routing R that achieves optimal performance for all
TMs in a set may not exist, the minimum PRR({TM}) can
be strictly larger than 1 [22]. Note that when {TM} includes
all possible TMs, the performance ratio PRR is referred to as
the oblivious performance ratio.

Given a topology G(V,E) with a set of preconfigured paths
{P s,d} for each source-destination pair and a range of possible
TMs {TM}range, the objective of the range routing problem is
to obtain the optimal path split ratios {σs,d

p } such that the
performance ratio PRR({TM}range) is minimized. The range
routing optimization problem can be formulated as follows.

minPR (3a)
subject to σs,d

p ≥ 0 p ∈ P s,d, s, d ∈ V, s ̸= d (3b)∑
p∈P s,d

σs,d
p = 1 s, d ∈ V, s ̸= d (3c)∑

s,d∈V,s̸=d

∑
p∈P s,d

δs,dp,e · σs,d
p ·Ds,d/ce ≤ PR · Uopt(TM)

e ∈ E, Ds,d ∈ TM,TM ∈ {TM}range

(3d)

where (3b) and (3c) are path split ratio constraints, and (3d)
are performance ratio constraints. There will be an infinite
number of constraints (3d), given a range of possible TMs.

By scaling Ds,d, we can replace (3d) as follows:∑
s,d∈V,s̸=d

∑
p∈P s,d

δs,dp,e · σs,d
p ·Ds,d/ce ≤ PR

e ∈ E, Ds,d ∈ TM/Uopt(TM),TM ∈ {TM}range.

(4)

Given a routing {σs,d
p }, the constraints (4) can be verified by

solving an auxiliary LP for each link e and check whether the
objective is ≤ PR or not. Let ls,dp denotes the traffic demand
from source s to destination d routed on path p (p ∈ P s,d,
s, d ∈ V, s ̸= d). Then, the auxiliary LP for each link e can
be formulated as follows.

max
∑

s,d∈V,s ̸=d

∑
p∈P s,d

δs,dp,e · σs,d
p ·Ds,d/ce (5a)

subject to ls,dp ≥ 0 p ∈ P s,d, s, d ∈ V, s ̸= d (5b)∑
p∈P s,d

ls,dp = Ds,d s, d ∈ V, s ̸= d (5c)∑
s,d∈V,s ̸=d

∑
p∈P s,d

δs,dp,e · ls,dp ≤ ce (5d)

Ds,d ≥ η ·Ds,d
− s, d ∈ V, s ̸= d (5e)

Ds,d ≤ η ·Ds,d
+ s, d ∈ V, s ̸= d (5f)
η > 0 (5g)

where (5b) and (5c) are path load constraints, and (5e) and
(5f) are demand range constraints. η is a demand multiplier to
make sure the constraints (5d) are met. Then, the dual of (5)
for each link e can be formulated as follows.

min
∑
e∗∈E

ce∗ · π(e, e∗) (6a)

subject to
∑

s,d∈V,s̸=d

(Ds,d
− ·ss,d− (e)−Ds,d

+ ·ss,d+ (e)) ≥ 0 (6b)∑
p∈P s,d

δs,dp,e · σs,d
p = ce · (φs,d(e) + ss,d+ (e)− ss,d− (e))

s, d ∈ V, s ̸= d
(6c)∑

e∗∈p

π(e, e∗)−φs,d(e) ≥ 0 p ∈ P s,d, s, d ∈ V, s ̸= d (6d)

π(e, e∗) ≥ 0 e∗ ∈ E (6e)
φs,d(e) ≥ 0 s, d ∈ V, s ̸= d (6f)
ss,d− (e) ≥ 0 s, d ∈ V, s ̸= d (6g)
ss,d+ (e) ≥ 0 s, d ∈ V, s ̸= d (6h)

Then, by combining (3) with (6), the range routing optimiza-
tion problem can be formulated as follows.

minPR (7a)
subject to σs,d

p ≥ 0 p ∈ P s,d, s, d ∈ V, s ̸= d (7b)∑
p∈P s,d

σs,d
p = 1 s, d ∈ V, s ̸= d (7c)∑

e∗∈E

ce∗ · π(e, e∗) ≤ PR e ∈ E (7d)∑
s,d∈V,s̸=d

(Ds,d
− · ss,d− (e)−Ds,d

+ · ss,d+ (e)) ≥ 0 e ∈ E (7e)∑
p∈P s,d

δs,dp,e · σs,d
p = ce · (φs,d(e) + ss,d+ (e)− ss,d− (e))

e ∈ E, s, d ∈ V, s ̸= d
(7f)∑

e∗∈p

π(e, e∗)− φs,d(e) ≥ 0

e ∈ E, p ∈ P s,d, s, d ∈ V, s ̸= d
(7g)

π(e, e∗) ≥ 0 e, e∗ ∈ E (7h)
φs,d(e) ≥ 0 e ∈ E, s, d ∈ V, s ̸= d (7i)
ss,d− (e) ≥ 0 e ∈ E, s, d ∈ V, s ̸= d (7j)
ss,d+ (e) ≥ 0 e ∈ E, s, d ∈ V, s ̸= d (7k)

where (7d)-(7k) are the constraints for range routing with
demand restrictions. By solving problem (7) with the future
demand range derived from training samples, we can obtain
a set of optimal path split ratios {σs,d

p }, which is the target
routing strategy to be learned by LARRI.

