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Abstract—Emerging applications pose different Quality of
Service (QoS) requirements for the network, where Traffic
Engineering (TE) plays an important role in QoS provisioning by
carefully selecting routing paths and adjusting traffic split ratios
on routing paths. To accommodate diverse QoS requirements of
traffic flows under network dynamics, TE usually periodically
computes an optimal routing strategy and updates a significant
number of forwarding entries, which introduces considerable
network operation management overhead. In this paper, we
propose QoS-RL, a Reinforcement Learning (RL)-based TE
solution for QoS provisioning and load balancing with low
management overhead and service disruption during routing
updates. Given the traffic matrices that represent the traffic
demands of high and low priority flows, QoS-RL can intelligently
select and update only a few destination-based forwarding entries
to satisfy the QoS requirements of high priority traffic while
maintaining good load balancing performance by rerouting a
small portion of low priority traffic. Extensive simulation results
on four real-world network topologies demonstrate that QoS-RL
provides at least 95.5% of optimal end-to-end delay performance
on average for high priority flows, and also achieves above 90%
of optimal load balancing performance in most cases by updating
only 10% of destination-based forwarding entries.

Index Terms—Reinforcement Learning, Traffic Engineering,
Quality of Service, Load Balancing, Management Overhead

I. INTRODUCTION

In today’s Wide Area Networks (WANs), network operators
usually configure routing policies for different traffic flows to
improve network performance with Traffic Engineering (TE)
frameworks. Generally speaking, TE can properly distribute
network traffic by optimizing the routing strategy with a
performance objective [1]–[4]. For instance, Internet Service
Providers (ISPs) can target minimizing the Maximum Link
Utilization (MLU) in their networks to achieve good load
balancing performance and reduce the congestion probability.
Cloud service providers [5], [6], who own a private WAN
to connect their data centers, could have different objectives
with consideration of resource utilization and operational cost,
such as maximizing throughput. To achieve the goal specified
by network operators, TE needs to periodically collect a
Traffic Matrix (TM) that represents the recently measured
demand volume of different traffic flows. Based on the network
topology information and measured TM, TE can compute
an optimal routing strategy with an aim to improve network
performance, and then update the routing in the underlying
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network devices to enforce new routing policies to accommo-
date varying traffic demands.

Nowadays, emerging applications pose different Quality of
Service (QoS) requirements on WANs. For instance, online
gaming, metaverse, and video conferencing are usually delay-
sensitive since a high latency would greatly impair users’
quality of experience. Data analytics and batch computing
applications could be delay-tolerant while requesting sufficient
network bandwidth for data transmission. In this situation, it is
critical for TE to satisfy diverse QoS requirements of different
applications while achieving the performance objective of
network operators. Fortunately, Software-Defined Networking
(SDN) [7] is an efficient solution for TE to improve network
performance and provide good QoS simultaneously. With a
global view of the network, SDN-based TE can adaptively
generate per-flow routing policies for different applications
at the controller, and then dynamically deploys them at the
underlying SDN switches to realize fine-grained traffic control.

However, enabling flexible and fine-grained routing for
each 5-tuple flow may negatively impact the overall network
operations due to considerable management overhead. First,
the routing update process of the per-flow routing could
saturate the processing capacity of the controller with high
computation and communication overhead. Considering var-
ious QoS requirements of different applications, it would be
time-consuming for TE to compute an optimal routing strategy
for each flow in large networks [8]. Moreover, TE needs to
generate and deploy multiple flow-based forwarding entries
for each flow at different switches to establish or update its
forwarding path. Such a large number of forwarding entry
updates could overwhelm the controller with path calculation
and forwarding entry generation/deployment [9]. Second, fine-
grained routing policies could pose a great challenge to the
storage capacity of SDN switches. Generally, SDN switches
use Ternary Content-Addressable Memory (TCAM) to con-
struct their flow tables to support flexible flow matching [10].
However, the TCAM resources in SDN switches are limited
due to the high cost and power consumption [11]–[13]. As a
result, SDN switches cannot accommodate a large number of
per-flow forwarding entries [10], [14].

To reduce the adversary impact of flow-based routing up-
dates as mentioned above, we propose QoS-RL, a Reinforce-
ment Learning (RL)-based TE solution that selectively updates
a few destination-based forwarding entries to maintain good
QoS and improve load balancing performance simultaneously.
Instead of using per-flow entries to match the 5-tuple infor-979-8-3503-9973-8/23/$31.00 ©2023 IEEE



mation in packet headers, QoS-RL employs destination-based
entries that only match the destination IP address of traffic
flows, which greatly reduces the number of entries and overall
management overhead. To distinguish the traffic of different
applications with diverse QoS requirements under destination-
based routing, we can categorize traffic into different priority
levels at the sender side by tagging the packet headers [6],
[15]. For example, the traffic of delay-sensitive applications
can be tagged as high priority traffic, while the remaining
delay-tolerant traffic is viewed as low priority traffic [16]. In
this situation, the measured network TM can be decomposed
into a high priority TM for QoS provisioning purposes and a
low priority TM for achieving load balancing objectives.

To further reduce network management overhead and ser-
vice disruption, QoS-RL adopts a two-step optimization ap-
proach with Linear Programming (LP) coupled with intelligent
decisions from RL agents. By default, all flows are routed
by static forwarding rules, such as Equal-Cost Multipath
(ECMP) [17]. To accommodate dynamic network conditions,
we leverage RL to determine which entries should be updated
to reroute high/low priority traffic with respect to different
objective functions (e.g., minimize delay or MLU), and then
use LP to optimize the traffic split ratios for these entries
among available next hops. When a high priority TM is
measured, QoS-RL can intelligently insert a few high priority
destination-based forwarding entries at selected SDN switches
to reroute some high priority flows with an aim to provide
good QoS (e.g., low latency). Once the routing decisions
for high priority traffic are finalized, the allocated bandwidth
should be reserved to guarantee QoS. Then, QoS-RL would
identify another set of low priority forwarding entries based
on the low priority TM to achieve good load balancing by
rerouting a small portion of low priority traffic. Since low
priority traffic is usually delay-tolerant, a preset performance
objective of network operators (e.g., minimize MLU) can be
considered as the target of LP to obtain optimal traffic split
ratios for these low priority forwarding entries. As a result,
QoS-RL can achieve good QoS provisioning and promising
load balancing performance by only updating 10% of total
forwarding entries with considerable flow entry savings.

