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Everyone is talking about the impact of artificial intelligence (AI) on the future 

of work. In one camp are people like the industrialist Elon Musk who fear the 

potential evils of AI and its possible impact on the future of mankind as depicted 

in the movies The Terminator and The Matrix. In the opposite camp, people like 

Nobel laureate Joseph Stiglitz claim that AI will usher a new age of prosperity 

that rivals the industrial age. The truth is, of course, somewhere in between. 

In this article, we provide a primer on AI, debunk some misconceptions, and 

explore some of the possible impacts of AI on the future of geotechnics.
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In today’s rapidly evolving techno-
logical landscape where innovations 
can become irrelevant within days, 
advances in AI are constantly making 
headlines, sparking awe, controversy, 
and sometimes both. In reality, though, 
AI has increasingly gained a foothold in 
many human spheres, from Siri/Alexa 
digital assistants to mapping apps such 
as Waze and shopping apps that offer 
suggestions based on our purchasing 
histories. Undoubtedly, technologists, 
aided by state-of-the-art data analytics, 
have transformed many industries, 
producing remarkable predictions and 
insights. Of interest to us, however, 
is the question, how can the geopro-
fession adopt advanced analytics? 
How can inquisitive geoprofessionals 
augment their skills and deliver 
powerful insights and predictions, thus 
delivering value for their clients and 
organizations?

What Is Advanced Data 
Analytics?
Advanced analytics involves the hands-
off (automatic), or limited-interaction 
(semiautomatic), processing of data 
with the goal of producing insights, 
predictions, or recommendations. The 
process can be broken down into two 
parts: a) efficient automation (e.g., 
designing custom algorithms for data 
pre/post-processing, data/text mining, 
deterministic analyses, visualization, 
simulations), and b) artificial intelli-
gence (AI) (e.g., probabilistic analyses, 
machine learning (ML), deep learning). 
An analytics project may produce 
remarkable insights without AI; there-
fore, part “b” is not always included in 
advanced analytics.

Fundamentally, intelligence is the 
ability to acquire and apply knowledge 
and skills. General intelligence is 
human-level intelligence and cognitive 
reasoning (i.e., how information is used 
to make a decision or reach a conclu-
sion). AI is intelligence demonstrated 
by machines. It’s often described by 
introducing the concept of intelligent 
agents, devices that have a goal and 

are able to perceive their environment 
and react to inputs in ways that 
maximize their chances of success. For 
example, an autonomous vehicle has 
the goal of driving safely from point A 
to point B, and it’s expected to react to 
unknown conditions in order to do so, 
without being explicitly programmed. 
The question that normally arises is 
how did the vehicle “learn” to safely 
respond to new inputs. Extending the 
example from vehicles to intelligent 
computers processing geotechnical 
data, the question becomes how to use 
AI to make useful predictions and/or 
recommendations.

It’s important to first understand 
how AI works and what factors have 
contributed to its recent remarkable 
advances, despite the fact that AI has 
been around for decades. Professor 
Anima Anandkumar from Caltech 
first introduced the concept of 
The AI Trinity: Data + Algorithms 
+ Infrastructure (Figure 1). The 
proliferation of open datasets and the 
exponential growth of data are the fuel 
to machine intelligence. Next, design 
and implementation of AI algorithms 
have expanded from previously limited 
and very expensive operations that 
became that way because hard-to-find 
experts and specialized tools were 
required. Now, however, the barrier to 
entry has been dramatically lowered 
with major tech companies and 
academic institutions open-sourcing 
their powerful AI frameworks (e.g., 
Google Tensorflow). Thus, world-class 
research and sophisticated product 
development is, in principle, possible 
by anyone. Finally, training of AI 
algorithms usually has significant 
computational requirements that 
cannot be met by consumer desktop 
computers. Rather, AI algorithms 
depend on high-performance comput-
ing facilities for training. In the past, 
these facilities were the exclusive realm 
of well-capitalized large enterprises and 
academic institutions, but today, cloud 
computing has made advanced system 
architectures and virtually unlimited 

computational resources available to 
anyone. It’s therefore clear that the 
AI Trinity is no longer limited to a 
privileged few; instead, it’s available 
to individuals and companies with 
varying budgets and objectives.

What’s the Status of 
AI Adoption in the 
Geoprofession?
The principles of AI were established 
decades ago. Data, algorithms, and 
large-scale computing infrastructure 
are now more readily available 
than ever. But have geoengineering 
researchers and professionals been 
using AI? And if so, what’s the level of 
adoption compared to other fields?