IV. ROUTING PREDICTION MODEL

To design a scalable routing prediction model, we leverage
GNNs [29], [30] to model network topologies and characterize
traffic demands. Unlike traditional neural network architec-
tures where the size of the prediction model exponentially
expands as the number of network nodes increases, each
module/layer of LARRI is shareable and reused by each node
in parallel, which greatly simplifies model complexity and
substantially reduces training and inference time (shown in
Section V-F). Fig. 3 shows an example of LARRI. It consists
of an encoder that performs per-node embedding and message
exchange, and a decoder that interprets desired path split ratios
from each encoded and updated node embedding.

Encoder. The inputs to the encoder are node features and
a node connectivity matrix. The features of a given network
node are a series of demands originating from that node, and
the connectivity matrix indicates the neighbors of each node.

At first, the encoder computes an initial embedding for each
node using a shared Long Short-Term Memory (LSTM) [35]

Node
connectivity

matrix

LSTM

0 2.2 3.6 2.8
0 2.2 3.6 4.0

0 1.8 3.8 2.8

3.2 00 .1 4.9

6.2 3.9 00 2.4

3.2 1.6 5.6 0

0 2.1 3.2 4.0

3.2 0 4.1 6.1

6.2 3.9 0 0.8

3.2 1.6 5.6 0

0 2.2 3.6 4.3

3.2 0 4.1 5.2

6.2 3.9 0 1.1

3.2 1.6 5.6 0

0 2.2 3.6 4.3

0 2.2 3.6 4.9
0 2.2 3.6 6.1

3.2 0 4.1 5.2

0 2.2 3.6 2.4
0 2.2 3.6 0.8

6.2 3.9 0 1.1

0 2.2 3.6 0
0 2.2 3.6 0

3.2 1.6 5.6 0

Multi-head
attention

Feed
forward

✕ H

✕ L

...

...

...

...

...

Feed
forward

0↦1

0↦3

Traffic matrices

Node features
(Traffic demands)

0↦0

1↦1

1↦3

1↦0

2↦2
2↦3

2↦0

3↦2
3↦3

3↦0
...

...
...

𝞼3
𝞼0

...

𝞼3
𝞼0

...

...

𝞼3
𝞼0

...

𝞼3...

𝞼3
𝞼0

...

𝞼3
𝞼0

𝞼3
𝞼0

...

𝞼3𝞼0

...

𝞼0

...

h0 h0 h0

h1

h2

h3

h1 h1

h2 h2

h3 h3

S

S

S

S

S

S

S

S1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 10 2

1 3Node embedding

s ↦ d Source-destination pair

hi

Message
Path split ratio𝞼p

S Softmax

Encoder Decoder

Fig. 3: Example of encoder and decoder in LARRI’s GNN-based routing prediction model.

layer. Then, each node’s embedding is updated by exchanging
messages with its neighbors. The embedding update module
consists of a stack of H identical attention layers [36], [37],
and each attention layer is composed of two sub-layers: (1)
a Multi-Head Attention (MHA) layer that performs message
exchange between neighboring nodes, and (2) a node-wise
fully connected Feed-Forward (FF) layer that performs a
nonlinear transformation. A skip connection [38] and layer
normalization [39] are applied to each sub-layer to facilitate
training. Let hv denote the node embedding for a given node
v. It is updated iteratively by aggregating the messages passed
from its neighbors with a learnable message function M(·):

hl+1
v =

∑
w∈χv

M(hl
v, h

l
w, θ

l
M),

where χv is the set of nodes which exchange messages with
node v, and θM denotes learnable function parameters.

Employing H attention layers can be interpreted as exe-
cuting H iterations of the embedding update process, and
each iteration can be considered as a feature propagation.
After H iterations, each node’s embedding would include the
information of H hops away neighbors. Thus, when H equals
the number of max hops in the network, it would be sufficient
for each node to capture the complete information of the whole
network (i.e., TMs and topology information).

Decoder. The decoder serves as a readout function R, which
consists of a node-wise fully connected FF layer and a pair-
wise softmax layer. It interprets each node’s final embedding
hH
v as the corresponding path split ratios, i.e.,

{σv,d
p |p ∈ P v,d, d ∈ V } = R(hH

v , θR), v ∈ V.

Given that σv,v
p is an invalid source-destination pair, we will

not interpret its path split ratios, as shown in Fig. 3.

V. EVALUATION

In this section, a series of simulations are conducted using
real-world network topologies and real traffic traces to evaluate
the performance of LARRI and demonstrate its effectiveness
by comparing it with different baseline methods.

A. Evaluation Setup

Six real-world network topologies are used in our evalua-
tion, and the number of nodes and directed links is listed in

TABLE II: Real-world network topologies used in evaluation
Topology Nodes Links TM Dataset TM Interval
BRAIN 9 28 7 days (2013) 1 minute
Abilene 11 28 24 weeks (2004) 5 minutes

CERNET 14 32 5 weeks (2014) 5 minutes
GÉANT 22 70 16 weeks (2005) 15 minutes
Tiscali 30 134 Synthetic N/A

Google Cloud 42 156 Synthetic N/A

Table II. All the single-degree nodes are removed since they
have no effect on routing performance evaluation [40].

1) Dataset: The first four networks in Table II are equipped
with real traffic traces measured at different time intervals.
The BRAIN network is a research network in Berlin with
topology connectivity and real-life traffic data available at
SNDlib [31], [32]. The BRAIN TMs are collected at 1-minute
intervals for a continuous period of 7 days in 2013. The
Abilene [41], CERNET [42], and GÉANT [43], [44] networks
are the research and education networks in the United States,
China, and Europe, respectively. The real TMs of the Abilene,
CERNET, and GÉANT networks are measured at longer time
intervals (e.g., 5 or 15 minutes), as shown in Table II. For
each of the four networks, we split the TM dataset into 80%
of training samples and 20% of testing samples. For example,
we train a LARRI model with the CERNET TMs in the first 4
weeks and then evaluate LARRI on all TMs in week 5 that are
unseen before. Note that the last two networks using synthetic
traffic traces would be detailed in Section V-E.

