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Abstract 

 
This study examines the decoding time at which the brain processes structural 
information in music and compares them to timescales implicated in recent work on 
speech. Combining an experimental paradigm based on Ghitza and Greenberg (2009) for 
speech with the approach of Farbood et al. (2013) for musical key-finding, listeners were 
asked to judge the key of short melodic sequences that were presented at a highly a 
compressed rate with varying durations of silence inserted in a periodic manner in the 
audio signal. The distorted audio signals comprised of signal-silence alternations show 
error rate curves that identify peak performance centered around an event rate of 5–7 Hz 
(143–200 ms interonset interval; 300–420 beats per minute), where event rate is defined 
as the average rate of pitch change.  The data support the hypothesis that the perceptual 
analysis of music entails the processes of parsing the signal into chunks of the appropriate 
temporal granularity and decoding the signal for recognition. The music-speech 
comparison points to similarities in how auditory processing builds on the specific 
temporal structure of the input, and how that structure interacts with the internal temporal 
dynamics of the neural mechanisms underpinning perception.   
 

Keywords: key finding, tonal induction, neuronal oscillations, music structure, 
brain rhythms, speech rate 
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Decoding Time for the Identification of Musical Key 
 

Traditionally, most approaches to the perceptual analysis of speech have focused on the 
rich frequency structure of the signal within a short time window. Speech perception has 
been––appropriately––characterized as a demanding spectral analysis challenge, and 
considerable progress has been made investigating the mechanisms underlying short-term 
frequency analysis (Gold, Morgan, & Ellis, 2011; Stevens, 1998, 2005).  Prior work has 
examined how the temporal structure of speech signals underpins perception in concert 
with the spectral information (see Rosen, 1992 for review; Drullman, Festen, & Plomp, 
1994; Houtgast & Steeneken, 1985; Shannon, Zeng, Wygonski, Kamath, & Ekelid, 
1995). One of the emerging generalizations from this line of research is that there appears 
to be a fortuitous alignment between robust temporal properties of speech, e.g., the 
envelope fluctuations characteristic of the flow of syllabic information, and the brain 
rhythms argued to play a role in perception and cognition (Ghitza, 2011; Giraud & 
Poeppel, 2012; Poeppel 2003). Although the precise mechanisms remain under vigorous 
debate, there is consensus that both structure in time and processing rate itself merit 
deeper investigation. 

In the theoretical and experimental study of music, there is a long and productive 
tradition of studying temporal structure and tempo (see London, 2012 for review). 
However, those approaches have not intersected in principled ways with related speech 
perception research. Here we capitalize on recent progress in both domains, combining 
novel approaches to temporal constraints on speech decoding (Ghitza & Greenberg, 
2009; Ghitza, 2011, 2012) with results on music perception, and in particular the analysis 
of key (Farbood, Marcus, & Poeppel, 2013). 

The current study builds on an experimental design by Ghitza and Greenberg 
(2009) that explored the possible role of brain rhythms in speech perception. They 
inserted periodically spaced silences into semantically unpredictable sentences that were 
compressed by a factor of three, and measured the error rate in word identification. 
Without inserted silent gaps, the error rate for word identification in compressed speech 
was >50%.  However, when silence intervals of varying durations (up to 160 ms) were 
added in between 40 ms segments of audio signal, performance improved, resulting in a 
U-shaped error-rate curve with a preferred packaging rate of around 6–17 Hz (59–167 
ms IOI).  Packaging rate is a term Ghitza (2011) uses to describe the periodic silence-
plus-audio-segment rate of compressed stimuli distorted by silence insertions.  For 
example, stimuli with audio segments of 40 ms and silence intervals of 80 ms would have 
a 120 ms packaging rate (8.33 Hz).  Ghitza and Greenberg (2009) interpreted the 
decrease in error rate resulting from the insertions of silence as the result of adding 
necessary decoding time.  Based on these results, they suggested an oscillatory 
mechanism on a specific timescale for auditory processing and developed a 
phenomenological model to account for these counterintuitive data (Ghitza, 2011).   

