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Abstract. This paper presents a method that determines the relevance
of a set of signals (musical features) given listener judgments of music in
an experimental setting. Rather than using linear correlation methods,
we allow for nonlinear relationships and multi-dimensional feature vec-
tors. We first provide a methodology based on polynomial functions and
the least-mean-square error measure. We then extend the methodology
to arbitrary nonlinear function approximation techniques and introduce
the Kullback-Leibler Distance as an alternative relevance metric. The
method is demonstrated first with simple artificial data and then ap-
plied to analyze complex experimental data collected to examine the
perception of musical tension.

1 Introduction

There are two generic types of responses that can be collected in an experi-
mental setting where subjects are asked to make judgments on musical stimuli.
The first is a retrospective response, where the listener only makes a judgment
after hearing the musical excerpt; the second is a real-time response where judg-
ments are made while listening. The latter has become increasingly popular
among experimental psychologists as an effective means of collecting data. In
particular, studies on musical tension have often employed real-time collection
methods (Nielsen 1983; Madson and Fredrickson 1993; Krumhansl 1996; Bigand
et al. 1996; Bigand & Parncutt 1999; Toiviainen & Krumhansl 2003; Lerdahl
& Krumhansl 2007). The validity of this type of data collection is indicated
by the high inter- and intra-subject correlation between subject responses and,
more importantly, the indication that these responses correspond to identifiable
musical structures (Toiviainen & Krumhansl 2003).

In this paper we propose a method to detect and quantify the relevance of in-
dividual features in complex musical stimuli where both the musical features de-
scribing the stimuli and the subject responses are real-valued. While the method
can be used with most types of auditory or visual stimuli and most types of
responses,1 the method discussed here was developed for the purposes of under-
standing how musical structures affect listener responses to tension. Our analysis
1 For example, the response signal can be brain activity, as measured by imaging

technology (Schoner 2000), a general biological response such as skin conductivity
(Picard et al. 2001), or direct subject input by means of a computer interface.
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is based on the assumption that perceived tension is a function of various salient
musical parameters varying over time, such as harmony, pitch height, onset fre-
quency, and loudness (Farbood 2006). It is the objective of this paper to formu-
late a mathematically sound approach to determine the relative importance of
each individual feature to the perception of tension.

In the following sections, we will first provide a methodology based on poly-
nomial functions and the least-mean-square error measure and then extend the
methodology to arbitrary nonlinear function approximation techniques. We will
first verify our approach with simple artificial data and then apply it to complex
data from a study exploring the perception of musical tension.

2 Prior Work

In this paper we rely on prior art from two distinct fields: (A) the statistical
evaluation of experimental and continuous data, mostly using variants of lin-
ear correlation and regression (Gershenfeld 1999b) and (B) feature selection for
high-dimensional pattern recognition and function fitting in machine learning
(Mitchell 1997).

(A) is helpful for our task at hand, but its limitation stems from the assump-
tion of linearity. The importance of a feature is determined by the value of the
correlation coefficient between a feature vector and a response signal: the closer
the correlation value to 1 or to -1, the more important the feature. A variant
of this approach—based on the same mathematical correlation—uses the coeffi-
cients in a linear regression model to indicate the relevance of a feature.

(B) offers a large amount of literature mostly motivated by high-dimensional,
nonlinear machine-learning problems facing large data sets. Computational lim-
itations make it necessary to reduce the dimensionality of the available feature
set before applying a classifier algorithm or a function approximation algorithm.
The list of common techniques includes Principle Component Analysis (PCA),
which projects the feature space on the most relevant (linear) subset of com-
ponents, and Independent Component Analysis (ICA), which is the nonlinear
equivalent of PCA (Gershenfeld 1999b). Both PCA and ICA are designed to
transform the feature set for the purpose of estimating the dependent signal,
but they do not relate an individual feature to the dependent signal. In fact,
most prior work in machine learning is focused on estimating the dependent
signal, not the significance of individual features.