While there’s clearly a lot of interest, 
as evidenced by the increasing number 
of lectures, conference presentations, 
and workshops in the last few years, 
it’s difficult to reliably quantify the use 
of AI in the geoprofession. There are 
some shining examples: the Crystal Ball 
Workshop held in advance of the fall 
2019 meeting of the Geoprofessional 
Business Association (see “Our 
GeoBusiness Future - Big Data, 
Machine Learning, and AI,” pp. 40-45), 
and the International Symposium in 

Offshore Geotechnics (ISFOG 2020), 
scheduled for August 2020 at the 
time of this writing. Plans for ISFOG 
2020 include a pile driving prediction 
event, hosted on Kaggle, a platform 
for predictive modelling and analytics 
competitions. Kaggle permits posting 
data and user competitions to produce 
models for predicting and describing 
the data. These first-of-their-kind 
events identify difficulties and 
opportunities for professionals while 
demonstrating that geotechnical and 
foundation data can be made readily 
available for events similar to widely 
popular competitions in data science. 
They’re noteworthy because they 
revolve around how to improve busi-
ness productivity and/or profitability 
through data and AI rather than their 
normal academic framework.

To gauge the adoption of AI in geo-
technical engineering, we entered the 
keyword phrases “artificial intelligence” 
or “machine learning” dating back to 
1960 into Scopus, a large abstract and 
citation database of peer-reviewed 
literature. The results were aggregated 
by decade and grouped by several engi-
neering and scientific disciplines, such 
as computer science, mathematics, 
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Figure 1. The AI Trinity (adopted from Anandkumar).

Figure 2. The timeline of research in geotechnical engineering and other fields 
using AI or ML.

AI is intelligence demonstrated by 

machines. It’s often described by 

introducing the concept of intelligent 

agents, devices that have a goal and 

are able to perceive their environment 

and react to inputs in ways that 

maximize their chances of success.
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social sciences, medicine, geotechnical 
engineering, and more (Figure 2). For 
comparison, geotechnical engineering, 
Earth and planetary sciences, and 
the broader engineering field are 
highlighted in the figure. Article count 
alone might not necessarily be a 
sufficient qualitative measure; however, 
the much lower count for geotechnical 
engineering is a clear indication of lack 
of research activity on methods involv-
ing AI or ML. While these results might 
seem discouraging, they highlight the 
great potential that exists for disrupting 
existing processes, especially those 
that generate lots of data, such as site 
investigations, instrumentations, and 
performance monitoring.

Industry-adopted innovations 
often originate from academia, so it 
would be reasonable to assume that 
adoption of AI in the geoprofession 
follows a similar trend. Research, how-
ever, is often driven by the priorities of 
major funding agencies, so the dearth 
of AI publications in geotechnical 
engineering is likely related to the 
lack of emphasis on AI by traditional 
funding agencies.

What Skills Are Required?
Having witnessed the exponential 
growth of Big Data, extremely large data 
sets that can be analyzed computa-
tionally to reveal patterns and trends, 
it’s becoming increasingly difficult to 
process large datasets with traditional 
software such as Microsoft Excel. This 
difficulty may be compounded by 
the near impossibility of setting up 
custom analyses and simulations with 
commercially available tools. Today, 
data professionals rely on powerful 
open-source tools and must be fluent 
in one or more computer programming 
languages to effectively conduct anal-
yses on large volumes of complex data. 
At the moment, Python is the most 
popular language for data analysis.

The first step for geoprofessionals 
interested in using data analytics in 
their practice is to learn the basics of 
a programming language, preferably 

Python. This may seem a daunting task, 
but fear not. When it comes to purpose 
and delivery, a programming language 
is no different than a spoken language. 
In fact, the case could be made that 
learning a new computer programming 
language is easier for geoprofessionals 
than learning a foreign language 
because engineering design is funda-
mentally algorithmic, and engineering 
professionals have years of experience 
in algorithmic thinking through 
education and experience.

While proficiency in Python is 
recommended, it’s not required, and 
there’s a big difference between script-
ing and programming, with the former 
being easier and less demanding for 

beginners than the latter. With Python 
scripting, users define the computer 
commands needed to perform a task 
from start to finish following a turnkey 
approach, often without paying 
much attention to reproducibility, 
expandability, efficiency, or code 
testing. As an analogy, consider this 
small data-processing task: a user has 
several lab results at hand and wants to 
produce plots for each project to help 
visualize site conditions. Using a com-
mon spreadsheet application, the user 
interacts with its graphical interface, 
clicking on the buttons to load the lab 
data and produce the desired plots. The 
process is then repeated for all available 
data files. The user can be far more 

efficient and error-free with this task by 
producing minimal Python code that 
automates the process. Essentially the 
“clicks” are replaced by simple com-
puter commands. This might not make 
much sense when handling a few data 
files; however, it’s not uncommon for 
large construction projects to produce 
hundreds of test results that need to be 
processed and analyzed with a short 
turn-around time.