The association between temporal properties of speech (e.g., mean syllable 
duration, phoneme duration, etc.) and neuronal oscillations was made explicit by Poeppel 
(2003) and has subsequently been investigated empirically and computationally in a 
number of psychophysical and neurophysiological studies (for review, see Giraud & 
Poeppel, 2012). An important computational angle was introduced by Ghitza (2011, 
2013) in the context of formulating a model designed to address how speech signals are 
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parsed into coarser, typically syllable-long speech fragments, and then decoded. It has 
now been demonstrated convincingly (Ghitza, 2012) that lower-frequency, theta 
oscillations are implicated in connected speech parsing; current research is addressing the 
role of higher frequency beta and gamma oscillations for decoding. Musical stimuli such 
those used as in the current study have not been explored in this theoretical context, but 
such materials can help shed light on the mechanistic role that neuronal oscillations might 
play in perception.   

In a study exploring the psychophysics of structural key-finding by Farbood, et al. 
(2013), the influence of rate variation in music was examined by asking musically trained 
listeners to judge whether melodic sequences presented at different tempi ended on a 
resolved or unresolved pitch. The tempi of the sequences were parametrically varied over 
note event rates of 0.12–56.7 Hz/18–8333 ms interonset interval (IOI)/7–3400 beats per 
minute (BPM), in which the duration of each note was considered a beat. Error rates on 
the task resulted in a U-shaped curve where the lowest rates ranged between 30–400 
BPM (0.5–6.7 Hz/150–2000 ms IOI). The upper end of the curve overlapped with the 
range for optimal speech intelligibility and almost precisely aligned with the range in 
which beat induction and melody recognition occur. 

However, a critical unresolved question remained: although it appeared from the 
results of Farbood et al. (2013) that key-finding is essentially limited by rhythmic and 
melodic constraints, the actual decoding time for tonal processing, predicated on 
apprehending musical structure, was still unknown. Farbood et al. (2013) is the musical 
equivalent of studies that assess intelligibility of compressed speech at different rates 
(Dupoux & Green, 1997; Foulke & Sticht, 1969; Peele & Wingfield, 2005; Versfeld & 
Dreschler, 2002). The current study goes a step further and is the musical analog of 
Ghitza and Greenberg’s (2009) study; the tempo/compression rate is not simply increased 
or decreased––by adding silences in a way that does not align with the natural rhythm of 
the sequence, we are attempting to see whether musical comprehension (in the form of 
key-finding) is optimized when provided additional decoding time.  

A minimum decoding time for music has been hinted at in a study with a very 
different task and stimuli by Bigand, Poulin, Tillmann, Madurell, and D’Adamo (2003), 
which compared sensory versus cognitive components in harmonic priming. The stimuli 
for that study consisted of eight-chord sequences in which the first seven chords served as 
a context for a final target chord (paralleling the eight-note structure of the melodies 
here). They found that at 300 and 150 ms per chord, the tonal context clearly facilitated 
processing of the target, indicating that key-finding had successfully occurred despite the 
fast tempi.  However, when the tempo was further increased to 75 ms per chord (13.3 Hz; 
800 BPM), the effect of tonal context appeared to be overruled by sensory priming. This 
suggests there is a minimum amount of processing time that is necessary for key 
induction. 

Here we address explicitly whether the perception of musical structure is subject 
to similar “parsing and decoding” principles hypothesized for speech and test whether the 
U-shaped error rate curve found for speech appears also for music.  We applied the gap-
insertion paradigm to time-compressed melodic sequences and asked subjects to identify 
the key of the melody.  Potential parallels would suggest shared mechanisms between 
these two domains (Patel, 2003), and the study of potential oscillatory mechanisms may 
open up new avenues of research into basic psychoacoustic processing of music.  
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Method 
Participants  

Twenty-eight musically trained listeners participated (average age 23.64 years, 
SD = 5.73, 25 male).  Formal training on a primary instrument averaged 9.63 years (SD = 
4.84). On a scale of 0 to 5 (where 0 was no musical experience and 5 was professional-
level musical experience, subjects’ mean self-rating was 3.77 (SD = 0.75).  Average 
number of years of college-level music theory was 2.07 (SD = 1.65).  

