COMPOSING WITH HYPERSCORE: AN INTUITIVE INTERFACE FOR
VISUALIZING MUSICAL STRUCTURE

Morwaread Farbood

New York University
Steinhardt School

ABSTRACT

Hyperscore is a graphical, computer-assisted composition
system that allows users to intuitively visualize and edit
musical structures. It maps musical features to graphi-
cal elements such as color, shape, and line texture. These
graphical elements allow users to control both high and
low-level musical features such as pitch, dynamics, melodic
contour, and harmonic tension. Hyperscore facilitates com-
position by providing the user with a visual representation
of the large-scale structure of a piece while simplifying
the process of integrating diverse rhythmic and melodic
material. It is designed primarily for users with limited or
no musical training.

1. INTRODUCTION

Hyperscore is a computer-assisted composition system that
enables users to compose music graphically. The system
breaks down musical structure into two levels: 1) the cre-
ation of rhythmic and melodic phrases and 2) the shaping
of the large-scale progression of the piece. Graphical user
input is in the form of freehand drawing; the lines drawn
are interpreted according to shape, color, and position and
converted into pitches and rhythmic values. Hyperscore
provides a layer of abstraction between these two levels:
the melodic, note-level input and large-scale, form-level
shaping [5].

It tries to push the concept of “what you see is what you
hear” in a score as far as possible. While some musical el-
ements are inputted in piano-roll notation, the score itself
is drawn freehand by the user. Thus the interface attempts
find a balance between precise control and having a free-
flowing and expressive visual interface. Making freehand
line drawings into a useful music control system enables
users with little no musical experience to explore musical
creativity at many levels. The system provides high-level
control over the dramatic arc of the piece as a whole as
well as the placement of individual melodic and rhythmic
elements.

2. PRIOR WORK

In the late 1960’s, the advent of the first computer ter-
minals opened up the possibility for graphical interfaces.

Henry Kaufman

Harmony Line, Inc.
Cambridge,
Massachusetts

Kevin Jennings

Marino Institute of
Education
Dublin, Ireland

Max Mathews and L. Rosler began using this new tech-
nology to explore graphical applications for music. Uti-
lizing a new computer called the Graphicl, they developed
a compositional language that substituted graphical input
in the place of tediously punched data cards. The sys-
tem allowed a musical score to be specified as a group
of graphs and provided the means to algorithmically ma-
nipulate them by drawing curves on the computer screen
[11].

A broad range of graphical computer-assisted compo-
sition tools have followed Mathews and Rosler’s work.
Some systems are suited for professional musicians; these
tend to use graphical objects to represent musical func-
tions or tweak parameters. The former category includes
PatchWork/OpenMusic [1], a visual, object-oriented pro-
gramming environment designed by researchers at the In-
stitut de Recherche et Coordination Acoustique/Musique
(IRCAM) to encapsulate musical functions in graphical
objects that can be dragged, dropped, and interconnected
to implement musical algorithms. The latter category in-
cludes standard commercial applications such as Digital
Performer, Cubase, and Logic. They are in essence multi-
track sequencers that use graphical input to manipulate
parameters such as volume, timbre, and attack and decay
envelops.

Systems such as David Zicarelli’s OvalTune, a pro-
gram in which users create sounds and visual images si-
multaneously by painting with a mouse, and Cyber-Band
[14], developed at IBM, are designed for users who don’t
necessarily have musical experience. CyberBand is sim-
ilar to Hyperscore in some ways: it uses riffs, or the-
matic fragments, as musical building blocks and higher-
level modifiers to edit and refine the music. Its interface,
however, is fundamentally different from Hyperscore’s. It
does not use drawing as a method of combining musical
material and lacks the visual freedom of Hyperscore’s en-
vironment.

lannis Xenakis” UPIC [9] is a system that uses a large,
high-resolution graphics tablet for input. Its macrocom-
positional level lets the user draw a time-frequency score
consisting of lines, curves, and points. Even though Xe-
nakis himself used UPIC to compose music, he envisioned
musically inexperienced users like children using the sys-
tem as well. Other applications accessible to musically
untrained users include Maxis/lwai’s SimTunes [8], the

Pirt Score

Dialete Track:

Figure 1. The initial Hyperscore prototype.

