
1

Prophet: Traffic Engineering-centric Traffic
Matrix Prediction

Yuntian Zhang, Ning Han, Tengteng Zhu, Junjie Zhang, Member, IEEE,
Minghao Ye, Songshi Dou, and Zehua Guo, Senior Member, IEEE, Member, ACM

Abstract—Traffic Matrix (TM), which records traffic volumes
among network nodes, is important for network operation and
management. Due to cost and operation issues, TMs cannot be
directly measured and collected in real time. Therefore, many
studies work on predicting future TMs based on historical TMs.
However, existing works are usually accuracy-centric prediction
solutions that mainly focus on improving predicting accuracy of
flows’ sizes (i.e., values of elements in TMs) without considering
the practical application of TMs. In this paper, we propose a novel
TM prediction solution called Prophet for Traffic Engineering
(TE), a typical application for TMs which takes TMs as input
to optimize routing. We identify that the critical property (i.e.,
ratio among elements) in a TM plays an important role in TE’s
performance. Based on this analysis, we adopt the matrix normal-
ization to maintain the critical property in TMs and customize
a TE-centric angle loss function to introduce scale invariance of
TMs for capturing the overall relationship error. Different from
the element-wise Mean Squared Error (MSE) loss function in
accuracy-centric prediction solutions, our proposed TE-centric
angle loss function has a clear geometric interpretation, which
confines the angle between predicted TM and real TM to zero.
Simulation results show that the predicted TMs from Prophet
can improve the performance of link-level TE and path-level TE
by up to 45.4% and 52.8%, respectively, compared to existing
solutions.

I. INTRODUCTION

Traffic Matrix (TM) is important for network operation and
management. A TM usually records traffic volumes between
all pairs of Source Destination (SD) nodes in a network for
a given period of time slot (e.g., 5 mins). TMs are essential
for network operators to optimize network performance. For
example, Traffic Engineering (TE) is a typical network ap-
plication to reduce link congestion probability in a network.
Given the input TMs, TE minimizes the link utilization of the
most congested links in the network by effectively routing and
rerouting flows to achieve load balancing [1]. However, due
to cost and operational issues, TMs usually are not directly
measured and collected in real time [2].

Existing studies usually work on accurately predicting fu-
ture TMs based on historical TMs. We call them accuracy-
centric prediction solutions. Typically, traffic demands in back-
bone networks exhibit a stable trend in a long time. Thus,
well-known linear prediction methods are used to predict
TMs, such as AutoRegressive Moving Average (ARMA) and
AutoRegressive Integrated Moving Average (ARIMA) [3].

Yuntian Zhang, Ning Han, Tengteng Zhu, Songshi Dou, and Zehua Guo
are with Beijing Institute of Technology, Beijing 100081, China.

Junjie Zhang is with Fortinet, Inc., Sunnyvale, CA 94086 USA.
Minghao Ye is with New York University, New York City, NY 11201 USA.

TM Prediction

Time slot t-1

TE

Predict TM

· · ·𝑇𝑀t−𝑛 𝑇𝑀t−2𝑇𝑀t−1 𝑇𝑀t

𝑇𝑀t
′

Routing 
solution

Time slot t

Perform
-ance

· · ·

Fig. 1. How to predict TMs and use the predicted TMs for TE. Red squares
denote predicted TMs, and blue squares denote real TMs.

However, dynamic traffic fluctuations can also be observed in
backbone networks [4]. When TMs change significantly and
dynamically, these linear prediction methods do not always
work well since they cannot identify and describe some
nonlinear features among a series of TMs.

Some recent works use Machine Learning (ML) models as
nonlinear prediction methods [5]–[10], but they also cannot
precisely predict the exact value of each element1 in a TM
due to random bursty traffic. In some cases, a small difference
between a predicted TM and a real TM (e.g., only one element
in the predicted TM is different from the one in the real TM)
could dramatically degrade TE’s performance. For example, a
recent work [11] shows that critical flows exist in the networks
with a dominant impact on TE’s performance, and a small
prediction error on critical flows’ demand could change the
routing in the network significantly and degrade performance.

We argue that focusing on precisely predicting each ele-
ment’s value in TMs does not guarantee to predict TMs well.
Instead, predicted TMs should be evaluated based on network
performance when using these predicted TMs. Fig. 1 shows
how to use predicted TMs for TE, where TMt denotes the
real TM at time slot t, and TM ′t denotes the predicted TM at
time slot t. Typically, a TM prediction solution trains a ML
model with a loss function. After the training, given a series
of historical TMs {TMt−n, ..., TMt−2, TMt−1} at time slot
t−1, TM ′t is generated using the trained ML model and then
used by TE to generate a routing solution for flows at time
slot t. When TMt arrives, flows in TMt are routed following
the routing solution, which is previously generated based on
predicted TM TM ′t . We can see that the TM prediction is
unaware of the downstream TE. If TMt is different from
TM ′t , the prediction error could significantly degrade TE’s
performance. Thus, the impact of TMs on real application’s

1In this paper, we use the flow and the element in a TM interchangeably.

This article has been accepted for publication in IEEE/ACM Transactions on Networking. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNET.2023.3293098

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



2

performance should be considered when predicting future
TMs.

Motivated by the above analysis, in this paper, we propose
Prophet, a TM prediction solution for achieving good perfor-
mance of TE. We find out that the ratio among elements in
each TM plays an important role in TE. We call it critical
property. Critical property reveals that even if the correspond-
ing TM is a n times of the real TM, the performance of
downstream TE will stay invariant. In other words, the ML
model does not need to be element-wise accurate. Thus,
critical property introduces robustness and flexibility in TM
prediction. The key of Prophet is to maintain the critical
property in each TM when predicting TMs. The details of
the critical property are introduced in Section III.

To take advantage of the critical property in TMs, we face
two challenges. First, revealing the critical property requires
a huge computation overhead due to the nonlinear growth
time complexity. A TM usually consists of k2 elements,
where k denotes the number of nodes in a network. We need
O(k4) calculation to reveal the relationship between any two
elements. This is because for each element, its relationship
with other (k2 − 1) elements should be considered. Since the
relationship calculation is required for each iteration during
the ML model training, evaluating it could be computationally
intractable. Additionally, we have to handle some special
cases. For example, some elements could be 0 in a TM.
Thus, simply dividing element A by element B to calculate
the relationship between A and B does not work if element B
is 0. Second, existing accuracy-centric loss functions such as
Mean Squared Error (MSE) and Mean Absolute Error (MAE)
serve for element-wise error calculation but do not consider the
relationship error. The critical property claims the ratio among
elements in each TM is important. That is, if a predicted
TM is n times of corresponding real TM, it is satisfied by
downstream TE. However, MSE and MAE are not sensitive
to the ratio among elements. Therefore, design a novel loss
function for TM prediction is on the horizon.

