
SmartEntry: Mitigating Routing Update Overhead with
Reinforcement Learning for Traffic Engineering

Junjie Zhang⋆, Zehua Guo†, Minghao Ye‡, H. Jonathan Chao‡
Fortinet, Inc.⋆ Beijing Institute of Technology† New York University‡

ABSTRACT
Traffic Engineering (TE) has been used by Internet service providers
to improve their network performance and provide better service
quality to users. While flow-based TE is an alternative, destination-
based TE is a more readily deployed solution. This is because
destination-based forwarding is ubiquitously supported by today’s
routers. A challenge faced by state-of-the-art destination-based
TE solutions is considerable time taken by a centralized controller
to update traffic split ratios for each entry of the forwarding ta-
ble of each router. This could impose a fundamental limitation on
how responsively the network can react to dynamic changes of
traffic demands. In this paper, we propose SmartEntry, a destination-
based routing solution coupled with Reinforcement Learning (RL)
to reduce the number of the forwarding entries that need to be
updated to respond to dynamic change of traffic demands. Smar-
tEntry forwards majority traffic on Equal-Cost Multi-Path (ECMP)
and redistributes a small portion of traffic using our proposed RL
algorithm. SmartEntry adopts Linear Programming (LP) to pro-
duce reward signals. This RL + LP combined approach turns out to
be surprisingly effective. We evaluate SmartEntry by conducting
extensive experiments on different network topologies with both
real and synthesized traffic. The simulation results show that Smar-
tEntry achieves near-optimal performance with a saving of 90%
forwarding entry updates, and generalizes well to unseen traffic
matrices.

CCS CONCEPTS
•Computingmethodologies→Machine learning; •Networks
→ Wide area networks; Network management.

KEYWORDS
Reinforcement Learning, Traffic Engineering, Routing Update Over-
head, Linear Programming

ACM Reference Format:
Junjie Zhang, Zehua Guo, Minghao Ye, H. Jonathan Chao. 2020. SmartEntry:
Mitigating Routing Update Overhead with Reinforcement Learning for
Traffic Engineering. In Workshop on Network Meets AI & ML (NetAI ’20),

The work of Zehua Guo was supported by National Key Research and Development
Program of China under Grant 2018YFB1003700 and Beijing Institute of Technology
Research Fund Program for Young Scholars. The corresponding author is Zehua Guo.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
NetAI ’20, August 14, 2020, Virtual Event, NY, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8043-0/20/08. . . $15.00
https://doi.org/10.1145/3405671.3405809

August 14, 2020, Virtual Event, NY, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3405671.3405809

1 INTRODUCTION
Traffic Engineering (TE) aims to optimize network performance
(e.g., minimizing the maximum link utilization in the network) by
configuring the routing across Internet Service Providers (ISPs)’
backbone networks to control traffic distribution. Flow-based rout-
ing is a typical routing solution of TE. It offers fine-grained traffic
distribution control by distributing traffic flows of each source-
destination pair along a set of pregenerated paths. However, flow-
based routing in IP networks suffer from a scalability issue as it
normally requires to use Ternary Content-Addressable Memory
(TCAM) for the flow table of each router. In the worst case, to dis-
tinguish source and destination addresses of packets, each router
has to store O

(
P2

)
flow entries for a network with P IP routes (i.e.,

prefixes). Over recent years, the size of the Internet routing table
is increasing exponentially [2]. Due to the high cost-to-density
ratio and high power consumption of TCAM [15], routers usually
have limited TCAM resources [5] and cannot accommodate a huge
number of source-destination pairs in the network. An alternative
solution for TE is to use destination-based routing, where routers
make forwarding decisions solely based on the destination address
of the packets. Destination-based routing has a lower forwarding
complexity since each router maintains a forwarding table with, at
most,O(P) entries for a network with P IP routes. Moreover, instead
of using TCAM as flow-based forwarding, destination-based for-
warding has been widely implemented with simple Random-Access
Memories (RAMs).

Most destination-based routing TE methods aim to optimize
Interior Gateway Protocol (IGP) link costs to achieve good network
performance [6, 11, 14]. Given link costs, shortest paths to each
destination are calculated and forwarding entries are installed in
each corresponding router, according to the Open Shortest Path
First (OSPF) [22] or Intermediate System to Intermediate System
(IS-IS) [23] protocol. Routers then evenly distribute traffic among
multiple next hops (if exist) for a given destination, in terms of
the Equal-Cost Multipath (ECMP) [27] split rule. A good link cost
setting leads to significant performance improvement. However, it
has been shown that it is an NP-hard problem to optimize the link
costs for a network [6], and even traffic distribution imposed by
ECMP introduces additional limitations on routing optimization
[36]. Several recent works [34, 36] have been proposed to address
the above issues. Weighted ECMP [36] extends ECMP to allow
weighted traffic splitting at each node. However, the performance
gain is limited by link costs and topologies. Zhang et al. [34] proved
that an arbitrary flow-based routing can be converted to a loop-
free destination-based routing without any performance penalty
for a given traffic matrix. The scheme in [34] is guaranteed to
achieve optimal performance. However, a centralized controller

https://doi.org/10.1145/3405671.3405809
https://doi.org/10.1145/3405671.3405809

NetAI ’20, August 14, 2020, Virtual Event, NY, USA J. Zhang et al.

