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Abstract

This paper presents a novel approach to computer-
generated Palestrina-style counterpoint using probabilis-
tic Markov Chains. It is shown how Markov Chains ade-
quately capture the rules of species counterpoint and how
they can be used to synthesize species counterpoint given
a cantus firmus. It is also shown how such rules can be
inferred from given counterpoint examples.

1 Introduction

Sixteenth-century counterpoint, with which the name
of Palestrina has almost become synonymous, has long
been held by musicians and theoreticians as an excep-
tionally elegant form of composition which has both mu-
sical and pedagogical value. Modeled after this style,
species counterpoint was first introduced by J. J. Fux in
his 1725 treatise, Gradus ad Parnassum. Fux codified
the study of Palestrina-style counterpoint by presenting
five categories of instruction, called species.

Gradus was a standard counterpoint text studied by
countless musicians during the eighteenth and nineteenth
centuries. However, from a stylistic viewpoint, it did not
present an adequate approximation of Palestrina’s mu-
sic [SS89]. This goal was eventually realized by Knud
Jeppesen, who believed that counterpoint must be stud-
ied with as much correspondence between written ex-
ercises and composition as possible [Jep31]. In other
words, counterpoint had to be learned within the con-
text of a specific musical style.

This paper presents a framework for generating mu-
sic in the style of Palestrina using Markov models. We
implement a set of species counterpoint rules, outlined
by Jeppesen, in the form of probability tables which are
then used as state-transition matrices for the Markov
models. In the next step, the probability tables are esti-
mated from given counterpoint examples.

The beauty and descriptive power of probabilistic
network architectures and their graphical representa-
tion have been widely appreciated [Jor98]. In this pa-
per we use Markov chains, a subclass of graphical mod-
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els, which we believe are the appropriate tool for rep-
resenting the compositional process of generating coun-
terpoint. Markov chains provide the flexibility of inte-
grating deterministic and probabilistic rules in the same
model and can be trained on experimental data.

2 Prior Work

In 1955, Hiller and Isaacson [HI58] began investigat-
ing techniques to generate music using the ILLIAC, a
computer located at the University of Illinois. The
first objective of their experiments was to “demonstrate
that technical musical concepts could be translated into
computer language to produce musical output.” They
used some basic counterpoint rules to generate can-
tus firmi, and then four-part first-species counterpoint.
Ebcioglu created another rule-based system to generate
fifth-species counterpoint given a cantus firmus which en-
capsulates each rule in a simple LISP function [Ebc80].

Lewin has implemented a program which generates
first-species counterpoint using his own “Global Rule” in
addition to the standard rules [Lew83]. It generates the
counterpoint backwards from the cadence note in order
to more easily implement the Global Rule. Although this
method is more computationally efficient, it is, as argued
by Robert Gjerdingen, an unmusical approach since it
treats the counterpoint as a solution to a problem rather
than an “aesthetic utterance.”

Gjerdingen approaches the problem from a musician’s
point of view, as opposed to a programmer’s [Gje88].
His system, PRAENESTE, is based on the idea that,
just like a sixteenth-century singer improvising on a can-
tus, the computer should work forward in time without
the benefit of being able to back up and start over. In
response to each new contrapuntal situation, PRAEN-
ESTE uses a small number of concrete musical schemata
to provide for itself a selection of correct melodic pat-
terns.

Schottstaedt implemented all five species with up to
six voices [Sch89]. His program follows Fux’s guidelines
and rules as closely as possible. These rules were ex-
tended and modified until the results acceptably resem-
bled Fux’s examples. Since Fux stresses that most of the



rules are guidelines and not absolute, a penalty system
is used to assign them relative degrees of importance.
If at any given time the total penalty exceeds a certain
amount, that particular path is abandoned.

Our approach to computer-generated counterpoint is
considerably different from the cited work, because we
(a) use a probabilistic description of the problem and
(b) we infer our model from data which ensures that the
result is musical assuming that the training examples
themselves are musical.