2) Training: As discussed in Section III, LARRI would
predict a routing to appropriately handle traffic fluctuations
within the future routing update interval. Since LARRI needs
to learn from target range routing strategies, it can be formu-
lated as a Supervised Learning (SL) problem. Given a training
dataset that includes a continuous period of TMs, we can
generate training samples for the above problem. A training
sample consists of an input and a target output, where an
input includes a sequence of TMs in the past 5 intervals and
a topology-specific node connectivity matrix, and the output
is a target range routing strategy obtained by solving the LP
problem (7), whose demand range is configured according
to the TMs in the next interval. Generally, LARRI performs
routing updates every 5 minutes in all networks except for the
GÉANT network. Since the GÉANT TMs are measured every

15 minutes, LARRI’s routing update interval should be set to
15 minutes in the GÉANT network to match the TM interval.

After generating the training samples, we randomly select
80% of the total training samples as the training sample
set, and the remaining 20% is considered as the standalone
validation sample set, which is used for early stopping to avoid
overfitting [45]. LARRI is trained on the training sample set
using stochastic gradient descent [46] with the objective of
minimizing a customized loss, which is a linear combination
of the Kullback–Leibler Divergence (KLD) loss and the Mean
Absolute Error (MAE) loss between the predicted routing and
the target routing as well as an L2 regularization loss [47]. For
the encoder of the prediction model, we set the embedding
dimension to 128 and the number of attention heads to 8. The
dimension of the FF sub-layer is set to 256. For the decoder,
the output dimensions of the FF layer are N × K, which
correspond to the preconfigured paths for each destination
node. A constant learning rate α = 10−4 is used for training,
and the batch size is set to 512. To avoid overfitting, we also
apply dropout [48] to the output of each layer of the encoder
with a rate of ρdrop = 0.1, and L2 regularization [47] to each
layer of the encoder and decoder with regularization parameter
λ = 0.001. Once the training is done, we test LARRI in the
test dataset with future TMs that are unseen before.

3) Simulation Environment: In our evaluation, The pro-
posed GNN-based model is implemented using TensorFlow
[49], and the Gurobi optimizer [50] is applied as an LP solver
to compute target routing strategies. All the training tasks
are conducted in a high-performance computing cluster with
a single GPU Tesla V100. Once the training is done, we
conduct all simulation tests on a Linux server with a 4-core
Intel 2.9 GHz CPU and 16 GB memory. We use NetworkX
[51] to simulate network environments based on the real-world
network topologies listed in Table II. Given the TM datasets,
the traffic flows with different demand volumes are fed into
the networks to simulate dynamic traffic variations.

4) Performance Metrics: For each test TM, we use the
MLU performance ratio PR in Eq. (1) to evaluate the load
balancing performance of different TE solutions. A lower PR
indicates better routing performance. Besides, we also evaluate
the end-to-end delay Ω =

∑
e∈E le/(ce − le) of each TE

solution as described in [52] (see Table I). Given a TM and a
routing R, we define a delay performance ratio DR as follows:

DRR(TM) = ΩR(TM)/Ωopt(TM), (8)
where ΩR(TM) is the end-to-end delay achieved by R, and
Ωopt(TM) is the end-to-end delay achieved by an optimal
routing on the given TM with an objective to minimize Ω.
Similarly, a lower DR indicates better end-to-end delay per-
formance. Note that the routing strategies being evaluated are
still optimized for load balancing performance (i.e., minimize
MLU) instead of minimizing end-to-end delay.

B. Baseline Methods

We evaluate the following baseline methods for comparison.
MCF [33]: formulates a Multi-Commodity Flow (MCF) prob-
lem with an objective of minimizing MLU to obtain an optimal

routing based on the TM in the previous interval (e.g., TMt−1),
and then applies the routing in the future time interval.
SMORE [4]: selects 4 preconfigured paths from [21], [34]
for each source-destination pair, obtains the optimal path split
ratios based on the TM in the previous interval (e.g., TMt−1),
and then applies the routing in the future time interval.
TM Prediction-based TE (TMP) [25]: exploits LSTM to
predict the next TM based on a sequence of past TMs, obtains
the optimal path split ratios based on the predicted TM, and
then applies the routing in the future time interval.
COPE [10]: optimizes performance ratio over a convex hull
of a set of past TMs and adopts a penalty envelope to bound
the worst-case performance.
Räcke’s Oblivious Routing (ROR) [21], [34]: computes a
probability distribution on diverse forwarding paths based on
decomposition trees, and then routes traffic according to the
distribution without the knowledge of actual demands.
Optimal Oblivious Routing (OOR) [22]: optimizes a routing
with respect to all possible TMs using an LP formulation
presented in [22], and then distributes traffic according to the
optimal oblivious routing regardless of actual demands.
Equal-Cost Multipath (ECMP) [53]: evenly distributes traf-
fic among available next hops along the shortest paths.

Note that LARRI, SMORE, and TMP use the same set
of preconfigured paths. COPE performs routing updates once
a day based on a convex hull constructed from the TMs in
the previous day [10]. To bound the worst-case performance,
we set the penalty envelope of COPE to 2.0 in the Abilene
network (as the original setting in [10]), and 3.0 for the other
networks.