 
Stimulus Materials  

The stimuli were based on ten melodic sequences composed by Farbood et al. 
(2013; Figure 1a).  These melodic sequences had identical pitch content––the union of all 
pitches in two closely related keys differing by only one sharp or flat (e.g., C major/G 
major)––and ended on the same pitch, one that could be interpreted as either the tonic of 
or dominant of one of the two keys in question.  Since the pitch sets were identical 
regardless of the implied key of that final note, the interpretation of that note was subject 
to the strong structural cues provided by the ordering of the pitches that preceded it.  
These structural cues included melodic intervals, the ordering of those intervals, and 
longer patterns of notes, delineated by contour changes, expected in typical harmonic 
progressions.  The rationale behind using these materials as an analog to speech 
processing was the idea that structural cues emerge from the intervallic relationships 
between the pitches and are critical to key-finding much like diphones in speech combine 
to form syllables that lead to identification of words.   

Given these melodic sequences, Ghitza and Greenberg’s (2009) stimulus 
modification method for speech materials was then adopted.  The melodies were first 
rendered at 1 Hz (1000 ms IOI; 60 BPM), a tempo at which key identification was highly 
consistent based on the results of Farbood et al. (2013), and then time-compressed by a 
factor of 28, a tempo at which key identification was impossible (28 Hz; 35.7 ms IOI; 
1680 BPM).  These compressed sequences were then altered by inserting varying 
durations of silences (“gaps”) periodically in the audio.  The unsegmented original and 
compressed stimuli were generated in MIDI format at the original pitch (as shown in 
Figure 1a) and at 22 transpositions (11 semitones up and 11 semitones down).  These 
MIDI files were then converted to audio (WAV format) using QuickTime (grand piano 
timbre).  The resulting audio files were segmented into consecutive audio chunks of equal 
duration, interspersed with gaps (Figure 1b); the final format of the stimuli was rendered 
in 16 kHz 16-bit mono.  
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(a) 

 
(b) 

Figure 1. (a) The original melodic sequences.  Sequences 1–5 are designed to sound like 
C major and sequences 6–10 are designed to sound like G major (before transposition). 
(b) Illustration of how the stimuli were created (not to scale). Top: The original melodic 
sequence at the original tempo. Center: The melody generated at the compressed tempo. 
Bottom: Compressed melody with silences inserted.   
 

The durations of the audio segments (10, 23, 38, 55, and 65 ms) and the silence 
intervals (0, 40, 80, 160, 230, 640, and 1280 ms) were varied parametrically. The stimuli 
had a total number of audio segments that ranged from 5 (for 65 ms segments) to 29 (for 
10 ms segments).  The mean number of pitch fragments per segment ranged from 1.24 to 
2.40.  Table S1 in the Supplemental Materials provides additional information about the 
number of audio segments per stimulus, number of note fragments per segment, and the 
longest total stimulus duration for each segment length.   
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Procedure 
Participants were seated in front of a computer and presented diotically with 

stimuli at a comfortable listening level over Sennheiser HD 650 headphones in a hemi-
anechoic chamber. Subjects indicated whether each sequence sounded resolved (ending 
on an implied tonic) or unresolved (ending on an implied dominant) by entering 
responses into a MATLAB GUI that used Psychtoolbox extensions for audio playback 
(Brainard, 1997; Kleiner, Brainard, & Pelli, 2007; Pelli, 1997).  Participants listened to 
340 sequences: twice for each of the 10 sequences at both the uncompressed rate of 1 Hz 
without gaps and the compressed rate of 28 Hz also without gaps, and once for the 10 
sequences altered at all combinations of the audio segment and silence durations (5 audio 
segment durations x 6 silence durations x 10 melodic sequences).  Stimuli were presented 
in a pseudo-randomized order that took into account tempo, key, and original sequence, 
such that no stimulus was preceded by another stimulus generated from the same original 
sequence or of the same type (uncompressed, compressed without gaps, or compressed 
with gaps), and no stimulus was in the same key as the two preceding sequences. The 
transposition of each stimulus was determined based on two constraints: each sequence 
was transposed to least three sharps/flats away from the key of the immediately preceding 
trial, and transpositions alternated between upward and downward directions (i.e., above 
and below the pitches of the pre-transposed sequences). The experiment took 
approximately one hour to complete without breaks.   