1 3 6

2 4

5
7

8
9

0 6: 2
0 10: 1

10
3 8 3

2

1 3 6

2 4

5
7

8
9

101 3

3 3

2
2 2

3

2 2
(b) SmartEntry

(a) ECMP Dest. Next Hop

 6 2 (100%)

Dest. Next Hop

 10 5 (100%)

Dest. Next Hop

10 7(33.3%) , 8(66.6%)

1

Critical entry at 1

Critical entry at 3

Critical entry at 5

3 6: 3
3 10: 2

7 9: 2

7 9: 2

0

0

3

3

3 6: 3
3 10: 2

0 6: 2
0 10: 1

Figure 1: An illustrative example of SmartEntry. Each link
is bidirectional with link weight and capability equal to 1.

has to update traffic split ratios for each entry of the forwarding
table of each router in the network, which could take considerable
time and impose a fundamental limitation on how responsively the
network can react to dynamic changes of traffic demands.

To achieve good performance and low routing update overhead,
one promising solution is forwarding the majority of flows using
ECMP routing and then selectively and dynamically redistributing a
small portion of traffic by installing a few critical destination-based
forwarding entries as traffic changes. A simple example shown
in Figure 1 demonstrates the advantages of this routing solution.
Assume that router 0 sends 2 units of traffic to router 6 and 1
unit of traffic to router 10, respectively. Similarly, router 3 sends
3 units of traffic to router 6 and 2 units of traffic to router 10,
respectively. In addition, router 7 sends 2 units of traffic to router 9.
Figure 1(a) shows the traffic distribution under ECMP routing. Since
ECMP routing is static and not traffic aware, no routing update
is required, but link ⟨3, 6⟩ becomes a bottleneck link. However, as
shown in Figure 1(b), traffic from router 0 to router 6 can be rerouted
to next hop 2 by installing a critical destination-based entry1 at
router 1, and thereafter be forwarded to destination 6 along the
shortest path according to ECMP routing. The traffic destined to
router 10 aggregated at router 3 can be rerouted to next hop 5
instead of ECMP next hop 6, and then be unevenly split among
next hops 7 and 8, according to the other two critical destination-
based entries. Note that the remaining traffic is still distributed by
the static ECMP routing. The above routing solution achieves load
balancing by complementing default ECMP routing with only three
critical destination-based entries.

To introduce critical entries for a given traffic matrix, three
problems should be addressed:

(1) At which critical routers should critical entries be installed?
(2) To which destinations the traffic belong should be redis-

tributed, once critical routers are determined?
(3) How to redistribute the selected traffic among available next

hops?
Although problem (3) is relatively simple and can be solved by
formulating it as a Linear Programming (LP) optimization problem,
solving problems (1) and (2) is not trivial. Given a network with N
routers, there would be totalN ∗(N−1) candidate router-destination
pairs for problems (1) and (2). The solution space

(N ∗(N−1)
K

)
would

be enormous, even if we just want to introduce a small number
1Critical entries take strict precedence over ECMP entries.

K of critical entries. For example, when N = 10 and K = 9, the
solution space has

(90
9
)
≈ 706 billion combinations. Thus, it would

be very difficult, if not impossible, to design a heuristic algorithm
for the above problem based on fixed and simple rules, because
rule-based heuristics are unable to adapt to the changes of the traffic
matrix and network dynamics. Thus, we resort to Reinforcement
Learning (RL) approaches that are well-suited to this combination
selection problem. First, RL can model complex selection policies
as neural networks, which provide a scalable and expressive way
to incorporate various “raw" observations into the selection policy.
Second, RL is able to train for objectives that lack of precise models
and thus hard to optimize directly, as long as reward signals exist
and correlate with the objective. Third, by continually learning to
make better selections through reinforcement in the form of reward
signal, RL can optimize its selection policy under varying scenarios.

In this paper, we propose SmartEntry, a scheme that employs
RL to learn a policy to efficiently and effectively select a combi-
nation of K router-destination pairs for each given traffic matrix,
and obtains the corresponding loop-free rerouting split ratios by
formulating and solving a rerouting optimization problem. The
main contributions of this paper are summarized as follows:

(1) We customize a RL approach to learn the combination selec-
tion policy.

(2) We adopt Linear Programming (LP) as a reward function to
produce reward signals, which reflect network performance
for each combination selection. This RL + LP combined ap-
proach turns out to be surprisingly powerful for solving
networking problems.

(3) We evaluate SmartEntry by conducting extensive experi-
ments on different topologies with both real and synthesized
traffic. The simulation results show that SmartEntry achieves
near optimal performance and saves 90% forwarding entry
updates. In addition, SmartEntry generalizes well to unseen
traffic matrices.

2 PROPOSED MODEL
2.1 Notations
G(V , E) network with nodes V and directed edges E

(|V | = N , |E | = M).
ci , j the capacity of link ⟨i, j⟩ (⟨i, j⟩ ∈ E).
li , j the traffic load on link ⟨i, j⟩ (⟨i, j⟩ ∈ E).
ts ,d the traffic demand originated from s destined

to d (s,d ∈ V , s , d).
τdi the traffic destined to d at node i (i,d ∈ V ,

i , d , |{τdi }| = N ∗ (N − 1)).
τK a combination of K selected τdi (|τK | = K).
τN ∗(N−1)−K the set of remaining τdi (|τN ∗(N−1)−K | = N ∗

(N − 1) − K).
ENPdi the set of ECMP next hops for destination d

at node i (i,d ∈ V , e.g., ENP101 = {3}, ENP105 =
{7, 8} in Figure 1(b)).

ydi , j the traffic destined to d routed on link ⟨i, j⟩
(d ∈ V , ⟨i, j⟩ ∈ E).