C. Performance Evaluation in BRAIN

Fig. 4 shows the MLU performance ratio that each scheme
achieved on the entire test set of the BRAIN network versus
the percentage of time intervals sorted by MLU performance
ratio. We can observe that the MLU performance ratio of
MCF and SMORE quickly ramps up and the worst-case MLU
performance ratio is higher than 3, which indicates that they
suffer from severe routing performance degradation under dy-
namic traffic fluctuations. Following the typical routing update
method discussed in Fig. 1(a), MCF and SMORE optimize
routing every 5 minutes based on the previous 5-minute
average TM and then apply the routing in the future 5-minute
interval. Since they rely on a past TM to perform routing
optimization, the resulting routing becomes incompatible once
the future TM deviates from the previously measured TM. To
cope with future unknown traffic scenarios, TMP predicts a
future 5-minute average TM for routing optimization instead
of relying on the previously measured TM. However, the
performance of TMP is not better than SMORE and MCF.
There are several reasons that might explain this result: (1) The
prediction errors on traffic demands might result in undesired
routing decisions. (2) A single predicted TM cannot represent
fine-grained future traffic variations.

To reveal the consequences of frequent routing updates,
we also evaluate SMORE, MCF, and TMP in a more re-

0 10% 20% 30% 40% 50% 60% 70% 80% 90%100%
Sorted Interval Percentage

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

M
L

U
 P

er
fo

rm
an

ce
 R

at
io LARRI

MCF
SMORE
TMP

COPE
ROR
OOR
ECMP

Fig. 4: Load balancing performance com-
parison in the BRAIN network (truncated at
3.0). The lower the MLU performance ratio,
the better the load balancing performance.

LARRI MCF
(5 min)

MCF
(1 min)

SMORE
(5 min)

SMORE
(1 min)

TMP
(5 min)

TMP
(1 min)

1.0

1.5

2.0

2.5

3.0

3.5

M
L

U
 P

er
fo

rm
an

ce
 R

at
io

Fig. 5: Load balancing performance comparison
with different routing update intervals in the
BRAIN network. The whiskers represent the
highest/lowest performance ratio on the test set.

0 10% 20% 30% 40% 50% 60% 70% 80% 90%100%
Sorted Interval Percentage

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

D
el

ay
 P

er
fo

rm
an

ce
 R

at
io LARRI

MCF
SMORE
TMP

COPE
ROR
OOR
ECMP

Fig. 6: End-to-end delay performance com-
parison in the BRAIN network (truncated at
3.0). The lower the delay performance ratio,
the better the end-to-end delay performance.

sponsive manner, i.e., perform routing update/TM prediction
every minute. Fig. 5 shows the corresponding results in the
BRAIN network. Unfortunately, frequent routing update does
not improve the performance of SMORE and MCF. Given that
the traffic is highly dynamic, the traffic variations between
two smaller intervals are still significant enough to cause the
routing incompatibility issue. By predicting future TMs at 1-
minute intervals, the performance of TMP is improved by
9.3% on average compared to the previous 5-minute predic-
tion, but its worst-case MLU performance ratio could still be
as high as 3.29. This observation demonstrates that TMP is
quite sensitive to TM prediction errors. In contrast, LARRI
can provide stable and robust performance against unexpected
traffic fluctuations and outperform all other schemes in almost
all time intervals. For example, LARRI can outperform the
best-performing baseline in Fig. 5 by 43.3% in the worst case.

For oblivious routing approaches, they are aiming at pro-
viding bounded performance for all possible TMs. As shown
in Fig. 4, both ROR and OOR can achieve better worst-case
performance compared to SMORE, MCF, and TMP. However,
they have to sacrifice performance optimality when traffic is
relatively stable, which results in sub-optimal average perfor-
mance. To mitigate this issue, COPE adopts a combination
of convex hull and penalty envelope to handle future traffic
variations. From Fig. 4, we can observe that COPE achieves
better performance than OOR in most of the time intervals.
However, COPE still appears to be too conservative since
it has no knowledge of future traffic demands. In contrast,
LARRI outperforms COPE in 95% of TMs with a 6.4%
average performance improvement, and the worst-case MLU
performance ratio of LARRI is bounded at 1.83, which is 4.6%
better than COPE.

Although LARRI and the baselines are targeting load
balancing performance, it is worth evaluating their routing
strategies with different performance metrics (e.g., end-to-end
delay) to verify their robustness in dynamic traffic scenarios.
Fig. 6 shows the delay performance ratio of different TE
solutions in the BRAIN network. As we expected, the baseline
methods perform poorly since their routing strategies are
not optimized for minimizing delay. For example, the delay
performance ratio of COPE can reach 3.6 in extreme cases.
Surprisingly, LARRI is still able to achieve good end-to-end
delay performance with an average performance ratio of 1.28

and a worst-case performance ratio of 1.76, which outperforms
all other baseline methods. As a result, LARRI can effectively
trade off performance optimality and worst-case performance
guarantee to accommodate future traffic variations.

D. Performance Comparison in Other Networks

Fig. 7 shows the MLU performance ratio that each scheme
achieves in the other three networks with real traces. In the
Abilene network, LARRI performs slightly worse than ROR
and OOR in extreme cases, as shown in Fig. 7(a). One possible
reason is that LARRI makes inaccurate routing predictions
in a few unexpected traffic scenarios that are unseen before.
However, LARRI is still capable of providing a strong worst-
case performance guarantee. For example, LARRI improves
the worst-case performance by at least 34.9% compared to
single TM routing optimization methods (i.e., MCF, SMORE,
and TMP). Besides, LARRI can still achieve considerable load
balancing performance improvement over ROR and OOR in
most of the future traffic scenarios.