Prior art can also be found in the field of information theory. Koller & Sahami
(1996) developed a methodology for feature selection in multivariate, supervised
classification and pattern recognition. They select a subset of features using a
subtractive approach, starting with the full feature set and successively removing
features that can be fully replaced by a subset of the other features. Koller &
Sahami use the information-theoretic cross-entropy, also known as KL-distance
(Kullback & Leibler 1951) in their work.
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3 Feature Relevance Measured by Polynomial
Least-Mean Square Estimation

In this paper, we estimate the relevance of a particular musical feature xi by
computing the error between the actual subject response signal y and the es-
timation ŷ of the same. We first build a model based on the complete feature
set F and derive the least-mean-square error E from ŷ and y. We then build
models for each of the feature sets Fi, where Fi includes all the features except
xi, and compute the errors Ei based on ŷi and y. We define the Relevance Ra-
tio Ri = E/Ei and postulate that Ri is a strong indicator of the relevance of
xi for y.

We start by selecting an appropriate model to estimate ŷ, keeping in mind
our goal of overcoming the linearity constraint of common linear techniques.
We consider nonlinear function fitting techniques for the underlying estimation
framework, and observe that such techniques can be classified into two major
categories: linear coefficient models (discussed in this section) and nonlinear
models (discussed in the next section). Linear coefficient models and generalized
linear models use a sum over arbitrary nonlinear basis functions fk(x) weighted
by linear coefficients ak,

y(x) =
K∑

k=1

ak fk(x). (1)

A prominent example of this architecture is the class of polynomial models,
which takes the form

f(x) = a0 +
M∑

m=1

amΨm(x), with (2)

Ψm(x) =
∏

i

x
ei,m

i .

M denotes the number of basis functions and ei,m depends on the order of
polynomial approximation. For example, a two-dimensional quadratic model in-
cludes a total of M = 5 basis functions: (x1), (x2), (x1

2), (x1x2) and (x2
2).

The parameters in this model are typically estimated in a least-mean-square
fit over the experimental data set, which is computationally inexpensive for
small to medium dimensional feature sets (Gershenfeld 1999b). Using the model
we compute ŷ = f(x) for all data points (xn, yn), and subsequently derive
E =

∑
N (ŷn − yn)2/N .

It is a well-known fact that we can cause the error E to shrink to an arbi-
trarily small value by adding more and more resources to the model—that is, by
increasing the number of parameters and basis functions. However, in doing so
we are likely to model noise rather than the underlying causal data structure. In
order to avoid this problem, we cross-validate our model and introduce a global
regularizer that constrains our model to the “right size.”

We divide the available data into two data sets. The training data set (x, y)tr is
used to optimize the parameters of the model, whereas the test data set (x, y)test
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(a)

(b)

Fig. 1. (a) 1-D plot of features x1, x2, x3, and function yB and (b) 3-D plot of function
yB (4)
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is used to validate the model using Etest. As we slowly increase the number of
model parameters, we find that the test data estimation error Etest decreases
initially, but starts to increase as soon as the extra model parameters follow the
randomness in the training data. We declare that the model resulting in the
smallest estimation error

Em =
∑

Ntest

(ŷn,m − yn)2/Ntest (3)

represents the best model architecture for the data set at hand.
Given these considerations, we can now provide a step-by-step algorithm to

determine the Relevance Ratio Ri:

1. Divide the available experimental data into the training set (x, y)tr and
(x, y)test. (x, y)test typically represents 10%−30% of the data. If the amount
of data set is very limited more sophisticated bootstrapping techniques can
be applied (Efron 1983).

2. Build a series of models m based on the complete feature set F , slowly
increasing the complexity of the model, i.e. increasing the polynomial order.

3. For each model m compute the error Em =
∑

Ntest
(ŷm − y)2/Ntest. Choose

the model architecture m that results in the smallest Em. Next, build models
mi for all sets (xi, y), where the vector xi (Fi) includes all features F , except
for xi.