βdi , j the split ratio at node i to node j for the traf-
fic destined to node d (d ∈ V , ⟨i, j⟩ ∈ E, e.g.,
β105,8 = 66.6% in Figure 1(b)).

SmartEntry: Mitigating Routing Update Overhead with
Reinforcement Learning for Traffic Engineering NetAI ’20, August 14, 2020, Virtual Event, NY, USA

2.2 Overview
Problem Statement: For a given traffic matrix, the task of Smar-
tEntry is to (1) select a combination ofK node-destination pairs (i.e.,
τdi ∈ τK) and (2) redistribute the selected traffic among available
next hops to balance link utilization of the network. It is a very
challenging task, considering the variety of the traffic matrix and
the complexity of the network topology.

For (1), we train SmartEntry to learn a selection policy over a
rich variety of historical traffic matrices, where traffic matrices can
be measured and collected by a centralized controller periodically
[32]. The selection policy is represented as a neural network that
maps a "raw" observation (e.g., a given traffic matrix) to a combi-
nation of τdi (e.g., τ 61 , τ

10
3 , and τ 105 in Figure 1(b)). For each selected

combination, we formulate and solve an LP optimization problem
for (2) to obtain a reward signal. Through reinforcement in the
form of reward signal, the neural network is trained based on RE-
INFORCE algorithm [31] with some customizations. Then, from
the LP solution of (2), we can derive the optimal rerouting split
ratios βdi , j . The centralized controller installs new critical entries
at the critical routers according to the results of (1) and (2). Note
that the installed critical entries in the previous period time out
automatically.

There are two reasons we do not want to continuously adopt
RL for (2). Firstly, since τK is small, the set of rerouting split ratios
{βdi , j } would be relatively small. LP is an efficient and optimal
method to solve the rerouting problem. Secondly, split ratios are
continuous numbers. Thus, we have to adopt the RL methods for
continuous action domain [18] [24]. However, it has been shown
that this type of RL methods would lead to slow and ineffective
learning when the number of output parameters are relatively large
[30][33]. In other words, compared to LP methods, applying RL
methods to (2) may suffer from scalability issues.

2.3 Learning A Combination Selection Policy
The goal of RL is to learn a policy π that selects a combination of
K “right” τdi for each given traffic matrix, such that the network
performance is maximized after redistributing traffic for each τdi .

2.3.1 RL Formulation.
Input: An input instance s is represented as a traffic matrix TM ,
which contains information of traffic demand for each source-
destination pair (i.e., ts ,d). Assume that the given network G(V , E)
remains unchanged, we do not include the topology information
as a part of the input. The results in Section 3 show that RL is able
to learn a good policy π without prior knowledge of the network.
Action Space: For a given instance s , SmartEntry wants to selectK
τdi . Given that there are total N ∗ (N − 1) candidate τdi in a network
with N nodes, this RL problem would require a large action space
of size

((N ∗(N−1)
K

)
. Inspired by [20][17], we define the action space

as {0, 1, ..., N ∗ (N − 1) − 1} and allow the RL agent to sample K
different actions for each instance s (i.e., a1,a2, ...,aK).
Reward:After samplingK different τdi for a given instance s , Smar-
tEntry solves the LP optimization problem (5a) (described in the
following section) to obtain the maximum link utilization Umax .
We define reward r as 1

Umax
, which is set to reflect the network

... ...

...

Policy

Value

Actor / Policy Network

Critic Network

Convolutional
Layer

Fully Connected
Layer

0 2.2 3.6

3.2 0 6.8

8.9 5.3 0

Traffic Matrix

Figure 2: Actor-Critic architecture.

performance after redistributing traffic for each τdi . The greater
reward r (i.e., the smallerUmax), the better performance.

2.3.2 Training Algorithm. We use a neural network to represent
the policy. This policy network takes aTM as an input and outputs
a probability distribution π (a |s) over all available actions. Figure
2 shows the architecture of the policy (actor) network (details in
Section 3.1.1). We define a solution aK = (a1,a2, ...,aK) as a combi-
nation of K sampled actions, since we do not care the order of the
sampled actions. For selecting a solution aK with a given instance s ,
a stochastic policy π (aK |s) parameterized by θ can be approximated
as follows2:

πθ (aK |s) ≈
K∏
i=1

πθ (a
i |s). (1)

Recall that the goal of learning is to find a policy πθ that maxi-
mizes the network performance over various traffic matrices, i.e.,
maximizes the expected reward Eπθ (aK |s)[r]. Thus, we optimize
Eπθ (aK |s)[r] by gradient ascend, using REINFORCE algorithm with
a baseline b(s):

∇θEπθ (aK |s)[r] = Eπθ [∇θ loдπθ (aK |s)(r − b(s))]. (2)

A good baseline b(s) reduces gradient variance and thus increases
speed of learning. In this paper, we use a learned estimate of the
value function V πθ (s) as the baseline b(s). The critic network in
Figure 2 is trained to learn an estimate ofV πθ (s). The critic network
parameter θv is updated according to the following equation:

θv ← θv − αv
∑
s
∇θv (r −V

πθ
θv
(s))2, (3)

whereV πθ
θv
(·) is the estimate ofV πθ (·), output by the critic network,

and αv is the learning rate for the critic network. Note that the
critic network is only trained to estimate the expected reward r ,
and solely helps train the policy network. Once training is done,
only the policy network is required to execute the action selection.