 
Results 

 
We determined correct responses by looking at the each subject’s judgments on 

the original, unmodified melodic sequences played at the original tempo. With the 
exception of Sequence 1, the judgments of key for these unmodified sequences were 
mostly in agreement with the expert labels from Farbood et al. (2013).  Sequences 2–10 
had a disagreement rate of 6.15% when compared to expert judgments, while Sequence 1 
had a much higher error rate of 37.5%, indicating that this particular melody was 
considerably more ambiguous than the others. Unlike the case for words in speech, there 
is not necessarily a “correct” label for key.  Although there can be nearly universal 
agreement, depending on the musical material in question, there commonly exists some 
degree of ambiguity. Thus we used each subject’s own judgments to determine whether a 
response should be deemed correct.  If a subject’s responses to the unmodified versions 
of a particular sequence did not agree, all trials containing that sequence were removed.  
If the two judgments for a sequence did agree, then that judgment was interpreted as the 
correct response for all trials containing that sequence.  After exclusion for within-subject 
disagreement, there remained 8500 out of 9520 total trials across subjects out of which 
7500 featured stimuli with gaps.  This strategy resulted in a 0% error rate for 
uncompressed sequences and a 44.73% error rate for compressed sequences without 
gaps. A chi-square goodness-of-fit test indicated that the error rate for the compressed 
sequences was borderline chance, χ2(1, N = 500) = 3.80, p = .051. 

A two-way, repeated-measures analysis of variance with seven levels of silence 
durations (0, 40, 80, 160, 230, 640, 1280 ms) and five levels of audio segment durations 
(10, 23, 38, 55, 65 ms) was performed on response accuracy (percent correct for each 
subject); Greenhouse-Geisser corrections were used in cases where sphericity was 
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violated.  All effects were significant at the .05 level: F(5, 135) = 2.90, MSE = 199.26, p 
= .016 for the main effect of silence duration and F(2.66, 71.91) = 13.90, MSE = 351.65, 
p < .001 for the main effect of audio segment duration.  There was also a significant 
interaction between the two factors, F(10.48, 283.03) = 4.18, MSE = 206.76, p < .001, 
necessitating a closer look at differences across levels for each factor. 

 
Figure 2. Mean error for all conditions graphed by audio segment duration. Error bars 
indicate estimated standard error. 

 
Figure 2 shows mean error rates by audio segment duration and silence duration. 

Table 1 shows the results of one-way, repeated-measures ANOVAs for each silence and 
audio segment duration as well as post-hoc Tukey-Kramer tests.  As in the case of Ghitza 
and Greenberg (2009), adding silences to compressed audio lowered error rate. When the 
data were examined by individual audio segment durations, a more complex picture 
emerged.  The data revealed a dissociation between audio segment durations shorter and 
longer than the note event length. A U-shaped curve was found for the higher audio 
segment durations, while accuracy for shorter durations hovered at chance or even 
decreased in accuracy. This dissociation occurred at silence durations greater than 80 ms. 
At shorter silence intervals, all audio segment durations were around the near-chance 
error levels found for the original compressed condition without any inserted silences.   
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Table 1. ANOVA results for simple effects of audio segment and silence interval. 
 

Factor Type Level Type 

Factor 
Duration 

(ms) F df p 
Levels with Significant Differences 

(ms) 

Audio 
segment 

Silence 
interval 

10 3.25 6, 540 .0029 {40, 80, 160} & 320 

  23 2.77 6, 540 .0098 None 
  38 8.01 6, 540 < .001 0 & {160, 320, 640, 1280}; 

{40, 80} & 320; 80 & 640  
  55 6.12 6, 540 < .001 0 & {320, 640, 1280}; 40 & {320, 

640} 
  65 4.87 6, 540 < .001 0 & {160, 320, 640, 1280};  

80 & {160, 320, 1280} 

Silence 
interval 

Audio 
segment 

40 0.71 2.93, 395.20 .52 None 

  80 1.07 4, 540 .26 None 
  160 3.62 4, 540 .0059 10 & {38, 65} 
  320 17.35 4, 540 < .001 10 & all; 23 & {38, 55} 
  640 11.50 4, 540 < .001 {10, 23} & {38, 55, 65} 
  1280 5.86 4, 540 < .001 {10, 23} & {38, 55, 65} 

Note. MSE = 206.76 for all cases. 
 