Prophet addresses these two challenges with two key tech-
niques: matrix normalization and TE-centric angle loss func-
tion design. First, acting as a requisite process in ML, matrix
normalization differs from widely used SD pair normaliza-
tion exampled in Section II. Matrix normalization scales all
elements in a TM by dividing the maximum element in this
TM, which maintain the ratio among elements. Second, TE-
centric angle loss function introduce scale invariance of TMs,
which aims to measure the overall relationship error rather
than element-wise accuracy-centric error. TE-centric angle
loss function gains a clear geometric interpretation, which
confines the angle between predicted TM and real TM to zero.
Furthermore, scale invariance help improve the robustness
in downstream TE, which is observed when compared with
conventional methods. The two techniques are detailed in
Section IV. Besides, Prophet is a general TM prediction
framework, which allows off-the-shelf ML models to plug
in easily. Simulation results show that the predicted TMs
from Prophet can improve the performance of link-level TE
and path-level TE by up to 45.4% and 52.8%, respectively,
compared to existing solutions.

To the best of our knowledge, our paper is the first attempt
to bridge the gap between TM prediction and downstream
application scenarios. It can also inspire other researches to
further study the combination of ML and optimization in
computer networks. The main contributions of this paper are
summarized as follows:
• We propose to predict TMs with consideration of TE’s

performance and identify the critical property in TMs
related to TE’s performance.

• We adopt the matrix normalization to maintain the critical
property in TMs and customize a TE-centric angle loss
function to introduce scale invariance of TMs.

The rest of this paper is organized as follows. Section
II introduces the background and motivation of this paper.
Section III proposes to identify the critical property in the TM
for TE. Section IV describes the design of Prophet. Section
V presents and analyzes the simulation results. Section VI
discusses some open questions. Section VII recaps the related
work, and Section VIII concludes this paper.

II. BACKGROUND AND MOTIVATION

In this section, we review previous TM prediction methods
and introduce the background of TE. We also illustrate our
motivation for the design of Prophet.

A. TM prediction

Existing works on TM prediction mainly focus on precisely
predicting the value of each SD pair in the TM based on
historical TMs. Linear prediction models (e.g., ARIMA [3],
[12]) can model network traffic, but they cannot tackle the
nonlinear feature of network traffic well. Many ML techniques
are used to model nonlinear features among a series of TMs
and improve prediction accuracy. NeuTM [6] employs Long
Short-Term Memory (LSTM) for TM prediction. Troia et al.
[7] investigate GRU, a particular type of Recurrent Neural Net-
work (RNN), to predict TMs. A recent work called ACRNN
[10] uses Convolution Neural Network (CNN) to capture
the inter-flow correlations and RNN to capture the intra-flow
dependencies coupled with attention mechanism. These ML-
based solutions improve the overall prediction accuracy of
TMs. However, precisely predicting each element in a TM
remains very difficult. Some elements in the predicted TM
could also exhibit great difference from the elements of the
same locations in the real TM. Besides, previous methods do
not take consideration of the impact on TE optimization into
TM prediction.

B. TE

Predicted TMs are used for specific network downstream
applications to maintain or improve network performance. TE
is a major application for TMs and focuses on mitigating
congestion of a network by effectively routing and rerouting
flows to minimize the Maximum Link Utilization (MLU) in
the network. TE is typically formulated as a Linear Program-
ming (LP) problem (e.g., Multi-commodity flow, MCF [13])
and takes TMs as input. The optimization problem can be

This article has been accepted for publication in IEEE/ACM Transactions on Networking. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNET.2023.3293098

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



3

ML Model

Existing Loss Function (e.g., MSE) Input TMs

·
·
·

SD Pair Normalization

Predicted TM

TM1

· · ·

TM2 TMn· · ·

SD Pair Normalized
Ground Truth

(a) The training procedure in TM prediction of existing accuracy-centric solutions. In SD Pair Normalization module, each SD pair is divided by the
corresponding maximum value of SD pair among all the TMs. Shallower color indicates smaller element value. For instance, the (1,1) element’s (i.e., SD
pair in first row, first column) maximum value is in TMn. Loss Function module employs existing loss function (e.g., MSE), which is element-wise and
accuracy-centric. Notation d represents loss function.

ML Model

TE-centric Angle Loss Function Matrix NormalizationInput TMs
Matrix Normalized 

Ground Truth

Predicted TM
·
·
·

TM1

· · ·

TM2 TMn· · ·

(b) The training procedure in TM prediction of our proposed Prophet. In Matrix Normalization module, all elements in a TM is scaled by dividing the
maximum element in this TM. Besides, a TE-centric angle loss function is customized to introduce scale invariance. Notation d represents loss function. We
provide three examples in order. The first example indicates that if there is an angle between flattened predicted TM and real TM, loss function is not equal
to zero. Two other examples show that loss function is not sensitive to ratio scale of two TMs, even if they are element-wise different. Both cases d = 0
provide a geometric interpretation that our novel loss function introduces scale invariance.

Fig. 2. Comparison of existing accuracy-centric prediction solutions and our proposed Prophet.

optimally solved by existing solvers (e.g., Gurobi Optimizer
[14]) or efficiently solved by heuristic algorithms based on the
problem’s complexity.

TE can be briefly divided into two types: link-level TE
by solving MCF problem for arbitrary paths and path-level
TE by solving MCF problem for preconfigured paths. Link-
level TE presents optimal performance at the cost of high
computation complexity. Path-level TE reduces computation
complexity and can provide near-optimal performance when
preconfigured paths are selected rationally [15]. The formal
formulation of the MCF problem for arbitrary paths and for
preconfigured paths are detailed in Section III-A.

C. Motivation

Fig. 2 shows the difference of training procedure between
existing TM prediction solutions and our proposed Prophet.
Fig. 2(a) introduces the framework of existing solutions. Gen-
erally, the input TMs are firstly normalized for each SD pair.
For example, if a TM contains k SD pairs, then each SD pair
is divided by the corresponding maximum value of SD pair
among all the TMs. Then, a ML model produces the predicted
TM. Finally, a loss function, typically the accuracy-centric
MSE is applied to calculate the error between the predicted
TM and the ground truth, and the error is backpropagated to
train the parameters in the ML model.

Existing solutions mainly focus on designing growing
exquisite and complex ML model to precisely predict elements
of SD pairs. The normalization and loss function calculation

operations are used to predict each SD pair accurately to gain
an ideal TM. However, these two operations do not consider
the critical property, and thus making the TM prediction
unaware of the downstream TE.