The main contributions of this paper are summarized as
follows:

1) We propose a TE solution called QoS-RL that achieves
promising load balancing performance for network op-
erators and provides good QoS for users simultaneously.

2) We leverage the agility of emerging RL to intelligently
update a few destination-based forwarding entries for
different priorities of traffic to reduce management over-
head and mitigate service disruption.

3) Evaluation results on real-world WAN topologies show
that QoS-RL can provide at least 95.5% of optimal
delay on average for high priority traffic while achieving
above 90% of optimal load balancing performance in
most cases. Besides, QoS-RL generalizes well to unseen
traffic scenarios with low overhead/disturbance by only
updating 10% of destination-based forwarding entries.

The remainder of this paper is organized as follows. Section
II presents the problem statement and explains our motivation.
Section III provides the system description of QoS-RL. Section
IV describes our RL design to identify important destination-
based forwarding entries for different priorities of traffic.
Section V describes how to calculate traffic split ratios of the
selected entries with different optimization targets. Section VI
evaluates the effectiveness of our scheme. Section VII lists the
related works, and Section VIII concludes the paper.

II. BACKGROUND AND MOTIVATION

A. Problem Statement

Generally, a network can be modeled as a directed graph
G(V,E), where V is the collection of network nodes (i.e.,
routers/switches) and E is the collection of directed links.
Each directed link ⟨i, j⟩ ∈ E has a capacity ci,j , which spec-
ifies the maximum available bandwidth that can be allocated
to traffic flows. If the link load li,j is too large, the congestion
probability would increase and eventually lead to packet loss.
Given the recently measured traffic demands from all source
nodes s ∈ V to all destination nodes d ∈ V , a high priority
TM and a low priority TM can be constructed to represent the
average demand volume of all source-destination flows ⟨s, d⟩
with different priorities in the past time interval, respectively.
To efficiently deliver high priority traffic and low priority
traffic from their sources to destinations, it is important to
properly configure routing strategies based on traffic demands
and available resources. Otherwise, the network may experi-
ence severe performance degradation with high latency and
potential packet loss under bad routing decisions.

To provide good QoS to users and maintain promising
network performance under dynamic traffic scenarios, network
operators usually adopt TE frameworks to optimize the routing
strategy periodically based on recently measured TMs. Given
the network topology information and high/low priority TMs,
TE can formulate and solve an optimization problem with dif-
ferent performance objectives to obtain optimal traffic alloca-
tions. To satisfy the delay requirements of high priority traffic,
TE can target minimizing the overall end-to-end delay with the
high priority TM. As described in [4], the objective function
can be formulated as min

∑
⟨i,j⟩∈E

li,j/(ci,j − li,j) according to

the M/M/1 queuing system, which aims at minimizing the
average network delay experienced by packets [18]. For the
low priority TM, TE can focus on achieving the network
performance objective specified by network operators since
low priority traffic is usually delay-tolerant. A common TE
objective is minimizing the MLU in the network to achieve
good load balancing. Here, MLU denotes the utilization of the
most congested link in the network, and the objective function
can be formulated as minmax⟨i,j⟩∈E(li,j/ci,j) [18].

An effective approach to guarantee good service quality is
performing multi-step TE optimization to allocate traffic flows
in descending order of priority [6]. For example, TE can first
optimize the routing for high priority delay-sensitive flows,
such that high priority traffic would be properly distributed



among shorter paths to avoid congestion while experiencing
lower latency. The allocated bandwidth for high priority traffic
should be reserved at different links for good QoS provision-
ing, which cannot be reused by low priority traffic. After that,
TE would allocate low priority traffic for achieving good load
balancing performance. In other words, low priority traffic
could be forwarded along longer paths with higher latency
since these links are underutilized. Given that low priority
flows usually do not have stringent delay requirements, it
would be acceptable to focus on load balancing performance
at this stage.

B. Motivation

As we discussed in Section I, fine-grained forwarding rules
for 5-tuple flows would lead to high management overhead in
the network, including the computation and communication
overhead to generate and deploy a large number of flow
entries as well as severe TCAM resource consumptions. For a
network with N nodes and L different applications, there will
be O(N3L) forwarding entries to be generated and deployed
in total, considering N · (N − 1) source-destination pairs, at
most N switches to be updated, and L types of applications.
To alleviate this issue, we adopt a relatively coarse-grained
approach: (1) divide network traffic into different levels of
priorities of TMs (e.g., two levels as high/low priority) based
on the QoS requirements of L different applications, and
(2) use destination-based forwarding entries to control traffic
distribution and provide good QoS to high priority traffic
while maintaining promising load balancing performance. As
a result, only O(N2) entries are needed since each node’s
forwarding entry only matches with a destination address
(assuming that the number of priority classes is a constant),
and the overall management overhead can be greatly reduced.

Another important aspect is to mitigate potential service
disruption and network disturbance caused by rerouting oper-
ations of TE. According to recent studies [19], [20], frequent
routing updates could disrupt network services with packet
reordering issues and result in reduced throughput, frequent
latency variations, and longer flow completion time. Even
though the overall management overhead is reduced with
TM priority classification and destination-based forwarding,
TE could reroute a large number of flows during routing
updates with a severe impact on service quality. To mitigate
the negative impact of rerouting operations, we propose to
selectively update a few destination-based forwarding entries
(e.g., 10% of total entries) instead of all entries, such that most
flows are still routed on their previously assigned path without
disruption. However, given the large solution space, it is very
challenging to find a good set of forwarding entries for TE
to maintain good load balancing performance and satisfy QoS
requirements. As we verified in Section VI, simple rule-based
heuristics cannot adapt to dynamic network conditions with
sub-optimal load balancing performance and degraded QoS.