Macintosh program MetaSynth [13], and Morton Subot-
nik’s Music Sketch Pads [12].

Hyperscore is unique from all of these applications for
several reasons. While other programs like UPIC might
have similar freedom in graphical input, Hyperscore goes
a step further from a musical perspective by mapping graph-
ical elements not just to one-dimensional features such as
frequency or pitch, but higher-level structures like func-
tional harmony. It does not require users to be proficient
either musically or technically—they do not have to play
an instrument, or read music, or know how to program.
Yet it also allows them to compose music in many differ-
ent styles without taking away their sense of ownership in
the creative process.

3. THE EVOLUTION OF AN INTERFACE

The goals of Hyperscore have evolved considerably since
the first prototype was completed in 2000. The earliest
version was almost entirely automated [4] [7]. The user
drew a “musical tension line” and the program then parsed
line and generated a piece of music according to the shape
and texture of the line (see Figure 1). The line was di-
vided into parabolic segments and the smoothness of the
segments analyzed. If a segment was smooth, the corre-
sponding rhythmic texture in the generated music would
be less dense (greater rhythmic activity was equated with
more “tension”). The user selected all or a subset of nine
pre-composed melodic patterns which were used to gen-
erate the piece. The system did not choose which melodic
patterns to use deterministically; each time a piece was
generated for a specific graph, the results were different.
The graph could only influence the texture density pro-
duced by the combination of contrapuntal lines.

Over the course of the next few years, the interface
went through a series of iterations and the focus shifted
to allow more precise user control and less automation.

B

V4
V4
Y
V4

W B

Figure 2. An intermediate version of Hyperscore.

In intermediate versions, users were given the ability to
graphically annotate the tension line to indicate at what
point in time melodic material would be used by the sys-
tem (Figure 2). The graphical interface was redesigned
[4] and the concept of colored “pens” for drawing lines
introduced. Users could indicate where and what kinds of
melodic material were used by selecting and drawing with
a color that was mapped to the melodic pattern. The line’s
proximity to the tension curve influenced what motivic
material was selected by the generation algorithm. Even-
tually, as the music generation became more user-driven
and deterministic, the tension line ceased to function as
such and simply became a time and volume-modulation
line.

Another new feature was the automated harmony gen-
erator. This algorithm was implemented using hierarchi-
cal Markov chains to handle different layers of organi-
zation. One set of Markov chains was used to generate
a series of higher-level harmonic functions, and another
set was used to generate the actual chords. The chord
functions were simple, consisting only of three categories:
tonic, dominant, subdominant. Chord function transition
probabilities were selected based on the time at which the
chord occurred and the function of the chord preceding
it. The chords themselves were chosen according to time
and relative frequency at which the chord would appear
regardless of the circumstances (i.e. not dependent at all
on the preceding chord). Eventually this feature was aban-
doned for an improved harmony control that allowed for
more user input and more sophisticated chord progres-
sions (see Section 4.2).

4. THE CURRENT SYSTEM

Hyperscore is written in C++ using DirectX and the Win32

API. The current interface consists of an expansive, zoomable

canvas where users can create any number of musical frag-
ments and whole pieces. Users can position these mu-
sical objects anywhere on the canvas and can view the
workspace at any level of zoom for ease of editing.

b

& 9194 Pata” *

E'Hvr:&suxscm"
HYBERSCRRES

x BEEEE @

Figure 3. The current version of Hyperscore. All three types of mo-
tive windows are present (melodic, polyphonic, and percussion) as well
as a sketch window.