In Fig. 2(b), Prophet takes advantage of the critical property
in TMs in matrix normalization and a novel TE-centric angle
loss function design. First, as the critical property requires
ratio scaling of the TM, we adopt the matrix normalization
technique. Matrix normalization scales all elements in a TM
to [0, 1] by dividing the maximum element in this TM.
The normalization process favourably maintains the critical
property and provides a requisite part for ML. Second, a
TE-centric angle loss function is designed to introduce scale
invariance for ML model when predicting TMs. Thus, the
overall relationship error could be well measured instead of
element-wise accuracy-centric error. What is more, angle loss
function has a clear geometric interpretation, which confines
the angle between flattened predicted TM and real TM to zero.

To briefly summarize, our general TM prediction framework
Prophet covers the shortage of existing solutions by two key
techniques, matrix normalization and TE-centric angle loss
function. Therefore, Prophet maintains the critical property
well when predicting TMs. We also point out that designed
matrix normalization techniques and TE-centric angle loss
function are simple and easy to deploy in the real world.
Additionally, to further improve the performance, Prophet can
easily plug in off-the-shelf or other advanced ML models.

This article has been accepted for publication in IEEE/ACM Transactions on Networking. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNET.2023.3293098

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



4

III. IDENTIFYING THE CRITICAL PROPERTY IN TMS FOR
TE

In this section, we introduce two typical problem formula-
tion for TE, and analyze how to identify the critical property
in TMs for TE.

A. TE problem formulation
1) MCF problem for arbitrary paths: A network is G =

(V,E), where V is the set of switches and E is the set of links
between switches. T is the traffic matrix. The utilization of link
(i, j) ((i, j) ∈ E) cannot exceed its upper bound capacity Ci,j .
We use xs,di,j to denote the percentage of traffic demand from
source s to destination d routed on link (i, j). vs,d is used
to denote the traffic demand from source s to destination d
in traffic matrix T . u denotes the MLU. The problem Pl is
formulated as follows:

Pl : min
x,u

u (1)

s.t.

∑
k:(k,i)∈E

xs,dk,i −
∑

k:(i,k)∈E

xs,di,k =


−1, if i = s

1, if i = d

0, otherwise ,
(1a)

loadi,j =
∑
s,d∈V

xs,di,j · vs,d, ∀(i, j) ∈ E, (1b)

loadi,j ≤ Ci,j · u, ∀(i, j) ∈ E, (1c)

xs,di,j ∈ [0, 1], ∀s, d ∈ V, ∀(i, j) ∈ E, (1d)

where {xs,di,j } and u are continuous decision variables, {T},
{vs,d} and {Ci,j} are given constants. Eq. (1) is the objective
function that aims at minimizing the MLU. Eq. (1a) ensures
that no flow gets lost at any node. Eq. (1b) denotes the traffic
load on link (i, j) under traffic matrix T . Eq. (1c) is used to
ensure the link capacity constraints and get the MLU u.

2) MCF problem for preconfigured paths: A network is
G = (V,E), where V is the set of switches and E is the
set of links between switches. T is the traffic matrix. The
utilization of link (i, j) ((i, j) ∈ E) cannot exceed its upper
bound capacity Ci,j . The preconfigured path-set for node pair
(s, d) is Psd. We use xs,dp to denote the percentage of traffic
demand from source s to destination d routed on path p. And
vs,d is used to denote the traffic demand from source s to
destination d in traffic matrix T . δs,dp,i,j is an indicator constant
which denotes if link (i, j) is on path p of pair (s, d). Let u
denote the MLU. The problem Pp is formulated as follows:

Pp : min
x,u

u (2)

s.t.∑
p∈Psd

xs,dp = 1, ∀s, d ∈ V, (2a)

loadi,j =
∑
s,d∈V

∑
p∈Psd

δs,dp,i,j · x
s,d
p · vs,d, ∀(i, j) ∈ E,

(2b)
loadi,j ≤ Ci,j · u, ∀(i, j) ∈ E, (2c)

xs,dp ∈ [0, 1], ∀s, d ∈ V, ∀(i, j) ∈ E, (2d)

where {xs,dp } and u are continuous decision variables, {T},
{vs,d} and {Ci,j} are given constants. Eq. (2) is the objective
function that aims to minimizing the MLU. Eq. (2a) guarantees
that the sum of the ratio on each path from one source-
destination node pair s, d is equal to 1. Eq. (2b) denotes
the traffic load on link (i, j) under traffic matrix T . Eq.
(2c) is used to ensure the link capacity constraints and get
the MLU u. Preconfigured paths come from SMORE [15].
SMORE is a leading TE solution that achieves load balancing
by intelligently splitting traffic on selected paths. These paths
are calculated by oblivious routing algorithm, and SMORE
deploys a centralized controller to dynamically adjust the split
ratios of all flows for each TM based on these preconfig-
ure paths. SMORE utilizes diverse paths for robustness. We
employ the SMORE preconfigured paths for the Abilene and
Cernet topologies for our work.

To summarize, this paper includes two types of standard
TE problem formulations: Multi-commodity flow (MCF) for
arbitrary paths, and preconfigured paths. They are used as the
downstream optimization tasks. Modern optimization solvers
(e.g., Gurobi Optimizer [14]) can already efficiently handle
most large scale optimization problems. In our experiments,
Gurobi is used to solve the above two LP problems given
predicted TMs as input.

B. Metric

TE aims to minimize the MLU in the network by splitting
flows among links across the network. Once we know the
traffic demand vs,d from source s to destination d in T , the
corresponding allocated traffic demand on link (i, j) becomes∑
s,d∈V x

s,d
i,j vs,d. Thus, generating a routing solution for traffic

flows is equivalent to determining a set of decision variables
xs,di,j under the previous TE formulation.

We introduce the metric called performance ratio (PR).
Denote R as a routing solution on TM T . Then

PR{R, T } =
Upred
Uoptimal

(3)

where Uoptimal denotes the MLU of an optimal TE solution
with real TMs. Upred denotes the MLU when deploying the
routing solution on real TMs, which is generated by the pre-
dicted TM. Since Upred is larger than Uoptimal theoretically,
lower PR towards the value 1 means better performance.

C. Identifying the critical property in TMs for TE

Existing works always tightly couple good performance of
TE with high prediction accuracy of element values in TMs.
However, as we explained before, precisely predicting each
element value in TMs is very difficult. Thus, these works lead
to bad performance in TE. Can we find another way to realize
good performance for TE without accurately predicting each
element in TMs?

We therefore consider that the TMs may exist some critical
properties which play important roles in TE’s performance.
We apply an analytical method to explore the impact of the
critical property in TMs on TE.