To ensure that the RL agent explores the action space adequately
during training to discover good policies, we add the entropy of
the policy π to Eq. (2). This technique improves exploration by
discouraging premature convergence to suboptimal deterministic

2To select K distinct actions, we do the action sampling without replacement. The
right side of Eq. (1) is the solution probability when sampling with replacement, but
we still use Eq. (1) to approximate the probability of solution aK given an instance s
for simplicity.

NetAI ’20, August 14, 2020, Virtual Event, NY, USA J. Zhang et al.

Algorithm 1 Training Algorithm
Initialize θ and θv
for each iteration do

∆θ ← 0, ∆θv ← 0
{si } ← Sample a batch of instances with size B
for i = 1, ...,B do
Sample a solution aiK according to policy πθ (aiK |si)
Receive reward ri

end for
for i = 1, ...,B do

∆θ ← ∆θ + α(∇θ loдπθ (aiK |si)(ri − V
πθ
θv
(si)) +

β∇θH (πθ (·|si)))
∆θv ← ∆θv − αv∇θv (ri −V

πθ
θv
(si))

2

end for
θ ← θ + ∆θ , θv ← θv + ∆θv

end for

policies [21]. Then, the policy network parameter θ is updated
according to the following equation:

θ ← θ + α
∑
s
∇θ loдπθ (aK |s)(r −V

πθ
θv
(s)) + β∇θH (πθ (·|s)), (4)

where α is the learning rate for the policy network, H is the en-
tropy of the policy (the probability distribution over actions). The
hyperparameter β controls the strength of the entropy regular-
ization term. Algorithm 1 shows the pseudo-code for the training
algorithm.

2.4 Rerouting Optimization Problem
As described in Section 1, traffic is either distributed evenly among
the default ECMP next hops or split unevenly among available
next hops according to the critical entries. Given a networkG(V , E)
with a traffic matrix TM and τK , our objective is to obtain the
weighted split ratios {βdi , j } for the selected τ

d
i ∈ τK , so thatUmax is

minimized and the routing is loop-free. To achieve this objective, we
first obtain the optimal destination-based traffic allocation {ydi ,k }
(where ydi ,k stands for the traffic destined to d routed on link ⟨i, j⟩),
then derive {βdi , j } from {y

d
i ,k }. We formulate the destination-based

rerouting problem as an optimization problem as follows:

minimize Umax + ϵ ·
∑
⟨i , j ⟩∈E

∑
d ∈V

ydi , j (5a)

subject to ∑
d ∈V

ydi , j = li , j i, j : ⟨i, j⟩ ∈ E (5b)

li , j ≤ ci , j ·Umax i, j : ⟨i, j⟩ ∈ E (5c)∑
k :⟨k ,i ⟩∈E

ydk ,i −
∑

k :⟨i ,k ⟩∈E
ydi ,k = −t

i ,d i,d : τdi ∈ τK (5d)

ydi ,k =

∑

n:⟨n,i ⟩∈E
ydn,i + t

i ,d

|ENHd
i |

if k ∈ ENHd
i

0 otherwise

i,d : τdi ∈ τN ∗(N−1)−K , k : ⟨i,k⟩ ∈ E

(5e)

∑
k :⟨k ,d ⟩∈E

ydk ,d −
∑

k :⟨d ,k ⟩∈E
ydd ,k =

∑
s ∈V ,s,d

ts ,d d ∈ V (5f)

ydi , j ≥ 0 d ∈ V , i, j : ⟨i, j⟩ ∈ E (5g)

ϵ ·
∑

⟨i , j ⟩∈E

∑
d ∈V

ydi , j in (5a) makes sure the routing is loop-free

[34], where ϵ (ϵ > 0) is a sufficiently small constant to ensure that
the minimization of Umax takes higher priority. (5c) is the link
capacity utilization constraint. (5d), (5e), (5f) are the flow conserva-
tion constraints for the selected τdi , for the remaining τdi , and at
destinations, respectively.

By solving problem (5) using LP solvers (e.g., Gurobi [10]), we
can obtain the optimal {ydi ,k }, then {β

d
i , j } can be derived according

to the following equation:

βdi , j =
ydi , j∑

k :⟨i ,k ⟩∈E
ydi ,k

i,d : τdi ∈ τK , j : ⟨i, j⟩ ∈ E. (6)

Note that traffic is distributed evenly among ECMP next hops for
the remaining τdi ∈ τN ∗(N−1)−K .

2.5 Traffic Splitting
By leveraging existing IP router’s forwarding table lookup archi-
tecture, we can easily expand it to accommodate the function of
forwarding traffic to each destination node with different split ratios
at the output ports. IP lookup usually uses a RAM-based proprietary
data structure to perform longest prefix matching. When an incom-
ing packet’s destination IP address matches with a longest prefix,
the result is a pointer pointing to an entry of another table storing
next hop information (let us call the table NHIT). Each entry of the
NHIT can, for instance, store next hop’s IP address and an output
port number. To facilitate our proposed TE method, the NHIT can
be slightly modified to a so-called traffic split ratio table (TSRT) . It
has N entries, each corresponding to a destination node, and each
entry has a flag and H split ratios βdi , j (H = the number of output
ports, e.g., 64). When the flag is set, up to H split ratios provided
by the centralized control are used to split traffic destined to the
corresponding destination node at the output ports of the router;
otherwise, traffic is evenly distributed among ECMP next hops
ENHd

i . In practice, packets belonging to a TCP (or UDP) session
follow a single path to avoid packet mis-order. An approximate to
the traffic splitting is to hash the 5-tuple packet header fields and
then allocate TCP (or UDP) flows to one of the output ports based
on the hash results and split ratios (refer to RFC 2992 [13] and the
standard hashing technique [3]).