4.1. Interface and interaction

4.1.1. Motives

The basic musical building blocks in Hyperscore are called
motives. Motives are relatively short musical phrases that
can be built up together in a composition. Motives are

created in special windows that allow the graphical place-

ment of notes in a piano-roll style notation where time is

the X-axis and pitch is the Y-axis (see Figures 3 and 4).

Notes can be placed by clicking anywhere in the motive
window, and then stretched graphically to change the note
duration (using standard “handles” familiar to any GUI

for shape manipulation). A user-configurable grid ensures
that the note onset and duration remains constrained. Notes
can be “multi-selected” and the whole group can be scaled

to speed up or slow down the notes. In that case, only the
beginning and ending of the whole phrase are constrained
to the grid, allowing a more flexible way of editing musi-
cal phrases. Individual notes can be snapped to the grid
later if desired.

To enforce a melodic conception of a motive, the mo-
tive window can dynamically constrain only one note to
exist at any given time. As a note is dragged or stretched,
other notes that are overlapping with that note are made
translucent. Once the editing operation is complete, any
translucent notes are deleted. This ensures that the motive
is a simple melody with no chords. This feature can be
turned off to make more complex, polyphonic motives.

Hyperscore also allows the creation of percussion mo-
tives using the general MIDI percussion kit. In the percus-
sion window, up to ten monotonic tracks can be created,
each track referring to a particular MIDI percussion in-
strument note. The collection of tracks forms a kind of
sound palette with which to compose rhythms.

Figure4. Amotive window and a sketch window showing lines drawn
in the color (blue) associated with the motive.

o=

Figure 5. Musical realization of the motive window shown in Fig. 4.

4.1.2. Sketching a score

To create compositions with the motivic building blocks,
users draw in a sketch window that is the core of the Hy-
perscore interface. Each melodic and percussion motive
window has a color assigned to it that the user can select.
When a line of a particular color is drawn in the sketch
window, the corresponding motive is sequenced into the
composition.

The start and end points of the line determine how many
times a motive is repeated. A fixed pixel-to-duration met-
ric calculates the length of time a line plays. If the length
of a line does not divide evenly into whole repetitions of a
motive, then a fragment of the motive is used for the last
iteration. Drawing a straight line makes the motive repeat
with the precise melodic intervals of the original material.
The vertical position determines how much the motive is
transposed up or down. Curves and bends in the line im-
pose a pitch envelope on the motive’s repetitions but does
not alter the melodic contour to the point that the new ma-
terial is unrecognizable from the original motive (Figures
4,5, 6, and 7). The slope of the line does not serve as
a literal envelope that directly alters the pitch content; it
intelligently transforms the material without altering the
directionality of internal intervallic relationships present
in the original motive.

Once a line is completed (in a single click and drag
gesture), the beginning of the line (defined as the left-
most endpoint) is snapped to the nearest temporal and
pitch grid point. Then the end of the line is snapped to
the nearest temporal grid point either by extension or clip-

segments them into musical fragments and then reconsti-
tutes them in an intelligent way to form new pieces in

the same style. EMI creates a database of musical frag-
o — — 5 ments by analyzing and segmenting examples of a par-
o erefenehs oo e ticular category of music (e.g. Chopin Mazurkas). The
analysis process uses a classification system of functional

Figure 6. Unharmonized musical realization of the sketch window identifiers called SPEAC (fOI’ Statement, Prgpargtlon, An-
shown in Figure 4. tecedeqt, and Consequ_ent)._ Pattern matching is used to
determine what recurring signatures should not be seg-

mented; it is important that certain signatures remain in-
. tact because they are necessary for the stylistic identity of
R e the music. The segments are then placed in a lexicon ac-
cording their SPEAC meaning. New music is then gener-
ated from the segments by using an augmented transition
network. [2]

Cope’s idea of classifying functional identifiers influ-

Figure 7. Harmonized musical realization of the sketch window enced the algorithm for interpreting Hyperscore’s harmony
shown in Figure 4. The chord progression generated by the harmony line. In Hyperscore, users describe harmonic progressions

line starts in C major and modulates to A minor. by shaping the harmony line. It is parsed into sections

which are then mapped to functional identifiers that re-

semble SPEAC [7]. Hyperscore’s identifiers have been

modified from Cope’s, and consist of four categories: State-
ment, Antecedent, Consequent, and Modulation. The har-

mony line, which runs through the center of each sketch

window, can be modified by clicking and dragging. Col-

ored bands appear to indicate the line’s parsing (Figure 8).