This article has been accepted for publication in IEEE/ACM Transactions on Networking. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNET.2023.3293098

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



5

Theorem 1 The performance ratio of the optimal routing
solution (i.e., the solution of link-level MCF problem for
arbitrary paths) remains invariant for two TMs if the value
ratio of each element at the same location of the two TMs is
unchanged.

Proof:

PR{R, T } =
Upred
Uoptimal

=

max
(i,j)∈E

∑
s,d∈V

xs,d
i,j v

t
s,d

Ci,j

min
Rbest∈Rset

max
(i,j)∈E

∑
s,d∈V

xs,d
i,j v

t
s,d

Ci,j

(4)

where Rset indicates all the possible routing solutions, Rbest
is the optimal routing solution corresponding to the optimal
MLU.

Once a routing solution is solved, xs,di,j and Ci,j remains
invariant. If we scale all the vts,d in Tt under the same ratio,
the PR will stay invariant. Thus, if the corresponding TM is a n
times of the real TM, the performance ratio will stay invariant
with that of optimal routing related with the real TM. This
completes our proof. �

Following the similar method, we can prove that the theorem
under MCF problem for preconfigured paths still holds.

To summarize, two typical problem formulation for TE is
introduced and the critical property is identified. However, how
to maintain the critical property in the ML schemes remains
unsolved, which is detailed in the next section.

IV. DESIGN OF PROPHET

In this section, we discuss design details of the proposed
Prophet, a TE-centric TM prediction framework.

A. Design challenges

We face two challenges when making attempts to take
advantage of the critical property in TMs.

First, revealing the critical property requires a dense com-
putation overhead due to O(k4) time complexity, where k
denotes the number of nodes in a network. Evaluating it could
be computationally intractable since the calculation is required
for each iteration during the ML model training.

Second, existing accuracy-centric loss functions such as
MSE and MAE compute for element-wise error calculation but
do not consider the overall relationship error. Therefore, they
are not sensitive to the critical property (i.e., ratio among ele-
ments). Designing a novel loss function which could introduce
scale invariance and provide some geometric interpretation is
on the horizon.

B. Matrix normalization

Normalization is an requisite process in ML, where the data
is either scaled or transformed to make an equal contribution
of each feature [16] and help the training algorithms converge
faster. Existing accuracy-centric prediction solutions employ
SD pair normalization, since they focus on predicting each
SD pair accurately to gain an ideal TM. However, SD pair

normalization do not consider the critical property, thus mak-
ing the TM prediction unaware of the downstream TE.

In this paper, we adopt matrix normalization, which scales
all elements in a TM to [0, 1] by dividing the maximum
element in the TM. Matrix normalization in fact scale TMs
proportionally in order to maintain the critical property.

C. TE-centric angle loss function

The critical property reveals the ratio among elements.
Thus, instead of precisely predicting each element in a TM
which is often computationally intractable, we consider to
maintain the critical property (i.e., ratio scaling) of the TM.
A TE-centric angle loss function is designed due to this
motivation.

Suppose we have a vector space (M,d) of TM. (M,d) is
an ordered pair where M is a set (i.e., a set of TMs) and d is
a metric on M , i.e., a function

d : M ×M → R

such that for any x, y ∈M , and α>0, the followings hold:
1) d(x, y) ≥ 0
2) d(x, y) = 0 ⇐⇒ x = αy
3) d(αx, y) = d(x, y)
4) d(x, αy) = d(x, y)

where 1) holds for non-negativity. 2) introduces the identity
of indiscernibles. Different from traditional metric space, the
metric d equals to 0 so long as x = αy (i.e., stretch a vector).
However, d 6= 0 if there exists a angle between the predicted
vector and ground truth vector. 3) and 4) indicates that ratio
scalings of a vector do not affect the value of d.

Thus, we can design a few explicit functions which satisfies
the above conditions. We select an intuitive and concise one for
the training of Prophet, called TE-centric angle loss function.
The loss function floss is defined as

floss(x,y) = 1− xT · y
‖x‖2‖y‖2

(5)

where x, y represent the predicted TM and the corresponding
normalized ground truth TM, respectively. ‖ · ‖2 denotes the
`2 norm, also denoted as Euclidean norm. The second term in
Eq. (5) is cosθ in fact, where θ denotes the angle between x
and y.

Theorem 2 The proposed TE-centric angle loss function Eq.
(5) satisfies the following conditions:

1) d(x, y) ≥ 0
2) d(x, y) = 0 ⇐⇒ x = αy
3) d(αx, y) = d(x, y)
4) d(x, αy) = d(x, y)

Proof: We prove these conditions in order.
1) The second term in Eq. (5) is cosθ (i.e., θ denotes the

angle between x and y), which ranges from 0 to 1. Thus,
floss(x,y) is in the interval of [0, 1].

2) floss(x,y) = 0 derives cosθ = 1. Thus, θ = 2kπ, k ∈
Z, which indicates x and y has the same direction. In other
words, stretching one of the vector with a positive ratio α is
allowed.

This article has been accepted for publication in IEEE/ACM Transactions on Networking. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNET.2023.3293098

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



6

3) Suppose x = (x1, x2, . . . , xn)T is an n-dimensional TM
vector, which flattens a TM by concatenating each row, then

floss(αx,y) = 1− αxT · y
‖αx‖2‖y‖2

= 1− α(x1, x2, . . . , xn) · y√
(αx1)

2
+ (αx2)

2
+ · · ·+ (αxn)

2‖y‖2

= 1− α(x1, x2, . . . , xn) · y
α
√
x12 + x22 + · · ·+ xn2‖y‖2

= 1− xT · y
‖x‖2‖y‖2

= floss(x,y) (6)

4) The proof method is the same as 3). This completes our
proof. �

To summarize, the proposed TE-centric angle loss function
successfully introduces scale invariance of TMs and provides
a good geometric interpretation due to its angle design. There-
fore, the loss function maintains the critical property well
which leads to good performance for TE.

D. Training and inference

We describe the training and inference of the ML model
in Prophet. The training takes the normalized TM dataset as
input. Slide windows [5] are used to construct training pairs
(ξ,θ). ξ denotes several historical TMs, and θ denotes the
corresponding ground truth. Thereafter, the Back-propagation
Through Time (BPTT) algorithm [17] is applied to update the
parameters in the ML model with a mini-batch loss. The loss
is calculated by our proposed TE-centric angle loss function.
Algorithm 1 shows the pseudo-code for the training algorithm.

The inference takes several historical TMs as the input of
the trained model, and generate the predicted TM T for TE
optimization. We solve the optimization problem in Section
III-A with T to get the routing solution R. We could also
calculate PR for evaluation. After collecting real incoming
TM TMreal, we deploy the routing solution R on TMreal

and calculate MLU Upred. Then, we solve the optimization
problem in Section III-A again with TMreal and achieve MLU
Uoptimal. The PR is calculated as PR{R, T } =

Upred

Uoptimal
. We

note that inversed normalization of the predicted TM is unnec-
essary in our research. In the downstream TE optimization, we
normalize the capacity of all links with the maximum capacity
value. Algorithm 2 shows the pseudo-code for the inference
algorithm.