The traffic pattern in the CERNET network is relatively
stable most of the time. As shown in Fig. 7(b), MCF, SMORE,
and TMP achieve good performance on average, but their
worst-case MLU performance ratios are not promising due to
their limitations on handling dynamic traffic fluctuations. To
accommodate a range of traffic demands, LARRI proactively
sacrifices performance optimality to some extent and appears
to perform slightly worse than MCF, SMORE, and TMP when
traffic is stable. However, LARRI is still able to provide
the best worst-case performance guarantee and outperform
these baselines by 10.3%-21.4% in extreme cases, which can
effectively alleviate the routing incompatibility issue under
dynamic traffic scenarios.

In the GÉANT network, the performance of TMP is unstable
and only outperforms ECMP with an average MLU perfor-
mance ratio of 1.37, as shown in Fig. 7(c). Given that TMP
is applying a two-step paradigm of prediction + optimization,
the minimization of TM prediction errors does not necessarily
lead to better routing performance. In contrast, LARRI learns
from target routing strategies and directly predicts a routing
with an objective to improve network performance, which
turns out to be more decision-focused and outperforms TMP.
Another interesting finding in the GÉANT network is that
ROR performs surprisingly well. One possible reason is that

0 10% 20% 30% 40% 50% 60% 70% 80% 90%100%
Sorted Interval Percentage

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

M
L

U
 P

er
fo

rm
an

ce
 R

at
io LARRI

MCF
SMORE
TMP

COPE
ROR
OOR
ECMP

(a) Abilene network.

0 10% 20% 30% 40% 50% 60% 70% 80% 90%100%
Sorted Interval Percentage

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

M
L

U
 P

er
fo

rm
an

ce
 R

at
io LARRI

MCF
SMORE
TMP

COPE
ROR
OOR
ECMP

(b) CERNET network.

0 10% 20% 30% 40% 50% 60% 70% 80% 90%100%
Sorted Interval Percentage

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

M
L

U
 P

er
fo

rm
an

ce
 R

at
io LARRI

MCF
SMORE
TMP

COPE
ROR
OOR
ECMP

(c) GÉANT network (truncated at 3.0).
Fig. 7: Load balancing performance comparison in the three networks with real TMs.

0 10% 20% 30% 40% 50% 60% 70% 80% 90%100%
Sorted Interval Percentage

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

D
el

ay
 P

er
fo

rm
an

ce
 R

at
io LARRI

MCF
SMORE
TMP

COPE
ROR
OOR
ECMP

(a) Abilene network (truncated at 3.0).

0 10% 20% 30% 40% 50% 60% 70% 80% 90%100%
Sorted Interval Percentage

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

D
el

ay
 P

er
fo

rm
an

ce
 R

at
io LARRI

MCF
SMORE
TMP

COPE
ROR
OOR
ECMP

(b) CERNET network (truncated at 3.0).

0 10% 20% 30% 40% 50% 60% 70% 80% 90%100%
Sorted Interval Percentage

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

D
el

ay
 P

er
fo

rm
an

ce
 R

at
io LARRI

MCF
SMORE
TMP

COPE
ROR
OOR
ECMP

(c) GÉANT network (truncated at 3.0).
Fig. 8: End-to-end delay performance comparison in the three networks with real TMs.

ROR adopts the full set of preconfigured paths for each source-
destination pair (up to 78 paths per pair), and the traffic in the
GÉANT network happens to be well balanced among these
paths and results in better performance.

In addition to the load balancing performance, we also
evaluate the end-to-end delay performance that each scheme
achieves in the three networks, as depicted in Fig. 8. LARRI
performs well in the three networks with the lowest worst-
case delay performance ratio ranging from 1.14 to 1.45, while
most of the baseline methods are experiencing an unacceptable
delay in extreme cases. From Fig. 8(b), we can see that COPE
performs well in the CERNET network, but its worst-case
delay performance ratio is worse than LARRI by 12.8%.
Moreover, LARRI can outperform COPE in the Abilene
and GÉANT networks with 9.3% and 13.6% average delay
performance improvement, respectively. Overall, the range
routing strategy predicted by LARRI can provide promising
load balancing performance as well as low end-to-end delay to
ensure good service quality in dynamic future traffic scenarios.

E. Generalization and Scalability Analysis
To further demonstrate the generalization capability and

scalability of LARRI, we introduce two large real-world
network topologies for evaluation, i.e., the Tiscali network [54]
and the Google Cloud network [27]. Their topology sizes are
listed in Table II. Since there is no measured TM for these two
networks, we use the Modulated Gravity Model (MGM) [55],
[56] to synthesize spatiotemporal TMs with different traffic
variations by adjusting MGM parameters (e.g., peak-to-mean
ratio and spatial variance). In the training and test dataset,
there are 100 dynamic TMs with large traffic variations and
100 stable TMs with small traffic variations. For simplicity,
we omit the configuration details and only present the load
balancing performance for analysis.