3 EVALUATION
In this section, we conduct extensive experiments using different
network topologies to evaluate the performance of SmartEntry and
demonstrate its effectiveness.

3.1 Evaluation Setup
3.1.1 Implementation. The policy neural network consists of three
layers. The first layer is a convolutional layer with 128 filters, The
corresponding kernel size is 3 × 3 and the stride is set to 1. The

SmartEntry: Mitigating Routing Update Overhead with
Reinforcement Learning for Traffic Engineering NetAI ’20, August 14, 2020, Virtual Event, NY, USA

Table 1: ISP networks used in evaluation

Topology Nodes Directed Links
Abilene 12 30
GÉANT 23 74
EBONE 23 76
Tiscali 49 172

second layer is a fully connected layer with 128 neurons. The ac-
tivation function used for previous two layers is Leaky Relu [19].
The last layer is a fully connected linear layer (without activation
function) with N × (N − 1) neurons corresponding to all possible
actions. The softmax function is applied upon the output of final
layer to generate the probabilities for all available actions. The critic
network is similar to policy network except that the last layer is a
fully connected linear layer with only one neuron corresponding
to the baseline b(s). The learning rates α and αv are configured
to decay from 0.001 to 0.0001 over 0.5 × 105 iterations. Addition-
ally, the entropy factor β is configured to 0.01. We fixed all these
hyperparameters throughout our experiments. The results in the
following experiments show SmartEntry works well on different
network topologies with a single set of fixed hyperparameters.

3.1.2 Dataset. In our evaluation, we use four real-world network
topologies, including Abilene network, GÉANT network and two
European ISP networks (i.e., EBONE and Tiscali) collected by ROCK-
ETFUEL [25]. The numbers of nodes, directed links and source-
destination pairs of the topologies are shown in Table 1. For Abi-
lene network, the topology information (such as link connectivity,
costs, and capacities) and measured traffic matrices are available at
[1]. Since Abilene traffic matrices are measured every 5 minutes,
there are total 288 traffic matrices per day. To evaluate the per-
formance of SmartEntry, we choose the total 2016 traffic matrices
in the first week (starting from Mar. 1st 2004) as our dataset. For
GÉANT network [29], the link capacities and costs are provided by
the authors, and the measured traffic matrices are available at [8],
which are collected every 15 minutes for a continuous period of 4
months. Similarly, we select the total 672 traffic matrices in the first
week (starting from Jan. 1st 2005) as our dataset. For ROCKETFUEL
topologies, the link costs are given while the link capacities are not
provided. Therefore, we infer the link capacities as the inverse of
link costs, which are based on the default link cost setting of Cisco
routers. In other words, the link costs are inversely proportional to
the link capacities. This approach is commonly adopted in literature
[16][34]. Traffic matrices are unavailable for the two ISP networks
from ROCKETFUEL. Thus, we synthesize 50 traffic matrices us-
ing exponential model [28] and 50 traffic matrices using uniform
model for each network. Unless otherwise noted, we use a random
sample of 70% of our dataset as a training set for SmartEntry and
use the remaining 30% as a test set to evaluate the effectiveness of
SmartEntry.

3.1.3 Performance Ratio. To evaluate the performance of SmartEn-
try, a performance ratio is applied and defined as PR = Uoptimal

USmartEntry
,

where Uoptimal is the maximum link utilization achieved by the
optimal flow-based routing. PR = 1 means that SmartEntry per-
forms as good as the optimal routing. A lower ratio indicates that
the performance of SmartEntry is further away from that of the
optimal routing.

0 5%*N*(N-1) 10%*N*(N-1)
Number of Critical Entries K

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

 P
er

fo
rm

an
ce

 R
at

io Abilene Network

0 5%*N*(N-1) 10%*N*(N-1)
Number of Critical Entries K

0.5

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

 P
er

fo
rm

an
ce

 R
at

io GÉANT Network

0 5%*N*(N-1) 10%*N*(N-1)
Number of Critical Entries K

0.5

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

 P
er

fo
rm

an
ce

 R
at

io EBONE Network

0 5%*N*(N-1) 10%*N*(N-1)
Number of Critical Entries K

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

 P
er

fo
rm

an
ce

 R
at

io Tiscali Network

Figure 3: Average performance ratio of SmartEntry with in-
creasing number of critical entries K in four networks.

3.1.4 Baselines. For comparison, we also evaluate two other schemes:
(1) ECMP: distributes traffic evenly among available next hops

along the shortest paths. The link cost setting for each net-
work was discussed in Section 3.1.2.

(2) Weighted ECMP: extends ECMP to allow weighted traffic
splitting among available next hops along the shortest paths.
The corresponding optimal weighted split ratios are obtained
by the method proposed in [36].

3.2 Experiments
3.2.1 Number of Critical Entries. We conduct a series of experi-
ments with different number of critical entries introduced by Smar-
tEntry, and fix other parameters throughout the experiments.