4. Compute Ei =
∑

Ntest
(ŷi − y)2/Ntest for all feature sets Fi and derive the

Relevance Ratio Ri = Em/Ei for all features xi.

Ri = 1 indicates that a feature xi is irrelevant for the response y. A value of
Ri close to 1 indicates little relevance whereas a small value of Ri indicates a
high level of relevance. Ri is dimensionless.

Table 1. Application of the polynomial estimator to functions yA and yB (4): (a)
indicates the error for the different model m based on x; (b) and (c) indicate the
resulting Relevance Ratios for features x1, x2, and x3

(a)

Polynomial Order

Function 1 2 3 4 5 6

A Training Set Error 0.8960 0.0398 0.0398 0.0397 0.0395 0.0392
Test Set Error 0.8938 0.0396 0.0396 0.0398 0.0399 0.0413

B Training Set Error 0.9989 0.1123 0.1121 0.0740 0.0728 0.0546
Test Set Error 1.0311 0.1204 0.1210 0.0848 0.0898 0.0924

(b)

Function A Feature Set

F1 F2 F3

Error Training Set 0.8960 0.1452 0.0398
Error Test Set 0.8938 0.1480 0.0396

x1 x2 x3

Relevance Ratio 0.0443 0.2674 0.9995

(c)

Function B Feature Set

F1 F2 F3

Error Training Set 0.2328 0.8406 0.0745
Error Test Set 0.2478 0.8590 0.0842

x1 x2 x3

Relevance Ratio 0.3423 0.0988 1.0072
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Before we use the method on experimental data, we demonstrate it here on
two artificial data sets: A three dimensional set of 5,000 feature data is generated
using xi = 10 ·N(0, 1), where N(μ, σ) denotes the normal distribution. We define
functions A and B as

yA = x2
1 + 5 · x2 + 0 · x3 + 30 · N(0, 1) (4)

yB = 100 · log(x1) + x2
2 + 0 · x3 + 20 · N(0, 1)

Figure 1 shows a one-dimensional and three-dimensional plot of x and yB.
Applying our algorithm we obtain the results indicated in Table 1. In the case

of function A it can be seen that the polynomial model correctly determines that
the data is drawn from a second-order model. For both function A and B, the
model correctly assigns a value of R3 = 1 indicating that x3 was not used to
generate y as is indeed the case.

4 Extension to General Nonlinear Estimators and
Probabilistic Models

Polynomial models and generalized linear models have many nice properties, in-
cluding the fact that parameter sets are easily understood. The drawback of these
models is that the number of basis terms increases exponentially with the dimen-
sionality of x, making them computationally prohibitive for high-dimensional
data sets.

The second category of nonlinear models uses variable coefficients inside the
nonlinear basis functions

y(x) =
K∑

k=1

f(x, ak). (5)

The most prominent examples of this class of models are artificial neural net-
works, graphical networks, and Gaussian mixture models (GMM). The models
are exponentially more powerful, but training requires an iterative nonlinear
search. Here we demonstrate the methodology with GMM’s which, as a subclass
of Bayesian networks, have the added benefit of being designed on probabilistic
principles.

GMM’s are derived as the joint probability density p(x, y) over a set of data
(x, y). p(x, y) is expanded as a weighted sum of Gaussian basis terms and hence
takes on the form

p(y,x) =
M∑

m=1

p(y,x, cm) (6)

=
M∑

m=1

p(y|x, cm)p(x|cm)p(cm) . (7)
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Table 2. Application of the GMM estimator to functions yA and yB (4): (a) indicates
the error for the different model m based on x; (b) and (c) indicate the resulting
Relevance Ratios for features x1, x2, and x3

(a)

Number of Clusters

Function 2 4 6 8 10 12 14 16 18 20

A Training Set error 0.414 0.056 0.044 0.043 0.041 0.040 0.041 0.041 0.041 0.040
Test Set Error 0.413 0.056 0.046 0.044 0.041 0.041 0.042 0.042 0.043 0.041