3 Synthesizing Counterpoint

3.1 Dynamic Programming

We use a forward dynamic programming approach to
find the most likely solution out of a multitude of possible
solutions given a cantus firmus [Ber95].
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Figure 1: Trellis state diagram. The vertical states n correspond
to note intervals relative to the cantus note at time ¢. The time
t corresponds to time steps going forward. Pj;(t,r) denotes the
probability of transition from state ¢ at time ¢ to state j at time
t + 1 with respect to rule r.

We start with the construction of a state trellis di-
agram where the states describe the possible chromatic
notes in the counterpoint (fig. 2). We constrain the coun-
terpoint to be above or below the cantus and allow a
note range which spans a major tenth above (or below)
the highest (or lowest) cantus note. Hence the number of
states in the trellis equals the chromatic range of the can-
tus plus 17. We then formalize the musical constraints
on the counterpoint in the form of a mix of transition
probabilities and state probabilities conditioned on the
cantus. For example, we specify the unconditional like-
lihood of a harmonic interval, or the probability of a
melodic interval given the previous melodic interval.

While most rules can be realized based on a first-
order Markov chain, some require a second-order system.
We implement a basic first-order structure, but allow for
second-order considerations by looking one step ahead
and choosing optimal solutions with respect to the next
time step.

In the synthesis application, we seek to find the most
likely path through the trellis structure given the under-

lying cantus and transition rules. Evaluating every pos-
sible path would be computationally prohibitive. How-
ever, we make the problem tractable by using a dynamic
programming approach commonly known as the Viterbi
algorithm, which searches through the tree iteratively.
The Viterbi algorithm is based on the insight that the
most likely past state sequence leading into any one state
is independent from future states.
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Figure 2: Counterpoint examples for a given cantus firmus. Ex-
ample A was composed by a human (David Lewin). Example B
was machine generated retaining the same climax point. Example
C was machine generated with a different climax point.

Going forward in the chain, we multiply the previ-
ous path probabilities with the transition probability of
the new update, and keep the path that generated the
highest joint probability. At any time step 7 we only
consider the path leading into state 7 — 1, the proba-
bility associated with that sequence, and the transition
probabilities at time 7. After the last transition occurs,
we select the sequence with the highest probability as
the solution [Ber95].

3.2 Probabilistic Counterpoint Rules

Each rule is implemented as a probability table where
illegal transitions are described by probability zero. The
transition probabilities for generating a counterpoint line
are obtained by multiplying the individual values from
each table, assuming the rules are independent:

e The harmonic table determines whether the interval
between the counterpoint note and its respective cantus
note at any time 7 is permissible. The likely intervals—
third, sixth, tenth—are assigned higher probability val-
ues, whereas the forbidden intervals are assigned zero
(table 1). For the first cantus note, only prefect inter-
vals are permitted, and for the last, only unisons and
octaves.

e The melodic table describes the likelihood of a melodic
interval created by two consecutive counterpoint notes
being followed by any other melodic interval (table 2).



Table 1: Probability of harmonic intervals between cantus and counterpoint for notes other than the first and last. Top row: Estimated
from human-generated counterpoint (12 examples). Middle row: Edited probability table used in the generating program. Bottom row:
Estimated from machine-generated counterpoint (44 examples).

Pl | m2 | M2 | m3 M3 P4 | d5 | P5 m6 M6 m7 | M7 | P8 m9 | M9 | mil0 M10
Human counterp. 0 0 0 0.133 | 0.133 | © 0 0.060 | 0.181 | 0.349 | ©0 0 0.072 | 0 0 0.145 | 0.072
Edited table 0 0 0 1428 | .1428 | 0 0 1428 | .1428 | .1428 | 0 0 0004 | 0 0 1428 | .1428
Machine counterp. | 0 0 0 0.100 | 0.104 | © 0 0.054 | 0.118 | 0.409 | 0 0 0.133 | 0 0 0.172 | 0.065

Table 2: Melodic transition rules. The first column indicates the previous melodic interval in the counterpoint line. The top row

indicates the next melodic interval. The entries indicate the probability of each transition. The top table shows the probabilities used in
the generating program. The bottom table shows probabilities estimated from the machine generated counterpoint (44 examples).