Sections are classified as one of four visual types, each

corresponding to a functional identifier:

ping. If a completely free-form line is drawn with overlaps
and loops, the line is broken up internally into temporally
monotonic sub-segments to facilitate further processing.
Though generally this type of line is not very meaning-
ful musically, users expect to “hear a lot of music” if they
draw a big and complicated line.

Line editing features include trimming, cutting and past-
ing, adjusting playback volume, selecting a harmoniza-
tion mode, and selecting an instrument. The instrument
choices include all General MIDI sounds. Hyperscore
objects can be saved as MIDI files and in turn can be

e Statement - flat section, colored white. Musically
defined as a statement or prolongation of the tonic.

read into a notation program such as Finale or Sibelius. e Antecedent - upward-sloping section, colored green.
This makes it possible to go from Hyperscore format to Musically defined as a combination of chords that
musician-readable format, giving a composer the option need resolution (e.g. dominant chords or combina-
of sketching out a composition in Hyperscore and then tions of subdominant and dominant chords).

editing in staff notation.))
e Consequent - downward-sloping section, colored

blue. Resolution of preceding Antecedent section.

4.2. Automated harmony If not preceded by an Antecedent, then restates the
The most significant enabling aspect of Hyperscore’s in- tonic.
terface is its ability to facilitate the user’s exploration of e Modulation - defined by a sharp pointed region or
higher-level aspects of composition such as large-scale spike, colored yellow. Progression toward a new
form and harmony. As discussed before, the original pro- Key.
totype of Hyperscore was based on the idea that an algo-
rithmic composition system could generate music based After the line is parsed, chords are assigned to each
on a central graph describing changes in musical “ten- section based on its functional identifier, how many beats
sion.” Although this idea was phased out to allow for less it spans, and how textured or “bumpy” the section is. The
automation and more user control, the idea of having a instability of the chords assigned to a section is directly
tension line merged with the early automated harmony proportional to the amount of texture. The chords chosen
generator into a new idea: a global harmonic tension line. are taken from a database that returns either single chords
One reason for having a graphical notation system in or small progressions based on the selection criteria. The
the form of freehand drawing is to provide the user with an database consists of chord progressions commonly found
expressive means of shaping musical direction. Drawing in Bach chorales.
a contour is a simple and intuitive way to depict areas of When the chord progression has been determined for
harmonic tension and resolution. the entire piece, the notes generated from the sketch are
The algorithm for this new “harmony line” was based altered so they match either the currently assigned chord
tangentially on David Cope’s Experiments in Musical In- or a scale tone in the current key (see Figure 7 for a simple

telligence (EMI). EMI takes existing works in a given style, example). For minor keys, there are special provisions

Modulation sections

-

Antecedent/consequent sections

27—\
— B minor
= D major / \

e E minor

G major

D minor
Bb major
. G miner

Fi gure 8. An empty Hyperscore sketch window showing the harmony
line. The height or depth of the point indicates the key to which the
section modulates (indicated by the text overlay).

for inserting a raised 6 or 7 depending on the chord and
context. There are several criteria used in deciding how
and in what direction a pitch is altered:

e Beat - If a pitch falls on a beat or is longer than
a sixteenth note in duration, it is harmonized as a
chord tone. If it is short in duration and does not
fall on a beat, it is harmonized as a scale tone.

e Contour - Notes are moved up or down as mini-
mally as possible while attempting to preserve the
contour of the original melodic material. Even if
the original pitch is a valid chord tone before being
harmonized, it might still be altered if it distorts the
overall melodic contour.

e Voice - The voice determined to be the bass line
does not have the strict melodic contour require-
ments and could be altered radically to fit not just
the nearest chord tone, but the bass note of the chord
(root or inversion). This does not apply in the case
when there is only a single active line (a solo voice).