Figure 3 shows the average performance ratio achieved by Smar-
tEntry with increasing number of critical entries K on the four
networks. Note that there are total N ∗(N −1) candidate τdi in a net-
work with N destination nodes. For each network, we compare the
performance with 0%, 5% and 10% of N ∗ (N − 1) critical entries, as
represented in the number of K on the x axis. The initial value with
K = 0 represents the default ECMP routing. The results indicate that
there is a considerable room for further improvement when flows
are routed by ECMP. When we only introduce 5% of N ∗ (N − 1)
critical entries, there is at least 23.1% performance improvement
over ECMP, which demonstrates the effectiveness of SmartEntry.
Besides, the sharp increases in the average performance ratio for
the four networks shown in Figure 3 indicate that SmartEntry is
able to achieve near optimal performance by introducing only 10%
of N ∗ (N − 1) critical entries. For the subsequent experiments, we
set K = 10% ∗ N ∗ (N − 1) for each network.

3.2.2 Performance Gain. To demonstrate the performance gain
introduced by SmartEntry’s critical entries, we also calculate the
performance ratios for ECMP and weighted ECMP. Figure 4 shows
the performance ratio on each individual traffic matrix for four
networks. As illustrated in Figure 4(c)(d), the first 15 traffic ma-
trices for EBONE and Tiscali networks are sampled from the 50
exponential traffic matrices in the dataset, and the remaining 15
traffic matrices are sampled from the 50 uniform traffic matrices.
All the results show that SmartEntry performs consistently well
in all four networks under various traffic models. For example, in
Abilene and GÉANT networks, SmartEntry improves performance

NetAI ’20, August 14, 2020, Virtual Event, NY, USA J. Zhang et al.

0 100 200 300 400 500 600
Traffic Matrix index

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pe
rf

or
m

an
ce

 R
at

io

(a) Abilene Network

SmartEntry
Weighted ECMP
ECMP

0 50 100 150 200
Traffic Matrix index

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pe
rf

or
m

an
ce

 R
at

io

(b) GÉANT Network

SmartEntry
Weighted ECMP
ECMP

0 5 10 15 20 25 30
Traffic Matrix index

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pe
rf

or
m

an
ce

 R
at

io

(c) EBONE Network
Exponential TM Uniform TM

SmartEntry
Weighted ECMP
ECMP

0 5 10 15 20 25 30
Traffic Matrix index

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pe
rf

or
m

an
ce

 R
at

io

(d) Tiscali Network
Exponential TM Uniform TM

SmartEntry
Weighted ECMP
ECMP

Figure 4: Comparison of performance ratio in four networks
on each test traffic matrix. The higher, the better.

0 50 100 150 200 250 300
Traffic Matrix index

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pe
rf

or
m

an
ce

 R
at

io

Day 2

SmartEntry
Weighted ECMP
ECMP

0 50 100 150 200 250 300
Traffic Matrix index

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pe
rf

or
m

an
ce

 R
at

io

Day 3

SmartEntry
Weighted ECMP
ECMP

0 50 100 150 200 250 300
Traffic Matrix index

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pe
rf

or
m

an
ce

 R
at

io

Day 5

SmartEntry
Weighted ECMP
ECMP

0 50 100 150 200 250 300
Traffic Matrix index

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pe
rf

or
m

an
ce

 R
at

io

Day 6

SmartEntry
Weighted ECMP
ECMP

Figure 5: Comparison of performance ratio with the Abilene
trafficmatrices fromDays 2, 3, 5, and 6 inweek 2. The higher,
the better.

by at least 20% and 40% compared to weighted ECMP, respectively.
SmartEntry achieves optimal performance in most of the traffic
matrices and outperforms weighted ECMP with at least 40% and
20% performance improvement in EBONE and Tiscali networks. It
is worth noting that there might be only one shortest path for most
of source-destination pairs in the small networks (e.g., Abilene,
GÉANT, and EBONE networks). Thus, the performance improve-
ment of weighted ECMP is limited, compared to ECMP. Overall,
the results indicate that SmartEntry is able to effectively balance
link utilization of the network by smartly installing a few critical
entries in some critical routers.

3.2.3 Generalization. In this series of experiments, we train Smar-
tEntry on the traffic matrices in the first week (starting from Mar.
1st 2004) and evaluate it for each day of the following week (starting
from Mar. 8th 2004) for Abilene network. For GÉANT network, we
conduct similar experiments by training SmartEntry with the traffic
matrices in the first week (starting from Jan. 1st 2005) and testing its
performance on each day of the second week (starting from Jan. 8th
2005). Due to the limited space, we only present the results of days
2, 3, 5, and 6 for the two networks. The results of other days are

0 20 40 60 80 100
Traffic Matrix index

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pe
rf

or
m

an
ce

 R
at

io

Day 2

SmartEntry
Weighted ECMP
ECMP

0 20 40 60 80 100
Traffic Matrix index

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pe
rf

or
m

an
ce

 R
at

io

Day 3

SmartEntry
Weighted ECMP
ECMP

0 20 40 60 80 100
Traffic Matrix index

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pe
rf

or
m

an
ce

 R
at

io

Day 5

SmartEntry
Weighted ECMP
ECMP

0 20 40 60 80 100
Traffic Matrix index

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pe
rf

or
m

an
ce

 R
at

io

Day 6

SmartEntry
Weighted ECMP
ECMP

Figure 6: Comparison of performance ratio with the GÉANT
trafficmatrices fromDays 2, 3, 5, and 6 inweek 2. The higher,
the better.

very similar. Figures 5 and 6 show the performance ratio on each
traffic matrix of these 4 days for Abilene and GÉANT networks.
SmartEntry still achieves near-optimal performance in almost all
traffic matrices. The performance of SmartEntry degrades on sev-
eral outlier traffic matrices. It is possible that the traffic patterns of
these traffic matrices are different from what SmartEntry learned
from the previous week. Overall, the results indicate that real traffic
patterns are relatively stable, and SmartEntry generalizes well to
unseen traffic matrices for which it was not explicitly trained.