For the 10 ms audio segments, lack of adequate pitch resolution was most likely a 

significant factor in performance level.  From a qualitative perspective, the 10 ms audio 
segments sounded increasingly “click-like” as the silence durations increased. There is a 
minimum of two to three cycles necessary for reliable pitch resolution of complex tones 
(Metters & Williams, 1973; Patterson, Peters, & Milroy, 1983; Pollack, 1967)–– 
approximately 20 ms for complex tones with a fundamental frequency of 200 Hz (Ritsma 
& Cardozo, 1963).   Given this issue of reliable pitch resolution, we added a 
preprocessing step in our subsequent analyses: we removed trials in which there were less 
than three cycles of audio for any pitches in a given sequence.  This method eliminated 
766 trials out of 1500 for the 10 ms case and none for any of the longer audio segments.  

Assuming there is a cyclical rate at which music processing optimally occurs, we 
should see its signature––error rates should indicate a minimum point at the optimal rate. 
To further explore the preferential time window for music processing, we examined task 
performance by event rate, the musical analog of packaging rate for speech.  Packaging 
rate for speech as defined by Ghitza and Greenberg (2009) is the periodic silence-plus-
audio rate; event rate for music as defined here is the mean rate of new musical 
information for each stimulus. “New information” in the musical sense is pitch, which is 
the atomic unit necessary for interpreting musical structure and thus key.  Event rate is 
similar to tempo, although unlike tempo, the onsets are not precisely isochronous (in the 
current context of artificially generated stimuli as opposed to human-performed music).  
We use event rate as a window into our data because the literal application of packaging 
rate for music does not work; packaging rate as a measure only makes sense when there 
is new information that occurs with each packet.  This is not the case for our stimuli with 
10 and 23 ms audio segments because a repeated pitch is not new information.  Figure 3 
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shows error rate plotted by event rate. The results reveal that the error rate minimum 
centered around 5–7 Hz for all audio segment durations. 

 
Figure 3. Mean error by event rate. 
 
 In addition to the event rate, the preferred duty cycle of the task was used to probe 
potential cyclical processing mechanisms.  Duty cycle is a general engineering term used 
to describe the proportion of a cycle that a signal is active for periodic phenomena.  
Ghitza and Greenberg (2009) used it to denote the ratio of speech audio to silence.  For 
example, no silences inserted would mean a duty cycle of 100%; a stimulus with 100 ms 
of audio followed by 900 ms of silence would have a duty cycle of 10%.  In examining 
duty cycle values, we again excluded the 10 ms trials where insufficient pitch resolution 
was a factor.  What we found was a preferential range, based on error rates, that ranged 
from roughly 10 to 30% (Figure 4). The results show that longer duty cycles (i.e., more 
audio information per unit time) does not translate into better performance, presumably 
because there is insufficient decoding time available.  
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Figure 4. Mean error by duty cycle. Error bars indicate estimated standard error. 

 
Discussion 

 
The results of this study showed that the insertion of periodic silences between 

segments of compressed music significantly reduced error rate in a key-finding task. The 
data displayed a distinctive U-shape function when viewed by event rate, similar to 
results found for speech by Ghitza and Greenberg (2009).  Regardless of the size of audio 
segments and silence intervals, the error rate minimum centered around 5–7 Hz (~140–
200 ms IOI; 300–420 BPM).   