Users can choose from different harmony styles includ-
ing diatonic, major-minor, fourths, and none. “None” in-
dicates that no automatic harmonization is applied. Di-
atonic mode changes all chromatic pitches into diatonic
ones in the current key (defined by the presence of modu-

lation sections in the harmony line). Major-minor is eighteenth-

century-style tonal harmony. Fourths mode is based on
chords constructed from fourths rather than thirds. Al-
though fourths mode uses the same database as major-
minor mode, some of the chord root notes have been al-
tered to fit the functional identifiers more closely. For
example, the fourths-mode equivalent to a dominant sev-
enth chord is a chord built on the leading tone, giving it a
stronger pull toward the tonic.

Aside from a complete harmonization done with regard
to a harmonic progression generated from the harmony
line, there is the additional option of selecting any subset
of the lines drawn in the sketch window to be unharmo-
nized within the current tonal context. This selection is
indicated visually by giving the line color a darker tint.
The effect of unharmonizing individual lines does not re-
vert the line to its original chromatic form—it alters all

necessary pitches to correspond to scale tones in the cur-
rent key rather than chord tones.

5. APPLICATIONS

5.1. Educational projects

One of the early applications of Hyperscore was its use as
the primary vehicle for composition activities in Tod Ma-
chover’s Toy Symphony [10], a large MIT Media Labo-
ratory project bringing together children and professional
orchestras through the use of technology. The goal of Toy
Symphony was to introduce children to creative music-
making with specially designed hardware and software.
These tools allowed children to perform on stage with mu-
sicians as well as compose music that was performed by
orchestras. By this point in time, Hyperscore had devel-
oped beyond an experimental interface and was sophisti-
cated enough to enable novice users to compose original
music of high quality. During the course of the Toy Sym-
phony project (2002-2005), children aged 8 to 15 from
all over the world worked with the software to compose
pieces for string orchestra [6], some of which were per-
formed in concert by professional orchestras such as the
BBC Scottish Symphony and the Deutsches Symphonie-
Orchester Berlin.

5.2. User feedback

Hyperscore was initially developed at the MIT Media lab-
oratory from 2000-2004. Following the Toy Symphony
project, development continued at Harmony Line, Inc., a
company founded to commercialize Hyperscore and reach
a wider audience. In order to make the application more
accessible to the average user, the interface was overhauled,
graphics board compatibility expanded (the GUI uses the
3D acceleration capabilities of the graphics board), and
many features added such as “undo/redo” for all editing
operations, extensible XML file format, internationaliza-
tion of GUI components, and many usability improve-
ments over all previous versions.

From January through August 2006, the Hyperscore
executable was realeased to the public for free. Included
were networking features such as “upload to community
website” and “send your music to cell phone as a ring-
tone.” A nominal fee was charged for sending to a phone,
but everything else was free. When a composition was
uploaded, its Hyperscore source file would be sent to the
server along with a MIDI rendering of that song. The
server would then take the MIDI file and convert it to an
mp3 file that could be played in an online Flash-based mu-
sic player.

The Hyperscore community parallels other online com-
munities that have formed around commercial programs
like Acid and Reason. It now has over 12,000 members,
and about 200 of them are passionate users that have been
in the community for more than a few months and log in
and post comments or music regularly. On the site, peo-
ple can post their compositions and rate and comment on

other people’s music, as well as send anyone’s composi-
tion to their phone. People can also optionally allow any-
one to download their Hyperscore source files.

The community population is skewed toward teenagers,
though users in their twenties and thirties are not uncom-
mon. A significant number of users do not know how to
read music, but some of the most sophisticated composers
have professional music experience of various capacities,
and enjoy Hyperscore for its novelty and ease of use.