To identify a good set of forwarding entries to be updated,
we leverage the agility of emerging RL techniques to learn
a selection policy that can adapt to different traffic scenarios.
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Fig. 1: Workflow of QoS-RL.

RL has been demonstrated to work well in addressing complex
decision-making problems, as it can effectively extract hidden
patterns from raw observations (e.g., TMs) and continuously
learn from interacting with the environment and receiving
reward signals to improve its strategy. A well-trained RL agent
is capable of generalizing to different input states that are
unseen before. Moreover, RL does not require labeled data for
training but purely learns to reinforce the actions that lead to
higher rewards, which is suitable for identifying a good set of
forwarding entries. Since there is no “ground truth” regarding
which entries are important for improving load balancing
performance and QoS, we can design a reward function for
RL to automatically learn a good selection policy that matches
our objective. Once the most important forwarding entries are
identified by the RL agent, it would be relatively easy to obtain
the optimal traffic split ratios for the selected entries by solving
an LP problem. Then, we can configure these entries at the
underlying switches accordingly.

III. SYSTEM DESCRIPTION

QoS-RL is an RL-based TE framework deployed in a
controller to configure the routing policy in the network with
the objective to achieve good QoS provisioning and load
balancing. Fig. 1 illustrates the workflow of QoS-RL, which
can be divided into five steps. Generally, the controller would
periodically measure a high priority TM and a low priority TM
representing the most recent traffic demands. Since QoS-RL
allocates network traffic in priority order, the high priority TM
is first taken as input to the high priority RL agent, which is
trained with a delay-centric reward function to provide good
QoS. Then, the RL agent will identify K destination-based
forwarding entries that should be updated to reroute high
priority traffic. Given the selected entries, QoS-RL solves an
LP optimization problem (6) to obtain the optimal traffic split
ratios for these entries to minimize the overall delay of high
priority traffic. The allocated bandwidth on each link would
be reserved such that it cannot be reused when allocating low
priority traffic. The rest of the workflow for the low priority
TM is similar to the first two steps. The only difference is
that the low priority RL agent is trained with an MLU-centric
reward function, and the objective of the low priority LP is to
minimize the MLU to achieve good load balancing.



Fig. 2 provides an illustrative example of QoS-RL’s opera-
tion to generate and update K forwarding entries. By default,
all traffic is forwarded by static ECMP without considering
traffic priorities and QoS/performance objectives. Since all
traffic is forwarded on the shortest paths, the network becomes
heavily congested. As depicted in Fig. 2(a), the two links
⟨1, 4⟩ and ⟨4, 9⟩ become bottleneck links with 90% and 100%
utilization, respectively, which greatly impairs the overall end-
to-end delay performance. In this situation, QoS-RL would
consider different priorities of traffic and allocate high priority
traffic first. From Fig. 2(b), we can see that switch 1 sends
3 units and 2 units of high priority traffic to switch 4 and
switch 9, respectively, and switch 4 also sends 4 units of high
priority traffic to switch 9. If all traffic is allocated to the
shortest paths, high link utilization may increase the queuing
delay of packets. Therefore, QoS-RL generates and updates
a high priority destination-based forwarding entry at switch 1
to direct high priority traffic tH1,9 to switch 2. Once the traffic
arrives at switch 2, it will be forwarded by default ECMP
routing to reach switch 9, which results in a secondary shortest
path forwarding to guarantee low latency. Once the high
priority bandwidth allocation is finalized, QoS-RL would focus
on the allocation of low priority traffic. Since low priority
traffic is usually delay-tolerant, QoS-RL can allocate these
flows to longer paths that are underutilized to achieve good
load balancing. By inserting a low priority forwarding entry at
switch 1, 4 units of low priority traffic in tL0,10 and tL1,10 would
be directed to switch 3, as depicted in Fig. 2(c). Considering
the traffic demands of tL5,8 and tL6,8, QoS-RL further splits the
aggregated low priority traffic of tL0,10 and tL1,10 at switch 3
with different split ratios to minimize MLU. As a result, QoS-
RL only inserts one high priority forwarding entry and two
low priority forwarding entries to provide good QoS for high
priority traffic and reduce the MLU by 60% with promising
load balancing performance. Note that high priority entries
should take strict precedence over low priority entries, and
low priority entries take strict precedence over ECMP entries.

IV. REINFORCEMENT LEARNING FORMULATION

In this section, we describe the RL design and algorithm for
QoS-RL to learn a policy that selects a good combination of
K destination-based forwarding entries for routing updates.

A. Agent Design

To properly handle traffic flows with different priority levels,
we train a high priority RL agent and a low priority RL agent
separately with different objective functions.

Input State: For different priorities of traffic, a TM is
periodically measured with the most recent traffic demands in
the past time interval, which can be further decomposed into
a high priority TM and a low priority TM. To capture hidden
traffic patterns and accommodate dynamic traffic scenarios,
the high priority RL agent takes a high priority TM at time
step t as an input (i.e., st = TMH

t ), while the low priority
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Fig. 2: Example of QoS-RL to reroute different priorities of traffic
with several selected destination-based forwarding entries.

TM at time step t is observed by the low priority RL agent
(i.e., st = TML

t ).
Action Space: Given an input TM, the task of an RL agent

is to identify a good set of K entries that contributes the
most to improving QoS/load balancing performance. Under
the context of destination-based forwarding, there are at most
N · (N − 1) candidate entries in a network with N nodes,
considering N switches to be updated and N − 1 destination
nodes. Therefore, the action space can be formulated as {0, 1,
..., N · (N − 1) − 1}, where each element refers to a unique
destination-based forwarding entry. An RL agent can sample
K entries from the action space as a solution at for a given
input st, which is denoted as at = {a1t , a2t , ..., aKt }.