Similarities and differences between the current results and Ghitza and 
Greenberg’s (2009) findings point to the way auditory processing is tied to the specific 
temporal structure of its input. The observed preferential duty cycle for music processing 
from these results are 10–30% as opposed to 33–66% for speech. The shorter duty cycle 
for music might reflect the discrete-pitched nature of music; once the pitch of a note has 
been resolved, no further contextual information is required from the note. In contrast, 
syllabic envelopes are continuously evolving. At higher levels (i.e., subsequent to pitch 
detection), structures in music actually are processed at a slower rate than speech.  
 In general, the rate of change in music encompasses a wider range than in speech: 
the prominent range of the modulation spectrum of speech across languages tends to be 
4–8 Hz/125–250 ms (e.g., Greenberg, 2006; Houtgast & Steeneken, 1985) while for 
melodic sequences, the ideal range is ~0.5–6.7 Hz/150–2000 ms (Farbood et al., 2013; 
Warren, Gardner, Brubaker, & Bashford, 1991).  These modulation rates may be 
reflective of the natural periodicity in the neural system (cf. Buzsáki, 2006). In the case of 
speech, there is a correspondence between average durations of speech units and the 
frequency ranges of cortical oscillations (Giraud & Poeppel, 2012; Ghitza, 2011). 
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Phonetic features (20–80 ms), for example, are associated with low gamma and beta 
oscillations (15–50 Hz), while syllables and words (mean duration of 250 ms) are 
associated with theta (4–8 Hz) oscillations. Likewise, sequences of syllables and words 
embedded within a prosodic phrase (500–2000 ms) correspond to delta oscillations (1–3 
Hz). While such results from EEG/MEG experiments are increasingly common for 
speech, less work has been done exploring the oscillatory nature of music processing.  
One such study by Carrus, Koelsch, & Bhattacharya (2011) used a frequency-based EEG 
approach and found that syntactic violations in chord sequences produced similar 
changes in delta-theta power observed after processing of syntactic violations in 
language.  Furthermore, syntactic violations occurring at the same time for both music 
and speech resulted in a pattern of reduced frequency response in these bands, suggesting 
shared neural resources. 
 
Extensions of Prior Work on Speech and Music 
 Timescale manipulations of both speech and music without added gaps result in 
U-shaped data patterns.  Different mechanisms may explain the deterioration below the 
optimal range (time expansion) or above it (time compression).  For time expansion, the 
limiting factor is likely the length of the working memory buffer (limit on integration); 
for time compression, it is the lack of decoding time and whatever other factors limit 
resolution. Ghitza and Greenberg (2009) focused on the time compression case in order 
to test the lack-of-decoding-time hypothesis, and their data exhibited a U-shaped 
behavior as well. Even though the results were U-shaped in both cases, the mechanisms 
that underlie the data pattern for the uniform timescale manipulation are distinct from 
those that underlie the U-shape behavior for the repackaged data. Ghitza (2011) argues 
that decoding time is governed by a cascade of neuronal oscillators, which guide 
template-matching operations at a hierarchy of temporal scales and presents a model, 
with a cascade of oscillators at the core, capable of emulating the counterintuitive finding 
of Ghitza and Greenberg (2009) data.   
 Farbood et al. (2013) examined the effects of timescale manipulations of music in 
a manner analogous to the prior work on compressed speech without gap insertions. They 
observed a U-shaped data pattern in a key-finding task as a function of tempo. The 
current study builds on and goes beyond Farbood et al. (2013) in the same way Ghitza 
and Greenberg (2009) departed from prior work on compressed speech––by using the 
repackaging procedure to examine the decoding time hypothesis for music. The ideal 
rates for the key-finding task in Farbood et al.’s (2013) study encompassed a large 
plateau (0.5–6.7 Hz; 150–2000 ms IOI; 30–400 BPM) where performance was at ceiling.  
This aligns well with current estimates of the peak spectrum of music, which is around 2–
3 Hz for a wide range of musical pieces (Ding, Patel, & Poeppel, in review). If 
oscillations form the neuronal basis for this perceptual analysis, they would be in the 
delta range (~1–3 Hz). In the present results, however, the current data implicate a higher 
modulation rate, and by extension, oscillation. The best performance lies in the 5–7 Hz 
range, associated with theta (4–8 Hz) activity. There is, as a consequence, a tension in the 
old and new results about a possible oscillatory interpretation. The current data suggest 
that parsing or chunking an input stream at roughly 5 Hz holds for both speech and 
music. The older data, in contrast, underscore a potential difference between domains. If 
oscillatory neuronal activity plays a central role, the data to date cannot adjudicate 
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between the alternatives. 
The similarities between the findings for music and speech using this silence-

insertion paradigm provide compelling clues into possible oscillatory mechanisms in the 
auditory domain.  Nonetheless, much remains to be learned about these processes. Given 
these results, as well as evidence suggesting shared neural resources between syntactic 
processing of music and speech (Fedorenko, Patel, Casasanto, Winawer, & Gibson, 2009; 
Koelsch, Gunter, Wittfoth, & Sammler, 2005; Patel, 2003), Western tonal music provides 
an ideal medium for the comparative exploration of these mechanisms.  
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