There have been approximately 6000 songs uploaded
since Hyperscore was made available to the public. Some
of the compositions are classically oriented (based on self-
descriptions), but most are in the Pop/Rock/Hip Hop styles.
Many users use the harmony line feature to make their mu-
sic “sound better,” while the more sophisticated users tend
to want full tonal control and use the sketch window for
sequencing and pitch shifting.

Some very interesting online behavior has been ob-
served that is specific to a community organized around
a novel composing tool. More experienced users often
serve as guides to the less experienced novices. There are
have been some spontaneous behaviors like remix com-
petitions where people share a few motives and then mix
them into different compositions in a sketch window. Al-
lowing the sharing of Hyperscore files on the site greatly
facilitates this kind of collaboration.

6. CURRENT AND FUTURE DEVELOPMENT

Networked real-time collaboration features are being added
and are nearly complete at the current time. Socket-based
connections between remote instances of Hyperscore al-
low several people to work together on a single compo-
sition. Several collaboration modes are supported. In
server-client mode, all the edit operations in the server
Hyperscore instance are replicated on the client machines
(that are in read-only mode). This mode is useful for class-
room situations and remote demos. Collaborative mode
allows each user to modify any item in their instance of
Hyperscore and have the edit operations sent to the ses-
sion server and then broadcast to all the users in the ses-
sion. The session server arbitrates what is the “correct
state” of the file. A chat room feature is also present to
allow collaborators to discuss how the composition is pro-
gressing.

There are many additional features that should be im-
plemented for Hyperscore to realize its full potential. One
major change would be to allow direct editing at the indi-
vidual note level within the sketch window as opposed to
permitting such changes only through altering motives or
line-reshaping (Figure 9 inset). There are some user inter-
face design challenges to making note-editing a seamless
operation because the notes are algorithmically generated
from the combination of motives, sketches, and harmony
line. Once a note is manually edited, it should be flagged
as such and it should be drawn in a special color. If any of
the three source items are then changed, should the edited
note remain or should it be overwritten? It generally de-

Harmony

C Nane.
 General
 Classical

Fi gure 9. Detailed view of new Hyperscore design. (A) Tabs for mov-
ing harmony sections. (B) Colored regions indicating type of harmonic
sub-progression. (C) The harmony line. (D) Sketch window canvas. (E)
Drop-down harmony grid showing chords generated by the harmony line
in piano-roll notation. (F) Notes displayed for each chord change. (G)
Tabs to shift chords in time. (H) and (I) Graphics of notes that appear
when the zoom level is very high. (J) Close-up of a line in the sketch
window at high zoom.

pends on the type of modification that occurs, and this
must be tested.

The harmony line, while powerful and expressive, is
too high-level for some users and difficult to control when
a specific desired harmonic effect is desired. The user in-
terface for describing the harmonic progression can be im-
proved by generalizing it from the current specific library
of harmonic progressions that are generated as a result of
the harmony line shape parsing. As shown in Figure 9, a
general-purpose harmony tool has been designed to allow
people to edit their own chord progressions as they relate
to the overall composition. It allows the visualization and
editing of the chord progressions and timings that are orig-
inally generated from the harmony line. The notes in each
chord are displayed in a window below the sketch window.
Any note in the chord can be modified, and chord notes
can be added or deleted. Also, the chord as a whole can
be selected and moved in time (horizontally) to change
which section of music in the sketch window it is modi-
fying. It is also desirable to offer other pre-designed har-
mony modes besides Bach such as those common in jazz,
pop, and other genres.

Currently Hyperscore is MIDI-based, but adding full
audio capabilities would increase Hyperscore’s expressive
power tremendously. At the simplest level, audio samples
could be used for individual percussion sounds. At the
next level of complexity, the audio could be positioned

and lined up with the rest of the MIDI composition and
played simultaneously. At the most complex and rich level,
audio samples could be used as motives that can then be
drawn into a sketch window just like MIDI-based motives.
If the audio contains a single voice, it could be analyzed
and parsed into discrete pitches that can then be pitch-
shifted accordingly and modified to be in a consistent har-
monic relationship with the rest of the composition. Once
basic audio capabilities are in place, audio effects would
be the next natural extension.