B Training Set Error 0.343 0.151 0.095 0.075 0.052 0.044 0.040 0.035 0.033 0.028
Test Set Error 0.362 0.161 0.106 0.081 0.056 0.050 0.046 0.041 0.038 0.033

22 24 26 28 30 32 34 36 38 40

A Training Set error 0.040 0.040 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039
Test Set Error 0.043 0.042 0.041 0.041 0.041 0.041 0.041 0.043 0.042 0.041

B Training Set Error 0.027 0.029 0.024 0.025 0.024 0.022 0.021 0.024 0.024 0.021
Test Set Error 0.029 0.035 0.027 0.030 0.028 0.024 0.026 0.029 0.029 0.026

(b)

Function A Feature Set

F1 F2 F3

Error Training Set 0.8950 0.1464 0.0403
Error Test Set 0.8958 0.1515 0.0408

x1 x2 x3

Relevance Ratio 0.0453 0.2676 0.9928

(c)

Function B Feature Set

F1 F2 F3

Error Training Set 0.2502 0.7630 0.0209
Error Test Set 0.2575 0.8646 0.0233

x1 x2 x3

Relevance Ratio 0.0912 0.0272 1.0096

We choose

p(x|ck) =
|P−1

k |1/2

(2π)D/2
e−(x−mk)T ·P−1

k ·(x−mk)/2 , (8)

where Pk is the weighted covariance matrix in the feature space. The output
distribution is chosen to be

p(y|x, ck) =
|P−1

k,y |1/2

(2π)Dy/2
e−(y−f(x,ak))T ·P−1

k,y·(y−f(x,ak))/2 , (9)

where the mean value of the output Gaussian is replaced by the function f(x, ak)
with unknown parameters ak.

From this we derive the conditional probability of y given x

〈y|x〉 =
∫

y p(y|x) dy (10)

=
∑K

k=1 f(x, ak) p(x|ck) p(ck)
∑K

k=1 p(x|ck) p(ck)
,

which serves as our estimator of ŷ. The model is trained using the well-known
Expectation-Maximization algorithm.

The number of Gaussian basis functions and the complexity of the local models
serve as our global regularizers, resulting in the following step-by-step algorithm
analogous to the polynomial case discussed before:
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1. Divide the data into training set (x, y)tr and test set (x, y)test.
2. Build a series of models m based on the complete feature set F , slowly

increasing the number of Gaussian basis functions.
3. For each model m compute the error Em = (ŷm − y)2/Ntest. Choose the

model architecture m that results in the smallest Em. Build models mi for
all sets (xi, y).

4. Compute Ei =
∑

Ntest
(ŷi − y)2/Ntest for all feature sets Fi and derive the

Relevance Ratio Ri = Em/Ei for all features xi.

Applying this new approach to our artificial data sets from before (4), we
obtain the results in Table 2.

5 Kullback-Leibler Distance

The linear least-mean-square error metric is without doubt the most commonly
used practical error metric, however, other choices can be equally valid. The
framework of the Gaussian mixture model allows for the introduction of a prob-
abilistic metric, known as the cross entropy or Kulback-Leibler distance (KL-
Distance) (Kullback & Leibler 1951). The KL-Distance measures the divergence
between two probability distributions P (x) and Q(x):

DKL(P ||Q) =
∫

x

P (x)log
P (x)
Q(x)

dx (11)

where P (x) is typically assumed to be the “true” distribution, and DKL is a
measure for how much Q(x) deviates from the true distribution.

For our task at hand we are interested in how much the distribution p(y|xi)
deviates from p(y|x∗), where once again xi includes all the elements of x except
for xi. This leads us to the definition

DKL(p||pi) =
∫

x,y

p(x, y)log
p(y|x)
p(y|xi)

dxdy (12)

and given our definitions above, we obtain

DKL(p||pi) =
∫

x,y

p(x, y)[log(p(y|x) − log(p(y|xi))]dxdy (13)

≈ 1
N

N∑

n=1

[log(p(yn|xn) − log(p(yn|xi,n))] ,

Here we replaced the integral over the density with the sum over the observed
data (which itself is assumed to be drawn from the density).