Fig. 9 shows the MLU performance ratio achieved in each
future time interval of the Tiscali and Google Cloud networks.3

The results are split into two parts according to traffic varia-
tions. When traffic is stable, all schemes except static baseline
methods perform well. However, when traffic is dramatically
fluctuating, most of the baseline methods are experiencing
performance degradation due to the routing incompatibility
issue, especially for MCF and SMORE. Meanwhile, it is
also more difficult for TMP to accurately predict future TMs
in dynamic traffic scenarios. As illustrated in Fig. 9(a), the
worst-case performance ratio of TMP is higher than 4 in the
Tiscali network with significant performance degradation. In
contrast, with the exact same set of training samples, LARRI
performs consistently well and is able to generalize to different
traffic scenarios in these two networks, which reveals the
advantages of routing prediction over TM prediction. Thanks
to the scalable GNN-based architecture design, the range
routing strategies offered by LARRI can effectively improve
routing robustness against dynamic traffic fluctuations in large
networks to avoid severe network congestion.

F. Training and Inference Time

In our evaluation, the training time of LARRI depends
on the size of the training sample set and the size of the
network topology. Before training LARRI, we need to produce
a labeled dataset by computing the target routing strategies
with our proposed path-based range routing LP. As shown
in Table III, it could require more than 30 minutes to solve
the target LP in the Google Cloud network. Since all training
costs are incurred offline, we can utilize powerful machines
and compute these targets in parallel to accelerate the process.

3Due to the high computation complexity, COPE is unable to compute a
routing within a reasonable timescale, which is omitted from the results.

TABLE III: Computation time of different TE solutions
Topology LARRI MCF SMORE COPE TMP Target LP Original
BRAIN 0.5s 0.2s 0.1s 2.3m 0.1s 2.1s 2.2s
Abilene 1.0s 0.3s 0.2s 34.6s 0.3s 1.6s 2.3s

CERNET 1.1s 0.4s 0.1s 1.3m 0.2s 1.7s 2.7s
GÉANT 1.2s 1.5s 0.3s 6.9h 0.5s 8.9s 4.5m
Tiscali 1.6s 5.6s 0.5s >24h 2.3s 18.9m 6.7h
Google 1.9s 16.5s 1.3s >24h 2.3s 36.5m >24h

0 25 50 75 100 125 150 175 200
Interval

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5

M
L

U
 P

er
fo

rm
an

ce
 R

at
io

 Large Variation Small Variation
LARRI
SMORE

MCF
TMP

ROR
OOR

ECMP

(a) Tiscali network.

0 25 50 75 100 125 150 175 200
Interval

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

M
L

U
 P

er
fo

rm
an

ce
 R

at
io

 Large Variation Small Variation
LARRI
SMORE

MCF
TMP

ROR
OOR

ECMP

(b) Google Cloud network.
Fig. 9: Load balancing performance comparison in the Tiscali and
Google Cloud networks. COPE is omitted due to scalability issues.

Once the labeled dataset is generated, we can train a LARRI
model and use early stopping [45] to halt the training process
when the prediction loss stops improving on the standalone
validation set. For each of the six networks, it takes less than
40 minutes to train a LARRI model with a single GPU Tesla
V100. As a result, our scalable GNN-based model design has
greatly facilitated the training process.

For online deployment, Table III shows the computation
costs of LARRI and baseline methods in all six networks.
The running time is measured on a Linux server with a
4-core Intel 2.9 GHz CPU and the Gurobi optimizer [50],
as described in Section V-A3. Note that the static baseline
methods are not included since they do not perform routing
updates. For LARRI, the routing prediction (inference) time
in all six networks is less than 2 seconds. Other schemes can
also perform routing updates within a reasonable timescale in
large networks, except COPE and the original range routing LP
model. As network size increases, the number of variables and
constraints in COPE’s LP formulation grows exponentially.
Given the high computation overhead, COPE cannot compute
a routing within 24 hours for the two large networks in our
evaluation. The original range routing LP model proposed
in [22] also suffers from scalability issues. For example, it
takes 6.7 hours to solve a routing optimization problem in
the Tiscali network, and its computation time for the Google
Cloud network is even longer than 24 hours. By formulat-
ing the range routing problem with preconfigured paths, our
proposed path-based LP model in (7) can greatly reduce the
computation time to 18.9 minutes and 36.5 minutes in the
Tiscali and Google Cloud networks, respectively. However,
such routing computation overhead is still a major obstacle
to directly applying this LP model in large networks with 5-
minute routing update intervals. In contrast, LARRI is able to
predict a routing strategy for large networks at second-level to
accommodate future traffic variations.

VI. RELATED WORK

There has been a large body of literature on TE. Quite a
lot of traditional TE solutions [1], [2], [57] rely on Interior
Gateway Protocols (IGPs) to route network traffic. With the

emergence of SDN [28], TE can deploy flexible routing
policies and improve network performance in a responsive
manner. Google [11] and Microsoft [12] design and deploy
SDN-based centralized TE systems to achieve high utilization
in their inter-datacenter WANs, where TE operations are
usually performed at 5-minute intervals to cope with traffic
changes [18]. However, these solutions might suffer from
routing performance degradation due to highly dynamic traffic
fluctuations within the routing update intervals.

One way to handle unexpected traffic fluctuations is adopt-
ing oblivious routing [21], [22], where the routing is oblivious
to the actual traffic demands. Applegate and Cohen [22]
formulate an LP problem for optimal oblivious routing to
provide promising performance bounds for all possible TMs.
These solutions usually do not require routing updates while
providing a strong worst-case performance guarantee, but their
performance would be compromised when traffic is stable
[22]. To address this issue, COPE [10] primarily optimizes
routing for a convex hull of past TMs and bounds the worst-
case performance for unexpected traffic deviations. However,
without the knowledge of future traffic variations, COPE has to
expand the convex hull with sufficient past TMs and inevitably
sacrifice performance optimality for robustness.