Reward Function: For the high priority RL agent, the
objective is to minimize the end-to-end delay with good
QoS provisioning. Once K actions are sampled by the high
priority RL agent based on an input st = TMH

t , they can be
passed to the LP formulation (6) to optimize routing with the
objective to minimize the delay. The resulting end-to-end delay
performance D is then fed into the high priority RL agent as
part of the reward signal. Since the network delay may vary
under different traffic scenarios and routing strategies, it is
essential to compare D against the optimal delay Dopt that is
obtained by updating all N · (N − 1) entries with traffic split
ratios optimized by LP for minimizing the end-to-end delay.



Thus, we define a delay performance ratio PRD as follows:
PRD = Dopt/D. (1)

Since the optimal delay Dopt is always the lowest value, the
delay performance ratio should be capped at 1. A higher
PRD value can be interpreted as better delay performance.
Thus, the reward function of the high priority RL agent can
be configured as rt = PRD to reflect the resulting delay
performance after updating the selected forwarding entries.

The low priority RL agent mainly focuses on achieving the
performance target from the perspective of network operators,
such as minimizing the MLU with good load balancing
performance. Given an input low priority TM st = TML

t ,
the low priority RL agent samples K actions and then uses
the LP formulation (8) to solve for optimal traffic split ratios
in terms of MLU minimization. Similarly, the resulting MLU
U is compared to the optimal MLU Uopt that is obtained
by updating all N · (N − 1) entries with traffic split ratios
optimized by an LP, whose objective is to minimize the MLU.
Then, we define an MLU performance ratio PRU as follows:

PRU = Uopt/U. (2)
When PRU = 1, QoS-RL achieves the optimal load balancing
performance. The higher the PRU , the better the network
performance. Therefore, we take rt = PRU as the reward
function of the low priority RL agent to encourage better entry
selections toward better load balancing performance.

B. Training Algorithm

For each of the RL agents, we use a neural network
to represent the forwarding entry selection policy. Given a
high/low priority TM as an input, the output of the neural
network is a probability distribution π(at|st) over the action
space {0, 1, ..., N · (N − 1) − 1}. The goal of the training
procedure of QoS-RL is to maximize the expected reward
E[rt], i.e., maximizing QoS/load balancing performance over
dynamic traffic scenarios. Thus, we use the REINFORCE
algorithm [21] with a baseline b(st) to optimize E[rt] by
gradient ascent. Since each RL agent would sample K actions
for each input state st, the parameters θ of the policy network
should be updated as follows:

θ ← θ + α
∑
t

K∑
i=1

∇θ log π(a
i
t|st; θ)(rt − b(st)), (3)

where α is the learning rate for the policy network. A good
baseline b(st) configuration can effectively reduce the gradient
variance and facilitate the learning process. To calculate the
baseline b(st), we need an estimate of the value function
V πθ (st), i.e., the expected accumulated reward starting at
initial state st and following the policy πθ. Thus, we use
another neural network as the critic network for each RL agent,
which is trained to learn an estimate of V πθ (st). The critic
network parameter θv is updated as follows:

θv ← θv − αv

∑
t

∇θv (rt − vπθ (st; θv))
2, (4)

where vπθ (·; θv) is the output of the critic network as the
estimate of V πθ (·), and αv is the learning rate for the critic
network. This critic network is only trained to estimate the

expected accumulated reward starting at the initial state st
and provide a good baseline to accelerate the training process
of the policy network. In other words, the critic network is no
longer required once the training process is completed. A well-
trained RL agent can make decisions solely with the policy
network during online deployment.

One important aspect to be considered during RL training is
the trade-off between exploitation and exploration. If the RL
agent focuses too much on exploitation, it could be trapped in a
sub-optimal policy. Therefore, we need to properly encourage
exploration during RL training to discover potential good
policies for long-term benefits. As suggested by [22], we
add the entropy of the policy π to Eq. (3) to improve the
exploration of the RL agent:

θ ← θ + α
∑
t

(

K∑
i=1

∇θ log π(a
i
t|st; θ)(rt − vπθ (st; θv))

+β∇θH(π(·|st; θ))),
(5)

where H is the entropy of the policy (i.e., the probability distri-
bution over actions), and the hyperparameter β is responsible
for controlling the strength of the entropy regularization term.

C. Neural Network Architecture
We use TensorFlow [23] to implement the neural network

architecture of QoS-RL. The policy neural network consists of
three layers. The first layer is a convolutional layer with 128
filters, and the kernel size is 3× 3 with stride 1. The second
layer is a fully connected layer that consists of 128 neurons.
For the previous two layers, we take Leaky Relu [24] as an
activation function. The last layer is a fully connected linear
layer employed with N · (N − 1) neurons, which refers to
all possible destination-based forwarding entries that can be
selected. There is no activation function for the last layer, and
we apply a softmax function to the output for generating the
probabilities of all available actions. As for the critic network,
the neural network architecture is almost the same as that of
the policy network. The only exception is the last layer of the
critic network, which only contains one neuron as the estimate
of the value function. For hyperparameter settings, we set the
initial learning rates α and αv as 0.0001 with a decay rate of
0.96 every 500 iterations, while the entropy weight β is set
to 0.1. Additionally, we set K = 10% ·N · (N − 1) to select
10% of total destination-based forwarding entries for routing
updates. It turns out that the above hyperparameter settings
work well in our evaluations with a stable training process.

V. TRAFFIC SPLIT RATIO OPTIMIZATION

In this section, we describe how to solve the traffic split ratio
optimization problem for the selected entries with different
priorities. The notations are listed in Table I.