Table edited for use in the generating program

m2u M2u m3u M3u P4u P5u m6U P8u m2d M2d m3d M3d P4d P5d P8d P1
m2u 0 .45 .2 .2 0 0 0 0 .035 .035 .025 .025 .01 .01 .009 .001
M2u .45 .45 .03 .03 0 0 0 0 .01 .01 .005 .005 .004 .004 .002 .001
m3u .45 .45 .03 .03 0 0 0 0 .01 .01 .005 .005 .004 .004 .002 .001
M3u .35 .35 .05 .05 0 0 0 0 .05 .05 .025 .025 .025 .025 .024 .001
P4u .065 .065 0 0 0 0 0 0 .4 4 .02 .02 .01 .01 .009 .001
P5u 0 0 0 0 0 0 0 0 .52 .52 .01 .01 .01 .01 .009 .001
méu 0 0 0 0 0 0 0 0 .51 .51 .025 .025 .01 .01 .009 .001
P8u 0 0 0 0 0 0 0 0 .51 .51 .025 .025 .01 .01 .009 .001
m2d .05 .05 .005 .005 .002 .002 .002 .002 (0] 467 .2 .2 .015 0 0 .001
M2d .05 .05 .005 .005 .002 .002 .002 .002 .367 .367 s .1 .015 0 0 .001
m3d .366 .366 .005 .005 .002 .002 .002 .002 .05 .05 s .1 0 0 0 .001
M3d .366 .366 .005 .005 .002 .002 .002 .002 .05 .05 .1 .1 0 0 0 .001
P4ad .53 .53 .02 .02 .02 .02 .039 .02 0 0 0 0 0 0 0 .001
P5d .454 454 .03 .03 .01 .005 .005 .011 0 0 0 0 0 0 0 .001
P8d .454 .454 .03 .03 .01 .005 .005 .011 0 0 0 0 0 0 0 .001
P1 .1 .1 .08 .08 .05 .05 .04 .03 .1 1 .08 .08 .05 .04 .02 0
Table estimated from computer generated examples
m2u M2u m3u M3u P4u P5u m6U P8u m2d M2d m3d M3d P4d P5d P8d P1
m2u 0 .280 0 .080 0 0 0 0 .440 0 .160 0 0 0 0 .040
M2u .088 .235 .029 0 0 0 0 0 0 412 .029 .059 .029 .059 0 .059
m3u 0 .227 0 .045 0 0 0 0 .682 0 0 0 0 0 0 .045
M3u .154 0 077 0 0 0 0 0 0 .538 0 077 077 077 0 0
P4u .048 .238 0 0 0 0 0 0 .333 .286 .095 0 0 0 (0] 0
P5u 0 0 0 0 0 0 0 0 0 .833 0 167 0 0 0 0
mé6u 0 0 0 0 0 0 0 0 .500 0 .250 0 0 .250 0 0
P8u 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
m2d .581 0 .054 0 .027 0 .014 0 0 .189 0 .041 .041 0 0 .054
M2d 0 .070 0 .085 .099 0 .028 0 .423 .169 .113 0 0 0 0 .014
m3d .235 .353 .176 0 0 .059 0 0 .059 .118 0 0 0 0 0 0
M3d 0 .143 0 0 .143 0 0 0 .429 0 .143 0 0 0 0 .143
P4d 0 0 .875 0 0 .125 0 0 0 0 0 0 0 0 0 0
P5d 0 .200 .200 .400 .200 0 0 0 0 0 0 0 0 0 (0] 0
P8d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P1 .133 .133 .067 .067 .200 .067 0 0 .200 .133 0 0 0 0 0 0
This table not only implements the rules determining le- e The approaching motion table prohibits approach-

gal melodic intervals and melodic patterns, but also has
a profound effect on the shape of the line as a whole,
since stepwise motion (among other such desirable be-
havior) is heavily weighted.

The cadence table, in conjunction with the chromatic
table, ensures that there is an appropriate cadence at the
end of each example. Only stepwise motion is permitted
to the final note, and stepwise motion to the penultimate
note is given very high probability.