To compute DKL(p||pi) we need to first estimate p(yn|xi,n). However, this step
consists of estimating the local model parameters only, a relatively minor task.
All other parameters needed to numerically evaluate this equation are already
part of the model built in the first place.
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(a)

(b)

Fig. 2. Features xi and three subject responses (same subject) for (a) the Brahms
excerpt (Fig. 5) and (b) the Bach-Vivaldi excerpt (Fig. 4). H = harmony, L = loudness,
M = melodic expectation, PB = pitch height of bass line, PS = pitch height of soprano
line.
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6 Experimental Results

6.1 Data Set

Data was collected in an experiment that recorded real-time, continuous re-
sponses to musical stimuli. Thirty-five subjects, drawn from the faculty and stu-
dent body at MIT, participated in the experiment. Subjects were asked to move
a slider on a computer interface to indicate how they felt tension was changing
in the music. They were instructed to raise the slider if they felt a general feeling
of musical tension increasing, and to lower it when they felt it lessening. Each
musical excerpt was played four times; after each iteration, subjects were asked
to rate the confidence level of their response on a scale of 1 to 5. Slider positions
were sampled at 50Hz.

Ten musical examples were used as stimuli in the experiment. Six of these
examples were short (under 10 seconds) and composed specifically for the study.
They featured simple and clear changes in tempo, onset frequency, loudness, har-
mony, and pitch contour. In addition, there were four excerpts taken from the
classical repertoire: Schoenberg Klavierstück, Op. 11 No. 12, Beethoven Sym-
phony No. 1 (Fig. 3), J. S. Bach’s organ transcription of Vivaldi’s D Major
concerto (RV 208) (Fig. 4), and Brahms Piano Concerto No. 2 (Fig. 5). The
longer examples were 20 seconds to one minute in length and considerably more
complex than any of the short examples.

Musical parameters included in the feature set were harmonic tension, melodic
expectation, pitch height of soprano and bass lines, onset frequency, and loud-
ness. Not all features were relevant to all musical examples from the experiment.
For the purposes of quantifying harmonic tension and melodic expectation, Ler-
dahl’s (2001)2 and Margulis’s (2005) models were applied respectively.

Fig. 3. Score of Beethoven excerpt

6.2 Results

The key results for all of the complex tonal examples are represented in Table 3.
We use both the polynomial models and GMMs and apply our method to various
subsets of the feature space. The results are largely robust against variations in

2 Without the melodic attraction component; this factor is taken into account sepa-
rately with Margulis’s model.
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Table 3. Summary of experimental results for the musical tension study. For each
experiment we indicate the type of estimation (polynomial or GMM), the global reg-
ularizer (polynomial order or number of Gaussians) and the Relevance Ratio of each
feature: H = harmony, L = loudness, M = melodic expectation, O = onset frequency,
PB = pitch height of bass line, PS = pitch height of soprano line.

Brahms

Type POLY Relevance Ratio
Polynomial order 3 H L M O PB PS
Num. Gaussians N/A 1.0166 1.0099 1.0306 1.0247 1.0251 0.9571

Type POLY Relevance Ratio
Polynomial order 3 H L M PB PS
Num. Gaussians N/A 0.8869 0.6133 0.8527 1.0099 0.8366

Type POLY Relevance Ratio
Polynomial order 4 H L PB PS
Num. Gaussians N/A 0.8460 0.4795 0.6787 0.6367

Type POLY Relevance Ratio
Polynomial order 4 H L M
Num. Gaussians N/A 0.8623 0.3228 0.5750