A. High Priority Traffic Allocation for QoS Provisioning
By default, high priority traffic is evenly distributed among

ECMP next hops. Given the selected destination-based for-
warding entries from the high priority RL agent, high priority
traffic can be split unevenly among available next hops ac-
cording to the optimized traffic split ratios specified by these
entries, as long as there is no forwarding loop in the network.



TABLE I: Notations

G(V,E)
network with nodes V and directed

links E (|V | = N, |E| = M )
ci,j the capacity of link ⟨i, j⟩ (⟨i, j⟩ ∈ E)

bi,j
the reserved bandwidth for high priority

traffic at link ⟨i, j⟩ (⟨i, j⟩ ∈ E)
li,j the traffic load on link ⟨i, j⟩ (⟨i, j⟩ ∈ E)

tHs,d
the high priority traffic demand originated

from s destined to d (s, d ∈ V , s ̸= d)

tLs,d
the low priority traffic demand originated

from s destined to d (s, d ∈ V , s ̸= d)

τd
i

the traffic destined to d at node i
(i, d ∈ V , i ̸= d, |{τd

i }| = N · (N − 1))

τH
K

a combination of K selected τd
i (|τH

K | = K)
for high priority traffic, e.g., τ9

1 in Fig. 2(b)

τL
K

a combination of K selected τd
i

(|τL
K | = K) for low priority traffic,
e.g., τ10

1 and τ10
3 in Fig. 2(c)

τH
N·(N−1)−K

the set of remaining τd
i for high priority traffic

(|τH
N·(N−1)−K | = N · (N − 1)−K)

τL
N·(N−1)−K

the set of remaining τd
i for low priority traffic

(|τL
N·(N−1)−K | = N · (N − 1)−K)

ENHd
i

the set of ECMP next hops for
destination d at node i (i, d ∈ V ),

e.g., ENH9
1 = {4} in Fig. 2(a)

yd
i,j

the traffic destined to d routed
on link ⟨i, j⟩ (d ∈ V, ⟨i, j⟩ ∈ E)

σd
i,j

the split ratio at node i to node j for the
traffic destined to node d (d ∈ V, ⟨i, j⟩ ∈ E),

e.g., σ10
3,5 = 75% in Fig. 2(c)

Given a network G(V,E) with a high priority TM TMH
t

and the selected high priority forwarding entries τHK , our
objective is to obtain the optimal weighted split ratios {σd

i,j}
for the selected τdi ∈ τHK , such that the end-to-end delay
D is minimized with a loop-free routing. As described in
Section II-A, the end-to-end delay can be derived as D =∑
⟨i,j⟩∈E

li,j/(ci,j − li,j), where a cost function Fi,j(li,j) can

be used to represent li,j/(ci,j − li,j). Since the cost function
cannot deal with overloaded links [25], we use the piecewise
linear approximations of Fi,j(li,j) presented in [25], [26] to
formulate an LP problem. The high priority traffic rerouting
problem is formulated as an optimization problem as follows:

min
∑

⟨i,j⟩∈E

Fi,j(li,j) (6a)

subject to
∑
d∈V

ydi,j = li,j i, j : ⟨i, j⟩ ∈ E (6b)∑
k:⟨k,i⟩∈E

ydk,i −
∑

k:⟨i,k⟩∈E

ydi,k = −tHi,d i, d : τdi ∈ τHK (6c)

ydi,k =


∑

n:⟨n,i⟩∈E

ydn,i + tHi,d

|ENHd
i |

if k ∈ ENHd
i

0 otherwise

i, d : τdi ∈ τHN ·(N−1)−K , k : ⟨i, k⟩ ∈ E

(6d)

∑
k:⟨k,d⟩∈E

ydk,d −
∑

k:⟨d,k⟩∈E

ydd,k =
∑

s∈V,s ̸=d

tHs,d d ∈ V (6e)

ydi,j ≥ 0 d ∈ V, i, j : ⟨i, j⟩ ∈ E (6f)

Fi,j(li,j) ≥ li,j/ci,j i, j : ⟨i, j⟩ ∈ E (6g)
Fi,j(li,j) ≥ 3li,j/ci,j − 2/3 i, j : ⟨i, j⟩ ∈ E (6h)
Fi,j(li,j) ≥ 10li,j/ci,j − 16/3 i, j : ⟨i, j⟩ ∈ E (6i)
Fi,j(li,j) ≥ 70li,j/ci,j − 178/3 i, j : ⟨i, j⟩ ∈ E (6j)
Fi,j(li,j) ≥ 500li,j/ci,j − 1468/3 i, j : ⟨i, j⟩ ∈ E (6k)
Fi,j(li,j) ≥ 5000li,j/ci,j − 16318/3 i, j : ⟨i, j⟩ ∈ E (6l)

(6b) defines the link load as the sum of all high priority
traffic routed on the link. (6c)-(6e) are the flow conservation
constraints for the selected entries τdi ∈ τHK , for the remaining
entries τdi ∈ τHN ·(N−1)−K , and at the destinations, respectively.
(6f) ensures that the traffic allocation on each link should
be non-negative. (6g)-(6l) defines the cost function based on
the load and capacity of the link, which is derived from the
piecewise linear approximations [25], [26]. We can solve this
optimization problem using LP solvers (e.g., Gurobi [27])
to obtain the optimal destination-based high priority traffic
allocation {ydi,j}, which can be used to derive the optimal
weighted traffic split ratios {σd

i,j} for the selected high priority
entries as follows:

σd
i,j =

ydi,j∑
k:⟨i,k⟩∈E

ydi,k
i, d : τdi ∈ τHK , j : ⟨i, j⟩ ∈ E. (7)

For the remaining entries not selected by the high priority
RL agent (i.e., τdi ∈ τHN∗(N−1)−K), they forward high priority
traffic based on default ECMP rules without routing updates.