The chromatic table gives very low weight to
chromatically-altered notes (except the penultimate)—
low enough that they will not be used unless there
are no other solutions. For the penultimate note, only
chromatically-altered notes, with the exception of Eb,
are permitted, in order to provide a leading tone (the
E-based Phyrgian mode does not have a raised leading
tone).

The good parallel motion table prevents too many
consecutive parallel thirds, sixths, and tenths. The
probability that three in a row can occur is small, and
the probability that four or more can occur is minute.
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ing a perfect interval in direct motion (also known as
“hidden” fifths or octaves).

The departing motion table: prohibits leaving a uni-
son in direct motion. This also has the added advantage
of preventing the overlap of voices.

The general motion table assigns contrary motion
high probability, oblique and direct motion low proba-
bility.

The leap and climax tables return probabilities of
zero or one. The leap table returns zero if both the can-
tus and the counterpoint are leaping simultaneously in
the same direction and have done so previously (only
one such occurrence is permitted). The climax table de-
termines whether a pitch is acceptable given restrictions
set by the chosen climax position of the counterpoint.

Analyzing Counterpoint

In this section we show how the probabilistic description
of counterpoint rules can be inferred from existing com-



positions. We start by composing a set of first-species
counterpoint strictly conforming to the rules. Twelve
examples were composed by humans, 44 examples were
generated by a machine using the algorithm described
above. This database of species-counterpoint examples is
used as training data for a Markov model. We set up the
framework for a state sequence identical to the last sec-
tion. We then infer the transition tables by counting the
number of occurrences of certain transitions and renor-
malizing. Figures 1 and 2 compare tables which were
used in the generating algorithm with those that were
inferred from human-generated examples and machine-
generated examples.

5 Experimental Results

A software application for Windows was written that
(a) infers probability tables from given counterpoint ex-
amples, (b) composes first-species counterpoint given a
cantus firmus, (c) plays and displays the composed mu-
sic.

Much of the experimentation centered around decid-
ing appropriate transition probabilities for the rule ta-
bles. While it was easy to make transitions legal or ille-
gal, based on the outlined rules, it was more interesting
and time-consuming to weight the probabilities properly
in order to get musical results. Subtle changes in the
table values resulted in very different solutions. Also
probabilities had to be weighted not just with respect to
other values in the same table but with respect to com-
peting rules. For example, one possible situation where
there are two acceptable solutions might be the follow-
ing: (1) the penultimate note is approached in stepwise
motion (ideal) but four consecutive parallel sixths re-
sult (acceptable, but not ideal) vs. (2) the penultimate
note is not approached in stepwise motion (acceptable,
but not ideal) but there are fewer consecutive parallel
sixths. This is just one example of an aesthetic decision
which can be reflected in the probability values.

During the course of implementation, it became ap-
parent that some of the earlier tables were unnecessary.
For example, there was initially a table which restricted
parallel fifths and octaves. This was later rendered su-
perfluous by the approaching motion table listed above
(parallel motion is a special case of direct motion).

Another influential aesthetic factor was climax place-
ment. As recommended by Jeppesen, the climax note
should be unique as well as higher in pitch than all other
notes. The program either tries each possible climax
time until a satisfactory (if any) solution is reached, or
the user specifies where the climax point should be. This
rule helps produce surprisingly musical results.

6 Conclusions and Future Work

It was shown that a Markov structure can be used to
compose a first-species counterpoint line given a cantus
firmus. Not only does the composed line comply with the
strict rules of sixteenth-century counterpoint, but the re-
sults are also musical and comparable to those created
by a knowledgeable musician. The program was capa-
ble of finding solutions identical to those presented by
Jeppesen as well as some of the student compositions
by one of the authors ... graded A. It was furthermore
shown how some of the more complex transition tables
can be estimated from given counterpoint examples. It
was found that the probability tables are close to the
data available for estimation.

The ultimate goal of this work is to infer rules from
authentic Palestrina works and to compose such counter-
point based on the inference model. The authors have
collected a MIDI database consisting of 30 three-part
movements from Palestrina masses, yet the evaluation
of the data must be left for future work.
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