By leveraging the agility of ML techniques, quite a few
TM prediction methods [23]–[26] have been proposed in
recent years to handle future traffic variations. Given a series
of past TMs, they predict the next TM by capturing the
temporal and spatial relations in the traffic traces over the
time periods. Based on the predicted TM, routing decisions
are made to accommodate future traffic variations. However,
as we discussed before, a single predicted TM is insufficient to
represent fine-grained traffic variations in a given time interval.
In addition, TM prediction-based TE could be sensitive to TM
prediction errors with unstable performance [24], [25].

VII. CONCLUSION

In this paper, we propose LARRI, a learning-based TE that
is trained to predict appropriate range routing strategies for
accommodating dynamic future traffic scenarios. To simplify
the complexity of the prediction model, we customized a
scalable GNN-based architecture for LARRI to model network
topologies and characterize traffic demands, which substan-
tially reduces the time for training and inference. Extensive
experiments show that LARRI significantly improves the rout-
ing robustness and performs consistently well under different
traffic scenarios in terms of load balancing performance and
end-to-end delay performance.

ACKNOWLEDGMENTS

This work was supported by the National Key Re-
search and Development Program of China under Grant
2021YFB1714800, National Natural Science Foundation of
China under Grant 62002019, Zhejiang Lab Open Research
Project under Grant K2022QA0AB02, SongShan Laboratory
Fund under Grant YYJC022022009, and Beijing Institute of
Technology Research Fund Program for Young Scholars.

REFERENCES

[1] J. Chu and C.-T. Lea, “Optimal link weights for ip-based networks
supporting hose-model vpns,” IEEE/ACM ToN, vol. 17, no. 3, pp. 778–
788, 2009.

[2] B. Fortz and M. Thorup, “Optimizing ospf/is-is weights in a changing
world,” IEEE JSAC, vol. 20, no. 4, pp. 756–767, 2002.

[3] K. Holmberg and D. Yuan, “Optimization of internet protocol network
design and routing,” Networks: An International Journal, vol. 43, no. 1,
pp. 39–53, 2004.

[4] P. Kumar, Y. Yuan, C. Yu, N. Foster, R. Kleinberg, P. Lapukhov, C. L.
Lim, and R. Soulé, “Semi-oblivious traffic engineering: The road not
taken,” in USENIX NSDI, 2018, pp. 157–170.

[5] E. D. Osborne and A. Simha, Traffic engineering with MPLS. Cisco
Press, 2003.

[6] Y. Wang and Z. Wang, “Explicit routing algorithms for internet traffic
engineering,” in IEEE ICCCN, 1999, pp. 582–588.

[7] J. Zhang, K. Xi, and H. J. Chao, “Load balancing in ip networks
using generalized destination-based multipath routing,” IEEE/ACM ToN,
vol. 23, no. 6, pp. 1959–1969, 2015.

[8] Y. Guo, Z. Wang, X. Yin, X. Shi, and J. Wu, “Traffic engineering in
sdn/ospf hybrid network,” in IEEE ICNP, 2014, pp. 563–568.

[9] Z. Guo, W. Chen, Y.-F. Liu, Y. Xu, and Z.-L. Zhang, “Joint switch up-
grade and controller deployment in hybrid software-defined networks,”
IEEE JSAC, vol. 37, no. 5, pp. 1012–1028, 2019.

[10] H. Wang, H. Xie, L. Qiu, Y. R. Yang, Y. Zhang, and A. Greenberg,
“Cope: Traffic engineering in dynamic networks,” ACM SIGCOMM
CCR, vol. 36, no. 4, p. 99–110, Aug. 2006.

[11] S. Jain et al., “B4: Experience with a globally-deployed software defined
wan,” ACM SIGCOMM CCR, vol. 43, no. 4, pp. 3–14, 2013.

[12] C.-Y. Hong et al., “Achieving high utilization with software-driven wan,”
in ACM SIGCOMM, 2013, pp. 15–26.

[13] A. Pathak, M. Zhang, Y. C. Hu, R. Mahajan, and D. Maltz, “Latency
inflation with mpls-based traffic engineering,” in ACM IMC, 2011, pp.
463–472.

[14] H. H. Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gelernter, “Traffic
engineering with forward fault correction,” in ACM SIGCOMM, 2014,
pp. 527–538.

[15] J. D. Case, M. Fedor, M. L. Schoffstall, and J. Davin, “Simple network
management protocol (snmp),” IETF RFC 1157, 1990.

[16] R. Sommer and A. Feldmann, “Netflow: Information loss or win?” in
ACM IMW, 2002, pp. 173–174.

[17] R. Carpa, M. D. de AssunçÃo, O. Glück, L. LefÈvre, and J.-C. Mignot,
“Evaluating the impact of sdn-induced frequent route changes on tcp
flows,” in IEEE CNSM, 2017, pp. 1–9.

[18] W. Reda et al., “Path persistence in the cloud: A study of the effects
of inter-region traffic engineering in a large cloud provider’s network,”
ACM SIGCOMM CCR, vol. 50, no. 2, pp. 11–23, 2020.

[19] S. Tomovic and I. Radusinovic, “Ro-ro: Routing optimality-
reconfiguration overhead balance in software-defined isp networks,”
IEEE JSAC, vol. 37, no. 5, pp. 997–1011, 2019.

[20] M. Ye, Y. Hu, J. Zhang, Z. Guo, and H. J. Chao, “Mitigating routing
update overhead for traffic engineering by combining destination-based
routing with reinforcement learning,” IEEE JSAC, vol. 40, no. 9, pp.
2662–2677, 2022.