Code scripting is used in the 
vast majority of analytics projects. 
Computer code may be written in 
plain text files and then executed, or 
written and executed piece-by-piece 
within interactive environments such 
as the widely popular Project Jupyter. 
This open-source initiative produced 
Jupyter Notebook, a web application 
that allows users to create and share 
documents that contain live code, 
equations, visualizations, and text 
with each element contained within 
a “cell.” A simple example of a Jupyter 
notebook using Python code to plot the 
results from a sieve analysis is shown 
in Figure 3. Programming novices 
will notice that the code is easily 
comprehensible. And while this is an 
example of a single plot only, some 
minor adjustment to the code can 
make it produce multiple plots with 
minimal effort.

An especially powerful data asset 
management process can be advanced 

by combining code scripting with the 
Data Interchange for Geotechnical and 
Geoenvironmental Specialists (DIGGS). 
DIGGS (see “What Does DIGGS Do for 
Me? Better, Faster, Cheaper Is the Goal,” 
pp. 54-59) is a standard that’s designed 
to help geoprofessionals store and 
transfer geotechnical data in a manner 
that promotes data consistency and 
collaboration. Data are stored in XML 
format, making it ideal to process 
with many programming languages, 
including Python.

Getting Started
How can you get started with AI? 
Online learning has revolutionized skill 
building. Most academic institutions 
offer a number of high-quality course 
options online, either in-house or 
through non- or for-profit online 
education platforms (edX and Coursera 
are popular). A motivated individual 
can evolve from absolute beginner to 
advanced programmer in a matter of 
weeks to months. Credentials earned 
from quality online platforms can be 
excellent resume boosters. The authors 
list a number of useful resources on their 
website, wp.nyu.edu/iskander/resources.

AI
The skills we’ve discussed so far relate 
to the “Efficient Automation” part of 
Advanced Data Analytics. This skill set 
alone can be very useful for a multitude 

of geoengineering tasks that go beyond 
simple plots (i.e., data mining, prepro-
cessing, cleaning and running complex 
analytical procedures on very large 
datasets). But learning how to use AI 
for predictive analytics can be trickier. 
First, AI is a popular news item, so it’s 
often used by online tutors as a way 
to gather attention to their business. 
There are countless videos and blogs 
that oversimplify the use of AI. This is 
good for lowering the level of entry, but 
they may lead to a false sense of exper-
tise. While there are excellent guides on 
the internet, an AI novice should always 
exercise critical thinking, adopting 
reliably good techniques but rejecting 
those without proper justification. 
Probabilistic methodologies require, as 
the name implies, a strong foundation 
on probabilities and inference. Hence, 
users should dust off their foundational 
knowledge in these areas before grad-
uating to AI. There are many excellent, 
and free, online courses that can 
help with self-paced studying. There 
are also comprehensive courses that 
cover probabilities in the first weeks of 
their syllabus before moving on to ML 
algorithms.

ML
ML is a subset of AI. ML algorithms 
make predictions for the future 
by learning from past experiences 
without relying on preprogrammed 

Figure 3. An example of a Jupyter notebook with Python code plotting sieve 
analysis results.

Figure 4. A diagram of the CNN model for particle image classification.
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instructions. Some terms frequently 
linked to ML are Supervised Learning, 
Unsupervised Learning, Semi-
supervised Learning, and Reinforcement 
Learning. These define different 
groups of ML algorithms. Supervised 
and unsupervised learning represent 
the majority of the ML use cases. 
Supervised learning can be used for 
classification or regression problems, 
for example to predict soil types 
from CPT data (classification) or pile 
capacity from CPT data (regression). 
The goal of unsupervised learning is to 
cluster input data together in mean-
ingful groups by identifying common 
characteristics among the data.

Although online courses are avail-
able, the secret to success with ML is 
having a good grasp of the fundamental 
ML concepts and a lot of practice. Be 
creative, and invent new use cases. For 
instance, working from the example 
presented in Figure 3, one can design a 
classification algorithm that can learn 
from sieve analysis results and classify 
soils, certainly faster, and perhaps more 
reliably, than humans.