B. Low Priority Traffic Allocation for Load Balancing

Once high priority traffic is allocated, the corresponding
bandwidth is reserved on each link as {bi,j} and is no
longer available for low priority traffic. The forwarding entries
selected by the low priority RL agent can control a portion of
low priority traffic in a flexible manner, while most of the low
priority traffic is routed by ECMP.

Given a network G(V,E) with a low priority TM TML
t and

the selected low priority forwarding entries τLK , our objective
is to obtain the optimal weighted split ratios {σd

i,j} for the
selected τdi ∈ τLK , such that the MLU U is minimized to
achieve good load balancing with a loop-free routing. The
low priority traffic rerouting problem is formulated as an
optimization problem as follows:

min U (8a)
subject to

∑
d∈V

ydi,j = li,j i, j : ⟨i, j⟩ ∈ E (8b)

li,j + bi,j ≤ ci,j · U i, j : ⟨i, j⟩ ∈ E (8c)∑
k:⟨k,i⟩∈E

ydk,i −
∑

k:⟨i,k⟩∈E

ydi,k = −tLi,d i, d : τdi ∈ τLK (8d)

ydi,k =


∑

n:⟨n,i⟩∈E

ydn,i + tLi,d

|ENHd
i |

if k ∈ ENHd
i

0 otherwise

i, d : τdi ∈ τLN ·(N−1)−K , k : ⟨i, k⟩ ∈ E

(8e)

∑
k:⟨k,d⟩∈E

ydk,d −
∑

k:⟨d,k⟩∈E

ydd,k =
∑

s∈V,s̸=d

tLs,d d ∈ V (8f)



ydi,j ≥ 0 d ∈ V, i, j : ⟨i, j⟩ ∈ E (8g)
Most of the constraints in (8) are similar to those in (6). The

major difference is that the delay-centric constraints (6g)-(6l)
are substituted with an MLU-centric constraint (8c), which
defines MLU as the utilization of the most congested link
in the network with consideration of reserved bandwidth. We
can use an LP solver to find the optimal destination-based
low priority traffic allocation {ydi,j}, and then convert it to the
optimal traffic split ratios {σd

i,j} for the selected low priority
entries τdi ∈ τLK based on Eq. (7). For safety concerns, we
leverage the techniques in [28] to detect and eliminate possible
forwarding loops in the optimized routing strategy before
deploying the updated entries at the underlying switches.

VI. PERFORMANCE EVALUATION

In this section, we conduct extensive simulations on real-
world network topologies to evaluate the performance of QoS-
RL in terms of end-to-end delay and MLU.

A. Simulation Setup

WAN Topologies. We evaluate QoS-RL in four different
real-world network topologies, including three ISP networks
(EBONE, Sprintlink, Tiscali) from Rocketfuel [29] and the
Germany50 network [30]. The number of nodes and directed
links of each topology is listed in Table II. For Rocketfuel
topologies, we infer link capacities as the inverse of provided
link weights, which is commonly adopted in literature [28].
For Germany50, we set all link weights to 10 and configure
link capacities based on the degrees of their connected nodes
(if both degrees < 4, set to 5 Gbps; otherwise, 10 Gbps) [31].

Traffic Generation. To generate TMs that match real-
world traffic patterns, we refer to the traffic statistics measured
in production WANs. As reported in Baidu’s private WAN,
high priority traffic usually exposes diurnal patterns with
strong temporal correlations [16]. Therefore, we leverage the
Modulated Gravity Model (MGM) [32], [33] to generate a time
series of high priority TMs for the Rocketfuel topologies, as
MGM can efficiently reflect the cyclical nature of high priority
traffic with temporal correlations. By adjusting the spatial
variances and peak-to-mean ratios in MGM, we generate 50
TMs with large traffic variations and 50 TMs with small
traffic variations for each ISP network as the high priority
TM training dataset. We also generate the test dataset in a
similar way with different MGM parameters. For low priority
traffic, the traffic pattern is relatively stable [6]. Thus, we
generate a series of low priority TMs using a uniform model
[33]. For each ISP network, there are 100 uniform TMs for
training QoS-RL, and we generate another 100 uniform test
TMs with different model parameters for evaluation. As for the
Germany50 network, limited real TMs with temporal patterns
in one day are available [34]. Thus, we take these measured
TMs as high priority TMs and split them into the training set
and test set in an 85%/15% manner. We also generate the same
number of low priority uniform TMs for training and testing.

Baselines. In addition to QoS-RL, we evaluate three differ-
ent destination-based TE solutions for comparison. The first

TABLE II: WAN Topologies for Evaluation
Topology # Nodes # Directed Links

EBONE (Europe) 23 76
Sprintlink (US) 44 166
Tiscali (Europe) 49 172

Germany50 50 176
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(b) MLU performance vs. K.

Fig. 3: Evolution of average delay ratio and MLU ratio with an
increasing number of entry updates K in the EBONE network. The
error bar represents the highest/lowest performance ratio.

one is ECMP [17], which serves as the default static routing
to forward traffic evenly among ECMP next hops. Another
scheme is Weighted ECMP (W-ECMP), which extends ECMP
by allowing weighted traffic splitting among ECMP next
hops with split ratios optimized by LP [4]. Besides, we also
evaluate a rule-based heuristic called Top-K to update the
top K destination-based forwarding entries that forward the
most traffic under ECMP routing. Similar to QoS-RL, Top-K
optimizes the split ratios of these K entries for high priority
traffic and low priority traffic with LP formulations (6) and
(8), respectively. The only difference between QoS-RL and
Top-K is the selection criteria of the K entries to be updated.

Metrics. For QoS-RL and the baseline methods, we evaluate
the delay performance ratio PRD in Eq. (1) to demonstrate
the QoS provided to high priority traffic. Meanwhile, the MLU
performance ratio PRU in Eq. (2) is computed for each TE
solution to reveal the overall load balancing performance in
the network after allocating low priority traffic. The higher the
ratios, the better the QoS and load balancing performance.