4 RELATEDWORK
Existing works use OSPF and ECMP protocols to evenly balance link
utilization by carefully tuning the link costs or traffic splitting ratio
to adjust path selection [4][7][12][36]. Dynamic hybrid routing
[35] achieves load balancing for a wide range of traffic scenarios by
dynamically rebalancing traffic to react to traffic fluctuations with
a preconfigured routing policy. Machine learning has been used
to realize the TE. In [30], the authors show deep reinforcement
learning is a promising solution to improve the performance of TE.
In [9], the authors use semi-supervised deep learning to design an
automatic network protocol. Sun et al. [26] selectively control a
set of nodes and use a RL-based policy to dynamically change the
routing decision of flows traversing the selected nodes. Xu et al.
[33] use reinforcement learning to optimize the throughput and
delay in TE.

5 CONCLUSION
With an objective of minimizing maximum link utilization in a
network and mitigating routing update overhead, we proposed
SmartEntry, a scheme that learns a combination selection policy
automatically using reinforcement learning, without any domain-
specific rule-based heuristic. SmartEntry smartly selects a combi-
nation of K node-destination pairs for each given traffic matrix
and reroutes the selected traffic to achieve load balancing of the
network by solving a rerouting optimization problem. Extensive
evaluations show that SmartEntry achieves near-optimal perfor-
mance and generalizes well to traffic matrices for which it was not
explicitly trained.

SmartEntry: Mitigating Routing Update Overhead with
Reinforcement Learning for Traffic Engineering NetAI ’20, August 14, 2020, Virtual Event, NY, USA

REFERENCES
[1] Abilene. [n.d.]. Yin Zhang’s Abilene TM. http://www.cs.utexas.edu/~yzhang/

research/AbileneTM/
[2] Tony Bates, Philip Smith, and GeoffHuston. [n.d.]. CIDR report. http://www.cidr-

report.org/
[3] Zhiruo Cao, Zheng Wang, and E. Zegura. 2000. Performance of hashing-based

schemes for Internet load balancing. In INFOCOM 2000. Nineteenth Annual Joint
Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE,
Vol. 1. 332 –341 vol.1. https://doi.org/10.1109/INFCOM.2000.832203

[4] Jian Chu and Chin-Tau Lea. 2009. Optimal link weights for IP-based networks
supporting hose-model VPNs. IEEE/ACM Transactions on Networking (TON) 17,
3 (2009), 778–788.

[5] Andrew R. Curtis, Jeffrey C. Mogul, Jean Tourrilhes, Praveen Yalagandula, Puneet
Sharma, and Sujata Banerjee. 2011. DevoFlow: scaling flow management for
high-performance networks. SIGCOMM Comput. Commun. Rev. 41, 4 (Aug. 2011),
254–265. https://doi.org/10.1145/2043164.2018466

[6] B. Fortz and M. Thorup. 2002. Optimizing OSPF/IS-IS weights in a changing
world. Selected Areas in Communications, IEEE Journal on 20, 4 (May 2002), 756
–767. https://doi.org/10.1109/JSAC.2002.1003042

[7] Bernard Fortz and Mikkel Thorup. 2002. Optimizing OSPF/IS-IS weights in a
changing world. IEEE journal on selected areas in communications 20, 4 (2002),
756–767.

[8] GÉANT. [n.d.]. The TOTEM Project. https://totem.info.ucl.ac.be/dataset.html
[9] Fabien Geyer and Georg Carle. 2018. Learning and generating distributed routing

protocols using graph-based deep learning. In Proceedings of the 2018 Workshop
on Big Data Analytics and Machine Learning for Data Communication Networks.
ACM, 40–45.

[10] LLC Gurobi Optimization. 2019. Gurobi Optimizer Reference Manual. http:
//www.gurobi.com

[11] Kaj Holmberg and Di Yuan. 2004. Optimization of Internet Protocol network
design and routing. Networks 43, 1 (2004), 39–53. https://doi.org/10.1002/net.
10102

[12] Kaj Holmberg and Di Yuan. 2004. Optimization of internet protocol network
design and routing. Networks: An International Journal 43, 1 (2004), 39–53.

[13] C. Hopps. 2000. Analysis of an Equal-Cost Multi-Path Algorithm. IETF RFC 2992
(November 2000).

[14] Chu Jian and Lea Chin-Tau. 2009. Optimal link weights for IP-Based networks
supporting Hose-Model VPNs. Networking, IEEE/ACM Transactions on 17, 3 (June
2009), 778 –788.

[15] Kalapriya Kannan and Subhasis Banerjee. 2013. Compact TCAM: Flow Entry
Compaction in TCAM for Power Aware SDN. In Distributed Computing and
Networking. Springer, 439–444.

[16] Murali Kodialam, TV Lakshman, James B Orlin, and Sudipta Sengupta. 2008.
Oblivious routing of highly variable traffic in service overlays and IP backbones.
IEEE/ACM Transactions On Networking 17, 2 (2008), 459–472.

[17] Wouter Kool, Herke van Hoof, and Max Welling. 2018. Attention, Learn to Solve
Routing Problems! arXiv:stat.ML/1803.08475

[18] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control
with deep reinforcement learning. CoRR abs/1509.02971 (2015).