E. More details of Prophet

Rich time-relevant information can be mined among TMs,
thus temporal modeling is important. RNN is widely used to
extract time-relevant information due to its cyclic connections.
However, RNN is not suitable for long-term temporal predic-
tion because of its gradient exploding and vanishing problem
[18]. LSTM and GRU are designed to fix these problem.
Since GRU can achieve similar performance but with less
computation cost compared to LSTM, we choose a one-layer
GRU for the temporal modeling.

Algorithm 1: Training Algorithm of Prophet
Input: Matrix normalized TM dataset D, the number

of samples in the dataset N , learning rate a,
batch size s, the number of historical TMs p

Output: ML model Φψ with parameter ψ
1 Construct D{(ξi,θi)}Ni=1 using slide windows as [5];
2 Sample mini-batch Dk ∼ D{(ξi,θi)}Ni=1;
3 for each Dk do
4 loss = 0;
5 for i← 1 to N do

// Estimate θ̂i with the ML model
Φψ

6 θ̂i ← Φψ(ξi);
// Calculate angle loss with θ̂i

and θi

7 lossi = 1− θ̂i
T ·θi

‖θ̂i‖2‖θi‖2
;

8 loss← loss+ lossi;
9 end

10 loss← 1
s × loss;

// Update ψ utilizing BPTT
algorithms

11 ψ ← BPTT (ψ; a; loss);
12 end

Algorithm 2: Inference Algorithm of Prophet
Input: ML model Φψ with parameter ψ, p historical

TMs ξ
Output: Routing solution R, PR
// Take historical TMs as input, and

infer incoming TM T
1 T = Φψ(ξ);
// Solve routing solution R

2 Solve optimization problem in Section III-A with T to
get the routing solution R;
// Calculate PR metric for further

evaluation
3 After collecting real incoming TM TMreal, deploying

the routing solution R on TMreal and calculate
MLU Upred;

4 Solve optimization problem in Section III-A with
TMreal and achieve MLU Uoptimal;

5 PR{R, T } =
Upred

Uoptimal
;

We define the flattened vector for the historical TM i as xi.
These vectors flatten the corresponding TMs by concatenating
each row. Then, xi is forwarded into the GRU unit to generate
the corresponding hidden state vector hi:

hi = f (xi, hi−1; Θ) (7)

where the hidden state of the last time step is outputted as the
predicted TM. The hidden state of the GRU is initialized with
all zero elements. Θ denotes the parameters of GRU. The f
here is a nonlinear function. We set f as Rectified Linear Unit
(ReLU) in our simulation. The output elements pass a ReLU
function to keep the values positive.

This article has been accepted for publication in IEEE/ACM Transactions on Networking. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNET.2023.3293098

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



7

100 150 200 250 300
Performance Ratio (%)

0

20

40

60

80

100
CD

F 
(%

)

OR
ECMP
ACRNN-based
Informer-based
Prophet-based

(a) Abilene Link-level TE

100 150 200 250 300
Performance Ratio (%)

0

20

40

60

80

100

CD
F 

(%
)

OR
ECMP
ACRNN-based
Informer-based
Prophet-based

(b) Abilene Path-level TE

Fig. 3. Performance ratio for 250 TMs of Abilene under link-level TE and path-level TE.

100 150 200 250 300
Performance Ratio (%)

0

20

40

60

80

100

CD
F 

(%
)

OR
ECMP
ACRNN-based
Informer-based
Prophet-based

(a) CERNET Link-level TE

100 150 200 250 300
Performance Ratio (%)

0

20

40

60

80

100
CD

F 
(%

)

OR
ECMP
ACRNN-based
Informer-based
Prophet-based

(b) CERNET Path-level TE

Fig. 4. Performance ratio for 250 TMs of CERNET under link-level TE and path-level TE.

TABLE I
COMPARISON ON THE AVERAGE OF PERFORMANCE RATIO.

Topology Formulation Prophet-based Informer-based ACRNN-based ECMP OR

Abilene
path-level TE 111.2% 112.0% 128.3% 139.9% 137.5%
link-level TE 117.2% 124.2% 132.5% 139.9% 134.3%

CERNET
path-level TE 104.4% 115.4% 113.9% 159.5% 130.7%
link-level TE 110.0% 117.2% 114.5% 159.5% 129.7%

V. EVALUATION

In this section, we present and analyze Prophet’s perfor-
mance with extensive simulations from three aspects:

A1 We show Prophet outperforms existing TE solutions
under two TE scenarios. We note that Prophet with a sim-
ple ML model (i.e., a one-layer GRU) performs better than
the exquisite ML models under conventional schemes and
achieves lower computational cost. Thus, we verify the value

of the critical property.

A2 We conduct experiments to compare and reveal that
Prophet can efficiently enhance off-the-shelf ML models. This
verify that Prophet is a general TM prediction framework
allowing off-the-shelf ML models to plug in easily.

A3 It is both interesting and important to visualize the
critical property in Prophet. Thus, we finish a complete process
of identifying, maintaining and unveiling the critical property.

This article has been accepted for publication in IEEE/ACM Transactions on Networking. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNET.2023.3293098

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



8

A. Simulation Settings

1) Datasets and data preparations: Two real-world WAN
traffic datasets are used in our simulation: Abilene [19] and
the China Education and Research Network (Cernet). Abilene
topology has 12 nodes and 30 links, and its TMs are collected
every 5 minutes and last for 24 weeks. Cernet topology has 14
nodes and 32 links, and its TMs are collected every 5 minutes
and lasts for 5 weeks. We split all the instances into training
instances, validation instances and test instances with the ratio
of 6 : 2 : 2.

2) Configurations of the experiments: Prophet is imple-
mented in PyTorch [20] and Gurobi [14]. In the simulation,
we employ a one-layer GRU. The hidden size of GRU is set
as 144 in Abilene topology and 196 in Cernet topology. The
number of historical TMs is set as 5. The optimizer is Adam
[21] with learning rate set as 0.01, and the batch size is 64.
The training process runs for 100 epochs. All experiments are
done on a computer with an Intel Xeon E5-2620 CPU, one
Nvidia TITAN X GPU and 16GB memory.

B. Comparison Schemes

We evaluate Prophet’s predicted TMs under dynamic TE
solutions, and compare the TE’s performance with four TE
solutions under two TE scenarios. The details of the compared
methods are as follows.