B. Number of Entry Updates

In QoS-RL’s design, one critical aspect is to determine a
proper number of entry updates K to achieve efficient QoS
provisioning and good load balancing with low management
overhead. To find a proper setting for K, we train several
QoS-RL models with different K settings and evaluate their
performance. Fig. 3 depicts the average delay performance
ratio and MLU performance ratio achieved by QoS-RL on the
test set of the EBONE network with an increasing K, where
0% of entry updates is equivalent to ECMP. Compared to
ECMP, 5% of entry updates can provide a 17.2% average delay
ratio improvement and a 30.1% average MLU ratio improve-
ment, which demonstrates the feasibility of improving network
performance by only updating a few entries. When updating
10% of total entries, QoS-RL can achieve an average delay
ratio of 97.3% and an average MLU ratio of 100%, which
is sufficient for good QoS provisioning and load balancing.
Since the results in the other three networks are similar, we
set K to 10% of total entries in the following experiments.
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(b) Sprintlink network.
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(c) Tiscali network.
Fig. 4: End-to-end delay performance comparison in the three ISP networks with high priority TMs.
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(b) Sprintlink network.
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(c) Tiscali network.
Fig. 5: Load balancing performance comparison in the three ISP networks with low priority TMs.

C. QoS Provisioning for High Priority Traffic
Fig. 4 shows the delay performance ratio that each scheme

achieves on the high priority test TMs of the three ISP
networks, where large traffic variations usually lead to more
frequent performance fluctuations compared to small traffic
variations. As a default routing strategy, ECMP performs the
worst in the three networks. Even though ECMP forwards
traffic along the shortest paths with potentially lower latency, it
may over-utilize the link resources and result in severe network
congestion with degraded QoS. In addition, there is no routing
update for ECMP to accommodate traffic dynamics. Therefore,
the overall delay performance of ECMP is far from optimal.
Compared to ECMP, W-ECMP can support flexible split
ratios among ECMP next hops and bypass the restriction of
equal splitting. As shown in Fig. 4(c), W-ECMP can improve
the average delay performance ratio to 80.4% in the Tiscali
network. However, W-ECMP is still constrained by shortest
paths and thus cannot achieve better delay performance than
ECMP in the EBONE and Sprintlink networks.

By selecting the top 10% destination-based forwarding
entries that control the most traffic under ECMP routing, Top-
K can optimize the traffic split ratios for these entries with
LP to reduce network delay. As depicted in Fig. 4(b), Top-K
is able to achieve above 90% of optimal delay performance
in most high priority traffic scenarios with a few exceptions
in the Sprintlink network. However, the delay performance of
Top-K is unstable in other networks. As shown in Fig. 4(a), we
can observe frequent delay performance fluctuations of Top-
K in the EBONE network. In the Tiscali network, Top-K is
also outperformed by W-ECMP under large traffic variations.
It turns out that simple rule-based heuristic methods cannot
effectively adapt to dynamic network conditions. In contrast,
QoS-RL achieves promising end-to-end delay performance in
all three ISP networks by updating the same number of for-
warding entries as Top-K, which demonstrates the intelligence

of the high priority RL agent to adaptively select a good
combination of 10% entries under different traffic variations.
In Fig. 4, QoS-RL provides at least 94.8% of optimal delay
performance for all high priority test TMs with an average
delay performance ratio of 97.3%-99.9% in the three networks.
As a result, QoS-RL is capable of providing good QoS to high
priority traffic with close-to-optimal delay performance.

D. Load Balancing for Low Priority Traffic

Fig. 5 shows the MLU performance ratio of each TE scheme
in the three ISP networks after allocating low priority traffic.
Similarly, we can observe the sub-optimal load balancing
performance of ECMP and W-ECMP as well as the fluctu-
ating MLU performance ratio of Top-K. Surprisingly, QoS-
RL achieves an MLU performance ratio of PRU = 1 for all
low priority test TMs in the three networks, which greatly
outperforms other baseline methods. As demonstrated in Fig.
5(a), QoS-RL can achieve 48.2% average load balancing
performance improvement compared to the best-performing
Top-K method in EBONE. Instead of updating all forwarding
entries with severe service disruption, QoS-RL can provide
optimal load balancing performance by intelligently updating
10% of forwarding entries identified by the low priority RL
agent. Overall, QoS-RL is able to satisfy the QoS requirements
of high priority traffic and maintain good load balancing
performance by efficiently allocating low priority traffic.

E. Generalization to Unseen Traffic Scenarios

To further demonstrate the generalization capability of QoS-
RL, we take the measured traffic traces from the Germany50
network as high priority TMs and evaluate QoS-RL in real-
world unseen traffic scenarios. Fig. 6 presents the end-to-
end delay and MLU performance of different TE schemes on
each test TM in the Germany50 network. Compared to the
generated TMs in the three ISP networks, the real Germany50



TABLE III: Offline Training Time of Different RL Agents
Topology High Priority Low Priority
EBONE 6.5 hours 4 hours

Sprintlink 8 hours 6 hours
Tiscali 9 hours 7 hours

Germany50 10.5 hours 8.5 hours
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(a) End-to-end delay.
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Fig. 6: Delay and MLU performance comparison in Germany50.

TMs appear to be more dynamic, which could be challenging
for QoS-RL to extract real-world traffic patterns. However,
QoS-RL can still generalize well to these unseen traffic
scenarios. As shown in Fig. 6(a), QoS-RL achieves 95.5% of
optimal delay on average in the unseen high priority test TMs.
Although there is an exception (the 16th test TM) where QoS-
RL only provides 87.9% of optimal delay, it still outperforms
other baseline methods in all unseen traffic scenarios.