Type GMM Relevance Ratio
Polynomial order N/A H L M PB PS
Num. Gaussians 16 0.7230 0.2953 0.6583 0.7478 0.9509

Bach-Vivaldi

Type POLY Relevance Ratio
Polynomial order 2 H L M O PB PS
Num. Gaussians N/A 0.6950 1.1549 0.9703 0.7653 0.8047 0.9472

Type POLY Relevance Ratio
Polynomial order 3 H L M PB PS
Num. Gaussians N/A 0.7413 1.1131 0.9780 1.0115 0.9696

Type POLY Relevance Ratio
Polynomial order 3 H M PB PS
Num. Gaussians N/A 0.6436 0.8953 0.9265 0.8112

Type POLY Relevance Ratio
Polynomial order 3 H L M PS
Num. Gaussians N/A 0.7514 1.0195 0.8625 0.8717

Type GMM Relevance Ratio
Polynomial order N/A H L M PS
Num. Gaussians N/A 0.6667 1.0439 0.9362 0.8945

Beethoven

Type POLY Relevance Ratio
Polynomial order 2 H L M O PB PS
Num. Gaussians N/A 1.0575 0.9699 0.9689 0.9644 0.9375 1.0822

Type POLY Relevance Ratio
Polynomial order 2 H L M PB PS
Num. Gaussians N/A 1.0607 0.9749 1.0604 1.0580 1.0252

Type POLY Relevance Ratio
Polynomial order 2 H L PB PS
Num. Gaussians N/A 0.9502 0.4230 1.0448 1.0289

Type GMM Relevance Ratio
Polynomial order N/A H L PB PS
Num. Gaussians 4 1.2435 0.4087 0.8488 1.1299
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Fig. 4. Score of Bach-Vivaldi excerpt

the model architecture. Relevance is always rewarded with a Relevance Ratio
significantly smaller than 1. However, the relative Ratio between features can
vary from model to model.

We observe that the model performs best with a modest number of features.
The fewer the available feature dimensions, the cleaner the results. We therefore
start with a larger feature set and successively remove the least relevant features
from the set until the model provides a robust estimate of the feature relevance.
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Fig. 5. Score of Brahms excerpt

Mathematically, this phenomenon can be explained by the fact that the features
are not statistically independent and that the relevance of one feature may be
entirely assumed by an other feature (or a set of features) (Koller & Sahami
1996).

We observe in the case of the Brahms excerpt that loudness is clearly the
predominant feature and hence has the smallest Relevance Ratio. In the case of
the Bach-Vivaldi excerpt, harmony is primarily responsible for perceived tension.
In the Beethoven excerpt, like the Brahms, loudness has the most impact on the
response. This makes qualitative sense, as there are no clear changes in the
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dynamics for the Bach-Vivaldi example, unlike the case for the Brahms and
Beethoven, where change in loudness is a salient feature.

The Relevance Ratio confirms that listeners relate salient changes in mu-
sical parameters to changes in tension. While there are multiple factors that
contribute to how tension is perceived at any given moment, one particular fea-
ture may predominate, depending on the context. The Relevance Ratio reveals
the overall prominence of each feature in the subject responses throughout the
course of a given excerpt. While it could be argued that listeners respond more
strongly to certain features (e.g. loudness over onset frequency), it is the degree of
change in each parameter that corresponds most strongly to tension, regardless
of whether the feature is purely musical, as in the case of harmony and melodic
contour, or expressive, as in the case of tempo and dynamics.

Summary

We have introduced an new estimator called the Relevance Ratio that is derived
from arbitrary nonlinear function approximation techniques and the least-mean-
square error metric. To demonstrate the functionality of the Relevance Ratio, it
was first applied to a set of artificial test functions where the estimator correctly
identified relevant features. In a second step the estimator was applied against
a data set of experimental subject responses where we gained valuable insights
into the relevance of certain salient features for perceived musical tension. Ad-
ditionally, we introduced the KL-Distance as an alternative estimator defined in
purely probabilistic terms.
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