1) TE scenarios:
• Link-level TE: it solves MCF problem for arbitrary paths

in Eq. (1) to decide the split ratio of each flow on links
and generate the MLU.

• Path-level TE: it solves MCF problem for preconfigured
paths in Eq. (2) to decide the split ratio of each flow on
preconfigured paths and generate the MLU. Preconfigured
paths come from SMORE [15].

2) TM prediction + Dynamic TE solutions: Dynamic TE
solutions solves an optimization problem, which requires the
predicted TM as the input. Thus, we introduce three TM
prediction schemes in the experiment.
• Prophet-based: our proposed Prophet is a TE-centric TM

prediction solution. It notes the matrix normalization and
customize a TE-centric angle loss function to maintain
the critical property of TMs, which helps achieve good
performance for TE.

• ACRNN-based [10]: ACRNN is a state-of-the-art
(SOTA) work for TM prediction. It focuses on spatial-
temporal prediction which uses CNN to capture the inter-
flow correlations and RNN to capture the intra-flow
dependencies coupled with the attention mechanism. Pa-
rameters of compared ACRNN are well-tuned to achieve
the performance reported in [10].

• Informer-based [22]: Informer firstly solves Long Se-
quence Time-series Forecasting (LSTF) problem with
Transformer and three efficient techniques: ProbSparse
self-attention mechanism, self-attention distilling, and
generative style decoder. Informer provides a prediction
model with high capacity, enabling to capture precise
long-range dependency coupling among TMs.

3) Static TE solutions:
• Equal-Cost Multi-Path (ECMP): ECMP reduces the

congestion probability by equally splitting each flow on
its shortest path(s).

• Oblivious Routing (OR): OR computes a routing scheme
with respect to all possible TMs to guarantee the worst-
case performance without knowledge of actual traffic
demands. We employ optimal OR [23] for link-level TE
and Räcke’s OR [24] for path-level TE, respectively.

TABLE II
CLOCK TIME AND MODEL PARAMETERS.

Topology ML model Clock time Parameters

Abilene
Prophet 0.35 h 125 k
ACRNN 1.20 h 1,644 k
Informer 0.10 h 3,682 k

CERNET
Prophet 0.27 h 232 k
ACRNN 0.95 h 1,823 k
Informer 0.08 h 5,253 k

C. Performance Comparison (A1)
For both datasets, we split all the data as Section V-A1

mentions. Without loss of generality, we take the first 250
matrices in the test set to conduct the simulations. The
comparison among Prophet-based, Informer-based, ACRNN-
based, ECMP and OR is shown in Figs. 3, 4, and Tables I,
II.

The performance of TE is evaluated using performance ratio
(PR) PR =

Upred

Uoptimal
introduced in section III-B. Uoptimal

denotes the MLU of an optimal TE solution with real TMs.
Upred denotes the MLU when deploying routing solutions on
real TMs, which are generated using predicted TMs or a static
TE solution. If PR = 1, routing performance using predicted
TMs is as good as using real TMs. Lower PR means better
performance.

Fig. 3 presents the PR under link-level TE and path-level
TE of Abilene. For both scenarios, Prophet-based solution
outperforms Informer-based solution and ACRNN-based so-
lution, since it maintains the critical property for TE. In Fig.
3(a), Prophet improves the performance of ECMP and OR by
19.4% and 14.6%, respectively. Though OR can guarantee the
worst-case performance, Prophet-based solution performs bet-
ter between the PR value 100% and 150% (i.e., common-case
performance). In Fig. 3(b), Prophet-based solution outperforms
the other four solutions, since we can observe that about 90%
PR values of Prophet-based solutions are lower than 125%.

Fig. 4 shows the PR under link-level TE and path-level TE
of Cernet. Prophet-based solution outperforms the ECMP and
OR in both TE scenarios. We note that Informer-based and
ACRNN-based solutions achieve competitive results compared
to ECMP and OR, but are dominated by Prophet-based solu-
tion in both figures. Furthermore, nearly all of the PR values in
Prophet-based solution are lower than 125%. These impressive
results again reflect the important role of the critical property
in TE and verify the effectiveness of the design of the Prophet.

What is more, Table II compares the cost of Prophet,
ACRNN and Informer via training clock time and ML model

This article has been accepted for publication in IEEE/ACM Transactions on Networking. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNET.2023.3293098

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



9

Fig. 5. Comparison of existing schemes (SD-MSE) and prophet-enhanced (Matrix-Angle).

Fig. 6. Comparison of existing schemes (SD-MSE) and prophet-enhanced (Matrix-Angle). The performance ratio is truncated at 3.5 in Abilene and 2.0 in
CERNET for clarity.

This article has been accepted for publication in IEEE/ACM Transactions on Networking. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNET.2023.3293098

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



10

CERNET

Fig. 7. Heatmaps of TMs. Each heatmap is a k × k matrix representing k × k SD pairs in a TM. The color of each grid represents the value of each SD
pair normalized by the maximum value in the TM. Thus, the value of each grid is between 0 and 1. In each row, the middle, left, and right figures represent
heatmap of real TM, predicted TM using Prophet, and predicted TM using existing schemes, respectively.

parameters, all evaluated on one Nvidia TITAN X GPU.
We can observe that under both topologies, Prophet saves
much more clock time and model parameters than ACRNN.
Since the above discussions have shown Prophet’s outstanding
performance, we conclude that it is important and valuable
to maintain the critical property. We also remark that the
training clock time of Informer is less than Prophet because its
transformer-based [25] architecture can benefit more from par-
allel acceleration compared with the backbone GRU utilized
in Prophet.

D. Enhance off-the-shelf ML model (A2)

We re-emphasize that Prophet aims to maintain the critical
property in TE and acts as a general framework shown in Fig.
2. That is, existing off-the-shelf TM prediction solutions in TE
can be enhanced by Prophet. In this section, extensive simu-
lations are conducted to show that Prophet indeed enhances
off-the-shelf ML model.
• Existing schemes (SD-MSE): in this section, existing

TM prediction schemes corresponds to Fig. 2(a). To be
more specific, a ML model is coupled with SD pair
normalization + MSE loss function (SD-MSE).

• Prophet-enhanced (Matrix-Angle): in this section,
Prophet-enhanced corresponds to Fig. 2(b). That is, a ML

model is coupled with matrix normalization + TE-centric
angle loss function (Matrix-Angle).

As [6], [9], [10] reported, GRU and LSTM shows rela-
tively dominant results in TM prediction. In the simulations,
we choose GRU, LSTM, ACRNN and Informer as the ML
models. For each model, we compare their corresponding TE
performance under existing schemes (SD-MSE) and Prophet-
enhanced (Matrix-Angle). Simulations results are shown in
Fig. 5 and 6.