Since the real Germany50 TMs are highly dynamic, the
resulting bandwidth allocations and reservations for these high
priority TMs could vary a lot. In this situation, the low priority
RL agent is making decisions under highly dynamic network
conditions even though the uniform low priority TMs are
relatively stable. Unlike the previous three ISP networks, QoS-
RL cannot provide the same load balancing performance as
the optimal solution in the Germany50 network. However, as
shown in Fig. 6(b), QoS-RL is still capable of maintaining
near-optimal load balancing performance in a more dynamic
environment with an average MLU performance ratio of
90.8%, which outperforms the best-performing baseline by
13.3% and saves 90% of entries compared to the optimal
solution. In conclusion, QoS-RL exhibits strong generalization
capability in unseen real-world traffic scenarios with efficient
QoS provisioning and good load balancing performance.

F. Overhead Analysis

Table III shows the training time of different RL agents in
the four networks, where the training procedure is conducted
in a high-performance computing cluster with 21 CPU cores
and 32 GB memory for parallel training (i.e., each CPU core
serves as an actor to experience a subset of training TMs). It
usually takes a longer time to train QoS-RL in larger networks
with a larger input state and action space. Also, a high priority
RL agent requires a longer training time compared to a low
priority RL agent. This is because the computation overhead
of solving optimal high priority traffic allocation (6) is longer
than that of the low priority LP (8). Since the reward signals
are relying on the performance metrics derived from LP, it
is reasonable for the high priority RL agent to experience a
longer training process than the low priority RL agent. Overall,
it takes 10.5-19 hours in total to train QoS-RL in the four

TABLE IV: Average Online Execution Time in the Four Networks

Topology High Priority (sec) Low Priority (sec)
QoS-RL* Optimal QoS-RL* Optimal

EBONE 0.011+0.86 5.06 0.004+0.042 0.260
Sprintlink 0.039+11.31 55.13 0.038+0.160 2.03

Tiscali 0.044+16.84 73.17 0.045+0.214 2.63
Germany50 0.243+23.90 85.40 0.244+0.254 3.36
*RL inference time + LP solving time.

networks. Note that the overall training process is conducted in
an offline manner, and there is no need to frequently retrain a
QoS-RL model since it exhibits good generalization capability.

Table IV shows the computation overhead of QoS-RL
during online deployment, which is evaluated in our simulation
environment in a Linux server (4-core 3.4 GHz CPU and 16
GB memory) with Gurobi optimizer [27]. As the network size
grows, the dimensions of the input TM and the output layer
of the policy network become larger, which leads to a longer
inference time. But, the overall inference process is still time-
efficient since the RL agent can identify 10% of important
entries in less than 1 second on average. For traffic split ratio
optimization, there are more constraints in the high priority
LP (6) compared to the low priority LP (8). Thus, it takes
23.9 seconds on average to solve the high priority LP in the
Germany50 network, while the low priority LP is relatively
time-efficient. Such execution time should be acceptable since
the Germany50 TMs are measured at 5-minute intervals.
Moreover, the computation complexity has been greatly re-
duced by QoS-RL with only 10% of entry updates. As shown
in Table IV, QoS-RL can achieve considerable time savings
compared to optimal LP that updates all entries in the network,
which enables QoS-RL to quickly react to traffic changes and
results in lower management overhead (e.g., communication,
deployment, storage) with mitigated service disruption.

VII. RELATED WORK

Traditional TE usually relies on routing protocols to forward
the network traffic. [3], [25], and [35] leverage Open Shortest
Path First (OSPF) and ECMP to balance link utilization by dy-
namically adjusting link weights for shortest paths. Weighted
ECMP [4] extends ECMP by allowing weighted traffic split-
ting among ECMP nodes to improve network performance.
These works are usually constrained by OSPF convergence
speed and shortest path routing. Another line of work focuses
on Multiprotocol Label Switching (MPLS) networks for TE
purposes. By solving an optimization problem, [1] and [2]
can obtain the explicit paths of flows and distribute the
flows accordingly. However, they cannot effectively adapt to
dynamic traffic conditions without timely routing updates.

The emergence of SDN [7] provides a flexible way for TE
to perform fine-grained traffic control. Dynamic hybrid routing
[9] dynamically re-balances traffic with SDN to achieve good
load balancing. SMORE [36] generates a set of preconfigured
paths and adaptively adjusts the sending rates to accommodate
traffic changes. Under the context of SDN-based TE, QoS
provisioning for different applications is also considered an
objective of cloud service providers. While aiming at maxi-
mizing network throughput and achieving high utilization in



inter-datacenter WANs, Google [5] and Microsoft [6] assign
different priorities to traffic flows based on their QoS re-
quirements and allocate bandwidth in priority order to ensure
good service quality. However, as we discussed in Section I,
these approaches could lead to a negative impact on network
operations with considerable management overhead.

Recently, Machine Learning (ML) techniques have been
adopted for TE design. Valadarsky et al. [37] use RL to obtain
a good set of link weights for generating routing strategies.
Xu et al. [38] exploit RL to optimize different performance
metrics, including throughput and delay. Besides, there are
some existing ML-based TE methods for QoS provisioning.
QoS-aware Adaptive Routing [39] leverages RL to design a
distributed three-level control plane for minimizing signaling
delay. DRL-OR [40] employs deep RL for per-flow routing
decisions to provide good QoS for different applications in an
online routing scenario. However, these methods adopt fine-
grained per-flow traffic control mechanisms for QoS provision-
ing and neglect the negative impact on management overhead.

VIII. CONCLUSION

To achieve good QoS provisioning and load balancing with
consideration of management overhead and service disruption,
we propose QoS-RL, an RL-based TE solution that intelli-
gently identifies a few destination-based forwarding entries for
rerouting different priorities of traffic flows. QoS-RL adopts
a two-step optimization approach to allocate high priority
traffic at first with good QoS provisioning, and then effectively
reroutes a small portion of low priority traffic to balance the
link loads with reduced overhead. Extensive simulation results
show that QoS-RL achieves near-optimal end-to-end delay
performance and load balancing performance in unseen traffic
scenarios by only updating 10% of total entries.
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