Examples
Deep Learning for Soil Classification
In a classification-type ML proof-
of-concept study presented at 
Geo-Congress 2020, we made the case 
that images of individual soil particles 
can be used to successfully design and 
train a Convolutional Neural Network 
(CNN) model, which is most often 
used to analyze visual imagery. Figure 
4 is a schematic depicting the main 
components of the CNN, composed 
of layers of connected neurons with 
inputs and outputs and learnable 
weights and biases. Five different types 
of siliceous sand with different particle 
shapes were selected for investigation. 
A training dataset of grading and shape 
properties of these sands was compiled 
from over 50,000 images and expanded 
to 600,000 images with 12 rotations in 
order to increase prediction accuracy.

The study proved that the building 
blocks to achieve practical soil 
classification during site investigation 
activities are available right now. The 
training set can be expanded from five 
to dozens of sand types to cover a wide 

range of subsurface conditions. In the 
future, on-site engineers will be able 
to use small mobile devices to quickly 
classify soils. They could possibly offer 
recommendations simply by capturing 
a picture of the soil — either by 
extracting the sample or using a vision 
cone. More importantly, such a system 
can aid decision making by eliminating 
subjectivity and human error.

Predicting Pile Capacity
In a regression-type ML proof-of- 
concept study presented at IFCEE 
2018, we explored the use of ML to 
predict the axial capacity of piles. 
A support vector machine (SVM) 
regression model was designed and 
trained using 213 load tests curated 
from FHWA’s Deep Foundation 
Load Test Database v.2 to evaluate 
the performance of the developed 
approach against design methods 
evaluated in FHWA GEC 12, Design 
and Construction of Driven Pile 
Foundations for the axial geotechnical 
capacity of single piles in soils. The 
results of the predictive analysis show 

an improvement over the capacities 
obtained by design methods presented 
in FHWA GEC 12. Perhaps more 
remarkably, the predictive model 
outperformed the FHWA pile design 
method by relying only on seven readily 
available and easily obtainable features 
(i.e., soil type, average N, pile material, 
pile end conditions, cross-sectional 
area, circumference, and length) as 
opposed to a laborious and error-prone 
(when performed manually) design 
methodology. As shown in Figure 5, 
the study demonstrates the potential 
of ML in deep foundation design. For 
reference, 1:0.5, 1:1 and 1:2 (Q

c
:Q

m
) lines 

are shown to help illustrate data scatter. 
Figure 5 shows that the ML-based anal-
ysis of axial pile capacity reduced the 
mean squared error (MSE) by a factor  
of 17 to 62,566 kips.

What Lies Ahead?
There are several examples from other, 
more AI-mature fields that geoprofes-
sionals can learn from. The potential 
for disruption is real, and those who 
“get in the game” first will undoubtedly 
have significant advantage relative to 
their competitors. When looking at 
the components of the AI Trinity for 
geoengineering, the algorithms are 
available, the infrastructure is available, 
but we lack the data. ImageNet, a 
massive image database that was made 
freely available to all, is often credited 
for many significant advances in image 
analysis and AI. A similar dataset of 
geotechnical and foundation data 
does not exist. This despite the fact 
that there’s an enormous amount of 
valuable data collected within public 
and private organizations.

There’s no need to reinvent the 
wheel. To incorporate AI within their 
normal operations, companies can 
reach out and work with experts 
who have experience in building 
custom AI solutions. AI adoption is a 
top-down decision. Management must 
realize the benefits and either rely on 
cross‑disciplined experts or invest in 
building new data teams.

Figure 5. Comparison of calculated and ML-predicted axial pile capacity.

The first step for geoprofessionals 

interested in using data analytics 

in their practice is to learn the 

basics of a programming language, 

preferably Python.

It’s important to note that, in the 
same way that robotic surgery has 
not replaced surgeons, but rendered 
surgical procedures far safer, AI will 
not replace engineers. Rather, it will 
complement engineering experience 
with reliable AI predictions and 
reduced risk. In time, AI will allow for 
optimized designs with less uncer-
tainty. The corresponding increase 
in the confidence of our designs will 
lead to significant savings in design, 
construction, and maintenance.

Abraham Lincoln is often credited 
with the notion that the best way 
to create the future is to create it 
yourself. Our perspective is heavily 
influenced by our professional expe-
rience and ongoing work at NYU. We 
encourage readers to explore how you 
can create the future of AI in geotech-
nics, according to your own vision. 
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