Adding external methods of inputting motivic material
in both audio and MIDI formats would also be useful.
One possibility is a “reverse Hyperscore” process, where
the input is a piece of music (in MIDI format, for exam-
ple) and the output is a Hyperscore rendering. As it basi-
cally involves a complex Al problem of inferring motivic
structures from an existing piece of music, this would be a
far more difficult task than the current graphical-lines-to-
music approach. There would need to be some concrete
method of breaking down a piece into basic motivic ele-
ments, perhaps by doing a statistical analysis of recurring
rhythmic, melodic, and harmonic patterns. This process
would be greatly assisted by a special type of line (per-
haps colored a neutral gray) that would allow the addition
of “raw” musical material in a sketch window that is not
associated with a motive. After all, while much of music
consists of recurring motives, not all of it does.

7. CONCLUSION

Hyperscore facilitates composition through the intelligent
mapping of musical features to graphical abstractions, pro-
viding a visual analog for what is happening structurally
in the music. Users without musical training are able to
compose with Hyperscore because it abstracts away com-
plex musical features such as harmony and counterpoint
through visualizations of musical structure that are easy
to understand and manipulate. The vast musical feature
space is reduced and constrained by encouraging concep-
tualization of a complex musical piece as a composition
of short, easily conceived, musical phrases.

Hyperscore successfully makes the process of compos-
ing music accessible to a wide audience by removing the
requirements to read staff notation and have music the-
ory knowledge, a significant barrier to entry for many po-
tential composers, and by providing visual controls that
help users add harmonic progressions to their composi-
tions while retaining the essential “intent” of their melodic
contours. Future Hyperscore development will extend the
visual metaphor further by allowing more fine-grained con
trol of the musical output to help composers express them-
selves even more powerfully.

8. REFERENCES

[1] Assayag, G., et al. "Computer Assisted Com-
position at Ircam: PatchWork and OpenMu-

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

sic.” Computer Music Jounral, vol. 23, no. 3,
1999.

Cope, D. Experimentsin Musical Intelligence.
A-R Editions, Madison, Wisconsin, 1996.

Farbood, M. Hyperscore pieces composed
by children for the Toy Symphony project.
http://www.media.mit.edu/hyperins/HSpieces/.

Farbood, M. Hyperscore: A New Approach
to Interactive, Computer-Generated Music.,
Master’s thesis, MIT, 2001.

Farbood, M., Pasztor, E., and Jennings, K.
"Hyperscore: A Graphical Sketchpad for
Novice Composers.” IEEE Computer Graph-
ics and Applications, 24(1).

Farbood, M. Hyperscore piece composed
by children. http://web.media.mit.edu/”
mary/hyperscore.html.

Farbood, M. A Quantitative, Parametric
Model of Musical Tension. Ph.D. Thesis. MIT
Media Laboratory, 2006.

Iwai, T. http://ns05.iamas.ac.jp/~ iwai/ sim-
tunes, 1996.

Lohner, H. "The UPIC System: A User’s Re-
port.” Computer Music Journal, 10(4):42-49,
1986.

Machover, T. Toy Symphony project website.
http://www.toysymphony.net, 2003.

Mathews, M. V., and Rosler, L. "Graphi-
cal Language for the Scores of Computer-
Generated Sounds.” Perspective of New Music,
6(2):92-118, 1968.

Subotnik, M. Musical Sketch Pads online ac-
tivity. http://www.creatingmusic.com/mmm,
1999-2007.

Wenger, E. Metasynth software website.
http://www.metasynth.com, 2001-2007.

Wright J., et al. "CyberBand: A ’Hands On’
Music Composition Program.” In Proceedings
of the 1997 International Computer Music
Conference, Univ. of Thessaloniki.