Fig. 5 shows the boxplot TE results of existing schemes
(SD-MSE) and prophet-enhanced (Matrix-Angle). In two net-
work topologies under two TE scenarios, Matrix-Angle sig-
nificantly overcomes SD-MSE, which again indicates the
effectiveness of maintaining the critical property. Moreover,
the results verify that Prophet can efficiently enhance off-the-
shelf ML models.

It is worth mentioning that in the Abilene topology, we
observe a bit of performance drop under unexpected scenarios.
That is, a few values of the performance ratio are over
4.0. Firstly, we point out that Matrix-Angle has significantly
controlled these unexpected scenarios since there is more
performance drop under SD-MSE. Secondly, we have found
that Prophet shows promising results in the common-case
performance.

This article has been accepted for publication in IEEE/ACM Transactions on Networking. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNET.2023.3293098

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



11

E. Unveil the Critical Feature (A3)

It is both interesting and important to visualize the critical
property in Prophet. Thus, we finish a complete process of
identifying the critical property, maintaining it, and unveiling
it.

Fig. 7 reveals the heatmaps of TMs. The critical property
claims that ratio among elements is important for TE. The
heatmap stays unchanged if we ratio scale the corresponding
TM. Thus, if heatmaps of real TM and Prophet are similar,
we can indicate the critical property is held.

Fig. 7 shows that in all 8 randomly selected cases (i.e.,
4 of Abilene, and 4 of Cernet), the heatmaps of real TM
and Prophet are quite similar. On the contrary, the heatmaps
of existing schemes seems unsatisfactory and often fails to
capture the hot-spots. Though exisitng schemes may achieve
higher element-wise prediction accuracy under traditional loss
such as MSE and MAE, they cannot maintain the critical
property well.

VI. DISCUSSION

Advanced ML model: In the experiment A1, we only
adopts a one-layer GRU as the ML model. There are two
reasons. Firstly, design of complex and exquisite ML model
is not the focus of this paper. Secondly, a simple ML model
can give prominence to the effectiveness and importance of
the critical property.

Despite this, a well-designed ML model is also valuable.
Fortunately, emerging ML techniques provide us new oppor-
tunities to further improve the performance of common-cases
in TE. Encoder-decoder framework is naturally suitable for
sequence modelling and has witnessed great success in tasks
such as NLP [26] and time series prediction [27]. Moreover,
rising Transformer [25] dominants not only the NLP tasks, but
also many vision tasks [28]–[30]. We will consider introducing
the exquisite attention mechanism in Transformer to better
maintain the critical property and serve for larger network. To
tackle some practical issues of resources, the trade-off between
performance and computation cost should also be studied.

Cope with COPE: The epoch-making Common-case Op-
timization with Penalty Envelope (COPE) [4] studies how
to cope with dynamic and unpredictable changes in traffic
demand. COPE points out that prediction-based TE is good
at optimizing common-case performance, but suffers from
large performance penalty when traffic demands change signif-
icantly. Besides, OR can guarantee the worst-case performance
but is weak in common-case. Motivated by above analysis,
COPE design TE algorithms that optimize for the expected
scenarios while providing a worst-case guarantee for unex-
pected scenarios.

Though focusing on maintaining the critical property,
our proposed Prophet belongs to prediction-based TE solu-
tion. Prophet significantly goes a step further and promotes
common-case performance as shown in the evaluation. How-
ever, due to the inherent feature of prediction-based schemes,
we observe a bit performance drop under unexpected scenarios
in Fig. 5. Thus, we desire to further guarantee the worst-
case for these unexpected scenarios. To some disappointment,

COPE is theoretically derived under convex hull of traffic
demands, since prediction methods at that time essentially es-
timate the TM of the next interval as a convex combination of
the previously seen TMs (e.g., exponential moving average). In
recent years, NN-based solutions, which are highly nonlinear,
claim to cope with COPE and provide theoretical guarantee
for a class of highly nonlinear solutions.

Retraining: In this paper, we mainly describe the training
process of Prophet as an offline task, similar to prior works.
However, in practice, the TMs tend to be seasonal and bursty,
making online deployment challenging. Such online deploy-
ment can employ a rolling-based slide window to reorganize
the training instances. Prophet utilizes the new training in-
stances to train a new ML model, in order to capture new
trends and features of incoming TMs. Therefore, techniques
to determine the frequency to retrain and which TM data
should be included or excluded from the training instances
are required to be carefully investigated.

VII. RELATED WORK

In the past decade, TM prediction has been widely studied.
The existing TM prediction methods can be divided into two
categories: linear method and nonlinear method. For linear
method, Autoregressive Integrated Moving Average (ARIMA)
is used in [3] to model network traffic. [12] employs SARIMA,
a generalization of the ARIMA model to predict TM while
taking account of the short-term traffic variation in order to ac-
commodate prediction uncertainty incurred by temporal traffic
changes and prediction errors. [31] proposes three TM predic-
tion methods in the IP backbone network: Independent Node
Prediction (INP), Total Matrix Prediction with Key Element
Correction (TMP-KEC) and Principle Component Prediction
with Fluctuation Component Correction (PCP-FCC). It uses
ARIMA and PCA as main algorithms. However, these linear
methods cannot handle the nonlinear nature of network traffic.

With the rapid development of Neural Network (NN) in
recent years, NN based methods have been used in TM
prediction as nonlinear solutions, which are proved to achieve
better performance than linear methods. [5] propose a network
traffic estimation method utilizing the Deep Belief Network
(DBN) via link counts and routing information in large-sacle
IP backbone networks. [6] presents NeuTM, a framework
for network TM prediction based on LSTM. [7] investigates
a particular type of RNN, the GRU to make prediction of
traffic matrices, which is able to achieve great accuracy. [8]
investigates RNN, GRU and LSTM to solve the network
traffic prediction problem. Zhao et al. [9] propose a novel
TM prediction approach based on deep LSTM and a linear
regression model. Evaluation shows it can achieve great TM
prediction performance on Abilene. A recent work called
ACRNN [10] is designed for TM prediction, which uses CNN
to capture the inter-flow correlations and RNN to capture the
intra-flow dependencies.

VIII. CONCLUSION

In this paper, we propose Prophet, a novel TE-centric TM
prediction solution. We claim to consider TE’s performance

This article has been accepted for publication in IEEE/ACM Transactions on Networking. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNET.2023.3293098

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



12

while predicting TMs and identify the critical property in
the TM. Inspired by the analysis, we adopt the matrix nor-
malization to maintain the critical property and customize a
TE-centric angle loss function to introduce scale invariance
of TMs. Simulation results show that Prophet can achieve
supreme performance in TE compared to existing solutions.
Extensive evaluations also reveal that Prophet can efficiently
enhance off-the-shelf ML models.