[19] Andrew L. Maas. 2013. Rectifier Nonlinearities Improve Neural Network Acoustic
Models.

[20] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula. 2016.
Resource Management with Deep Reinforcement Learning. In Proceedings of the
15th ACM Workshop on Hot Topics in Networks (HotNets ’16). ACM, New York,
NY, USA, 50–56. https://doi.org/10.1145/3005745.3005750

[21] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timo-
thy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronousMethods for Deep Reinforcement Learning. CoRR abs/1602.01783 (2016).
arXiv:1602.01783 http://arxiv.org/abs/1602.01783

[22] J. Moy. 1998. OSPF Version 2. IETF RFC 2328 (April 1998).
[23] D. Oran. 1990. OSI IS-IS Intra-domain Routing Protocol. IETF RFC 1142 (February

1990).
[24] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter

Abbeel. 2015. Trust Region Policy Optimization. CoRR abs/1502.05477 (2015).
arXiv:1502.05477 http://arxiv.org/abs/1502.05477

[25] Neil Spring, Ratul Mahajan, and David Wetherall. 2002. Measuring ISP topologies
with Rocketfuel. In ACM SIGCOMM Computer Communication Review, Vol. 32.
ACM, 133–145.

[26] Penghao Sun, Junfei Li, Zehua Guo, Yang Xu, Julong Lan, and Yuxiang Hu. 2019.
Sinet: Enabling scalable network routing with deep reinforcement learning on
partial nodes. In ACM SIGCOMM’19 Posters and Demos. 88–89.

[27] D. Thaler and C. Hopps. 2000. Multipath Issues in Unicast andMulticast Next-Hop
Selection. IETF RFC 2991 (November 2000).

[28] Paul Tune and Matthew Roughan. 2015. Spatiotemporal traffic matrix synthesis.
In ACM SIGCOMM Computer Communication Review, Vol. 45. ACM, 579–592.

[29] Steve Uhlig, Bruno Quoitin, Jean Lepropre, and Simon Balon. 2006. Providing
public intradomain traffic matrices to the research community. ACM SIGCOMM
Computer Communication Review 36, 1 (2006), 83–86.

[30] Asaf Valadarsky, Michael Schapira, Dafna Shahaf, and Aviv Tamar. 2017. Learning
to Route. In Proceedings of the 16th ACM Workshop on Hot Topics in Networks
(HotNets-XVI). ACM, New York, NY, USA, 185–191. https://doi.org/10.1145/
3152434.3152441

[31] Ronald J. Williams. 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine Learning 8, 3 (01 May 1992),
229–256. https://doi.org/10.1007/BF00992696

[32] H. Xu, Z. Yu, C. Qian, X. Li, and Z. Liu. 2017. Minimizing flow statistics collection
cost of SDN using wildcard requests. In IEEE INFOCOM 2017 - IEEE Conference on
Computer Communications. 1–9. https://doi.org/10.1109/INFOCOM.2017.8056992

[33] Zhiyuan Xu, Jian Tang, Jingsong Meng, Weiyi Zhang, Yanzhi Wang, Chi Harold
Liu, and Dejun Yang. 2018. Experience-driven networking: A deep reinforcement
learning based approach. In IEEE INFOCOM 2018-IEEE Conference on Computer
Communications. IEEE, 1871–1879.

[34] Junjie Zhang, Kang Xi, and H Jonathan Chao. 2015. Load balancing in IP networks
using generalized destination-based multipath routing. IEEE/ACM Transactions
on Networking (TON) 23, 6 (2015), 1959–1969.

[35] Junjie Zhang, Kang Xi, Min Luo, and H Jonathan Chao. 2014. Dynamic hybrid
routing: Achieve load balancing for changing traffic demands. In 2014 IEEE 22nd
International Symposium of Quality of Service (IWQoS). IEEE, 105–110.

[36] Junjie Zhang, Kang Xi, Liren Zhang, and H Jonathon Chao. 2012. Optimizing
network performance using weightedmultipath routing. In 2012 21st International
Conference on Computer Communications and Networks (ICCCN). IEEE, 1–7.

http://www.cs.utexas.edu/~yzhang/research/AbileneTM/
http://www.cs.utexas.edu/~yzhang/research/AbileneTM/
http://www.cidr-report.org/
http://www.cidr-report.org/
https://doi.org/10.1109/INFCOM.2000.832203
https://doi.org/10.1145/2043164.2018466
https://doi.org/10.1109/JSAC.2002.1003042
https://totem.info.ucl.ac.be/dataset.html
http://www.gurobi.com
http://www.gurobi.com
https://doi.org/10.1002/net.10102
https://doi.org/10.1002/net.10102
http://arxiv.org/abs/stat.ML/1803.08475
https://doi.org/10.1145/3005745.3005750
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1502.05477
https://doi.org/10.1145/3152434.3152441
https://doi.org/10.1145/3152434.3152441
https://doi.org/10.1007/BF00992696
https://doi.org/10.1109/INFOCOM.2017.8056992

	Abstract
	1 Introduction
	2 Proposed Model
	2.1 Notations
	2.2 Overview
	2.3 Learning A Combination Selection Policy
	2.4 Rerouting Optimization Problem
	2.5 Traffic Splitting

	3 Evaluation
	3.1 Evaluation Setup
	3.2 Experiments

	4 Related work
	5 Conclusion
	References