[21] H. Räcke, “Optimal hierarchical decompositions for congestion mini-
mization in networks,” in ACM STOC, 2008, pp. 255–264.

[22] D. Applegate and E. Cohen, “Making intra-domain routing robust to
changing and uncertain traffic demands: Understanding fundamental
tradeoffs,” in ACM SIGCOMM, 2003, pp. 313–324.

[23] A. Azzouni and G. Pujolle, “Neutm: A neural network-based framework
for traffic matrix prediction in sdn,” in IEEE/IFIP NOMS, 2018, pp. 1–5.

[24] K. Gao et al., “Incorporating intra-flow dependencies and inter-flow
correlations for traffic matrix prediction,” in IEEE/ACM IWQoS, 2020,
pp. 1–10.

[25] Z. Liu et al., “Traffic matrix prediction based on deep learning for
dynamic traffic engineering,” in IEEE ISCC, 2019, pp. 1–7.

[26] S. Troia, R. Alvizu, Y. Zhou, G. Maier, and A. Pattavina, “Deep learning-
based traffic prediction for network optimization,” in ICTON, 2018, pp.
1–4.

[27] Global locations of google cloud topology. [Online]. Available:
https://cloud.google.com/about/locations/

[28] N. McKeown et al., “Openflow: enabling innovation in campus net-
works,” ACM SIGCOMM CCR, vol. 38, no. 2, pp. 69–74, 2008.

[29] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in NeurIPS, vol. 30, 2017.

[30] P. Veličković et al., “Graph attention networks,” arXiv preprint
arXiv:1710.10903, 2017.

[31] S. Orlowski, R. Wessäly, M. Pióro, and A. Tomaszewski, “Sndlib
1.0—survivable network design library,” Networks: An International
Journal, vol. 55, no. 3, pp. 276–286, 2010.

[32] SNDlib. [Online]. Available: http://sndlib.zib.de/home.action
[33] D. Mitra and K. G. Ramakrishnan, “A case study of multiservice,

multipriority traffic engineering design for data networks,” in IEEE
GLOBECOM, vol. 1b, 1999, pp. 1077–1083.

[34] H. Racke, “Minimizing congestion in general networks,” in IEEE FOCS,
2002, pp. 43–52.

[35] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[36] W. Kool, H. Van Hoof, and M. Welling, “Attention, learn to solve routing
problems!” arXiv preprint arXiv:1803.08475, 2018.

[37] A. Vaswani et al., “Attention is all you need,” in NeurIPS, vol. 30, 2017.
[38] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in IEEE/CVF CVPR, 2016, pp. 770–778.
[39] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv

preprint arXiv:1607.06450, 2016.
[40] D. Applegate and E. Cohen, “Making routing robust to changing traffic

demands: Algorithms and evaluation,” IEEE/ACM ToN, vol. 14, no. 6,
pp. 1193–1206, 2006.

[41] Yin Zhang’s Abilene TM. [Online]. Available:
https://www.cs.utexas.edu/~yzhang/research/AbileneTM

[42] B. Zhang, J. Bi, J. Wu, and F. Baker, “Cte: Cost-effective intra-domain
traffic engineering,” ACM SIGCOMM CCR, vol. 44, no. 4, pp. 115–116,
2014.

[43] S. Uhlig, B. Quoitin, J. Lepropre, and S. Balon, “Providing public in-
tradomain traffic matrices to the research community,” ACM SIGCOMM
CCR, vol. 36, no. 1, pp. 83–86, 2006.

[44] GÉANT. The TOTEM project. [Online]. Available:
https://totem.info.ucl.ac.be/dataset.html

[45] L. Prechelt, “Early stopping — but when?” in Neural Networks: Tricks
of the Trade: Second Edition. Springer, 2012, pp. 53–67.

[46] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-
scale machine learning,” Siam Review, vol. 60, no. 2, pp. 223–311, 2018.

[47] A. Krogh and J. A. Hertz, “A simple weight decay can improve
generalization,” in NeurIPS, 1991, p. 950–957.

[48] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” Journal of Machine Learning Research, vol. 15, no. 56, pp.
1929–1958, 2014.

[49] M. Abadi et al., “Tensorflow: A system for large-scale machine learn-
ing,” in USENIX OSDI, 2016, pp. 265–283.

[50] Gurobi. [Online]. Available: https://www.gurobi.com/
[51] NetworkX. [Online]. Available: https://networkx.org/
[52] J. Zhang, K. Xi, L. Zhang, and H. J. Chao, “Optimizing network

performance using weighted multipath routing,” in IEEE ICCCN, 2012,
pp. 1–7.

[53] D. Thaler and C. Hopps, “Multipath Issues in Unicast and Multicast
Next-Hop Selection,” IETF RFC 2991, 2000.

[54] N. Spring, R. Mahajan, and D. Wetherall, “Measuring isp topologies
with rocketfuel,” in ACM SIGCOMM CCR, vol. 32, no. 4, 2002, pp.
133–145.

[55] TMgen: Traffic Matrix Generation Tool. [Online]. Available:
https://tmgen.readthedocs.io/en/latest/

[56] P. Tune and M. Roughan, “Spatiotemporal traffic matrix synthesis,” ACM
SIGCOMM CCR, vol. 45, no. 4, pp. 579–592, 2015.

[57] A. Sridharan, R. Guerin, and C. Diot, “Achieving near-optimal traffic
engineering solutions for current ospf/is-is networks,” in IEEE INFO-
COM, vol. 2, 2003, pp. 1167–1177.