REFERENCES

[1] J. Zhang, K. Xi, M. Luo, and H. J. Chao, “Load balancing for
multiple traffic matrices using sdn hybrid routing,” in 2014 IEEE 15th
International Conference on High Performance Switching and Routing
(HPSR). IEEE, 2014, pp. 44–49.

[2] A. Soule, A. Lakhina, N. Taft, K. Papagiannaki, K. Salamatian, A. Nucci,
M. Crovella, and C. Diot, “Traffic matrices: balancing measurements,
inference and modeling,” in Proceedings of the 2005 ACM SIGMETRICS
international conference on Measurement and modeling of computer
systems, 2005, pp. 362–373.

[3] W. Jin, “A process level network traffic prediction algorithm based on
ARIMA model in smart substation,” in IEEE International Conference
on Signal Processing, 2013.

[4] H. Wang, H. Xie, L. Qiu, Y. R. Yang, Y. Zhang, and A. Greenberg,
“COPE: Traffic engineering in dynamic networks,” in Proceedings of
the 2006 conference on Applications, technologies, architectures, and
protocols for computer communications (SIGCOMM), 2006, pp. 99–110.

[5] L. Nie, D. Jiang, L. Guo, and S. Yu, “Traffic matrix prediction and
estimation based on deep learning in large-scale IP backbone networks,”
Journal of Network and Computer Applications, vol. 76, pp. 16–22,
2016.

[6] A. Azzouni and G. Pujolle, “NeuTM: A neural network-based frame-
work for traffic matrix prediction in SDN,” in NOMS 2018-2018
IEEE/IFIP Network Operations and Management Symposium, 2018, pp.
1–5.

[7] S. Troia, R. Alvizu, Y. Zhou, G. Maier, and A. Pattavina, “Deep
learning-based traffic prediction for network optimization,” in 2018 20th
International Conference on Transparent Optical Networks (ICTON),
2018, pp. 1–4.

[8] N. Ramakrishnan and T. Soni, “Network traffic prediction using recur-
rent neural networks,” in 2018 17th IEEE International Conference on
Machine Learning and Applications (ICMLA), 2018, pp. 187–193.

[9] J. Zhao, H. Qu, J. Zhao, and D. Jiang, “Towards traffic matrix prediction
with LSTM recurrent neural networks,” Electronics Letters, vol. 54,
no. 9, pp. 566–568, 2018.

[10] K. Gao, D. Li, L. Chen, J. Geng, F. Gui, Y. Cheng, and Y. Gu, “Incor-
porating intra-flow dependencies and inter-flow correlations for traffic
matrix prediction,” in 2020 IEEE/ACM 28th International Symposium
on Quality of Service (IWQoS), 2020, pp. 1–10.

[11] J. Zhang, M. Ye, Z. Guo, C.-Y. Yen, and H. J. Chao, “CFR-RL:
Traffic engineering with reinforcement learning in sdn,” IEEE Journal
on Selected Areas in Communications, vol. 38, no. 10, pp. 2249–2259,
2020.

[12] T. Otoshi, Y. Ohsita, M. Murata, Y. Takahashi, K. Ishibashi, and K. Sh-
iomoto, “Traffic prediction for dynamic traffic engineering,” Computer
Networks, vol. 85, no. jul.5, pp. 36–50, 2015.

[13] T. C. Hu, “Multi-commodity network flows,” Operations research,
vol. 11, no. 3, pp. 344–360, 1963.

[14] “L. Gurobi Optimization, ”Gurobi optimizer reference manual”, 2019.
[Online].” Available: http://www.gurobi.com.

[15] P. Kumar, Y. Yuan, C. Yu, N. Foster, R. Kleinberg, P. Lapukhov, C. L.
Lim, and R. Soulé, “Semi-oblivious traffic engineering: The road not
taken,” in 15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18), 2018, pp. 157–170.

[16] D. Singh and B. Singh, “Investigating the impact of data normalization
on classification performance,” Applied Soft Computing, vol. 97, p.
105524, 2020.

[17] P. J. Werbos, “Backpropagation through time: what it does and how to
do it,” Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.

[18] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[19] “Yin Zhang’s Abilene TM. [Online].” Available: http://www.cs.utexas.
edu/∼yzhang/research/AbileneTM/.

[20] A. Paszke, S. Gross, F. Massa, A. Lerer, and S. Chintala, “PyTorch:
An Imperative Style, High-Performance Deep Learning Library,” in
Advances in neural information processing systems (NIPS’19), 2019.

[21] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
in International Conference on Learning Representations (ICLR’15),
2015.

[22] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang,
“Informer: Beyond efficient transformer for long sequence time-series
forecasting,” in Proceedings of the AAAI conference on artificial intel-
ligence, vol. 35, no. 12, 2021, pp. 11 106–11 115.

[23] D. Applegate and E. Cohen, “Making Intra-Domain Routing Robust to
Changing and Uncertain Traffic Demands: Understanding Fundamental
Tradeoffs,” in Proceedings of the 2003 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communica-
tions, ser. SIGCOMM ’03, 2003.

[24] H. Räcke, “Optimal Hierarchical Decompositions for Congestion
Minimization in Networks,” in Proceedings of the Fortieth Annual
ACM Symposium on Theory of Computing, ser. STOC ’08. New York,
NY, USA: Association for Computing Machinery, 2008, p. 255–264.
[Online]. Available: https://doi.org/10.1145/1374376.1374415

[25] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[26] K. Cho, B. van Merrienboer, Çaglar Gülçehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio, “Learning Phrase Representa-
tions using RNN Encoder–Decoder for Statistical Machine Translation,”
in Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2014.

[27] H. Hu and X. He, “Sets2Sets: Learning from Sequential Sets with Neural
Networks,” in Proceedings of the 25th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2019, pp. 1491–
1499.

[28] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition at
scale,” in International Conference on Learning Representations (ICLR),
2021.

[29] A. Srinivas, T.-Y. Lin, N. Parmar, J. Shlens, P. Abbeel, and A. Vaswani,
“Bottleneck transformers for visual recognition,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2021,
pp. 16 519–16 529.

[30] L. Yuan, Y. Chen, T. Wang, W. Yu, Y. Shi, Z.-H. Jiang, F. E. Tay, J. Feng,
and S. Yan, “Tokens-to-token vit: Training vision transformers from
scratch on imagenet,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021, pp. 558–567.

[31] L. O. W. D. W. Liu, A. Hong and G. Zhang, “Prediction and Correction
of Traffic Matrix in an IP Backbone Network,” in 2014 IEEE 33rd
International Performance Computing and Communications Conference
(IPCCC)., 2014.

This article has been accepted for publication in IEEE/ACM Transactions on Networking. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNET.2023.3293098

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.


