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ABSTRACT: Photoactive single-atom catalysts (SACs) are among
the most exciting catalytic materials for solar fuel production.
Different SACs, including our own Co SACs, have been prepared
on graphitic carbon nitride (C3N4) for use in photocatalysis.
Building on our prior success, we report here doped C3N4 using
various supplemental carbon dopants as the support for Co SACs.
The Co SAC on a dianhydride-doped C3N4 showed the highest
activity in photocatalytic CO2 reduction. Catalyst characterization
was carried out to explore the origin of the enhanced activity of this
particular Co SAC. The dianhydride-doped C3N4 possesses unique
microstructural features, including a large interlayer space and
fibrous morphology, that could contribute to enhanced photo-
catalytic activity. Our results further indicate that dianhydride is the
most effective dopant to incorporate aromatic moieties in C3N4, which resulted in improved charge separation and enhanced activity
in photocatalysis.

■ INTRODUCTION
In recent years, “single-atom” catalysts (SACs), which are
atomically dispersed individual metal ions stabilized on a
support, have attracted enormous interest for various chemical
transformations due to their unique electronic structures and
advantages over nanoparticles and other bulk metal counter-
parts.1−4 Choosing appropriate supports for SACs in photo-
catalysis requires consideration of the binding ability of the
metal atoms, the stability of such binding, and the resulting
activity based on electronic structures and light absorption.
Graphitic carbon nitride (C3N4) has been extensively explored
as a metal-free photoactive material due to its low cost and
narrow band gap.5−8 On its own, C3N4 has relatively low
activity in photocatalysis largely due to poor charge separation
and lack of surface sites for selective catalysis. Instead, C3N4
has been employed as an excellent support for SACs as its
nitrogen-rich structure enables the coordination of metals.9−11

SACs containing atomically dispersed Fe, Co, Ni, Cu, Ag, Au,
Ru, and even rare-earth-metal sites have been prepared on
C3N4 for use in photocatalytic CO2 reduction.

12−25

Many recent papers investigated SACs based on Co, a
nonprecious metal, on C3N4

26−36 and other supports37−43 in
different chemical transformations. Structural motifs of Co
SACs on C3N4 have been discussed in previous work. Existing
models for SACs in C3N4 include in-plane M−N3 and

interlayer M−N4 coordination,
44 C−M−N2 coordination,

12

M−N4 coordination in the presence of N vacancies,45 and
other possible structures.46−48 Unlike N-doped carbon
materials featuring the cyclam-type coordination sphere,
C3N4 contains “pockets” that allow only in-plane M−N2
coordination with a reasonable M−N bond length. Our recent
studies revealed a possible structure model of our Co SACs in
C3N4 containing the M−N2+2 moiety, where a metal center is
coordinated with four N atoms at the edge sites of two C3N4
flakes.31 Similar M−N2+2 coordination SACs in graphene-
based materials have been reported by others.49−51

In our recent work,26,29,31 Co SACs were synthesized by
depositing Co2+ on C3N4 via a microwave method. The
resulting Co SACs produced CO as the major product in the
photocatalytic CO2 reduction. Photocatalytic activities of the
Co SACs decreased drastically as the cobalt loading increased.
Characterization of the Co SACs with X-ray absorption
spectroscopy (XAS), including the X-ray absorption near-edge
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structure (XANES) and extended X-ray absorption fine
structure (EXAFS), provided important information regarding
the structure of the active sites. At low cobalt loadings, the
presence of single Co2+ sites was confirmed by using XANES
and EXAFS. At relatively high cobalt loadings, a significant
portion of cobalt exists in the form of inactive cobalt oxides.
Supplemental carbon dopants have been used in the

synthesis of C3N4 to improve its photocatalytic activity. It
has been reported that the doping of C3N4 with carbon can
improve its visible light absorption and inhibit charge
recombination.52 In our studies, doping C3N4 with carbon
was found to be essential for the photocatalytic activities of Co
SACs.29 Carbon doping of C3N4 was achieved using small
amounts of dextrose during the synthesis of C3N4 via the
pyrolysis of urea. Building on our recent achievements, other
supplemental carbon sources are being evaluated for their
ability to enhance the photocatalytic activities of Co SACs on
C3N4 by improving charge separation and optimizing the local
coordination environment of Co2+ sites.
In this current work, we aim to design doped C3N4

containing nitrogen atoms in the framework that are in an
ideal position for binding to the cobalt centers rather than
relying on nitrogen atoms at edge sites. Modified C3N4 using
different supplemental carbon dopants, including 1,2,4,5-
benzenetetracarboxylic dianhydride, have been synthesized in
order to enhance photoinduced charge separation and
potentially build well-defined nitrogen binding sites into the
polymeric structure of C3N4. The synthesized doped C3N4 and
Co SACs are characterized with a variety of techniques and
tested in photocatalytic CO2 reduction. Through such
experimental work, we attempt to correlate the photocatalytic
activities of the synthesized Co SACs with the charge
separation properties of the doped C3N4 and the local
coordination environment of the Co2+ sites.

■ EXPERIMENTAL SECTION
Materials. Acetonitrile (ACN, 99.9%), methanol (99.8%),

and chloroform (99.8%) were obtained from Fisher Chemical.
Cobalt(II) chloride (>98%) was obtained from Sigma-Aldrich.
Triethylamine (TEA, 99%), 1,2,4-benzenetricarboxylic acid
(98%), and 1,2,4-benzene-tricarboxylic anhydride (97%) were
obtained from Acros Organics. Urea (>99.5%), dextrose
(anhydrous, 99.8%), phthalic anhydride (99%), succinic
anhydride (99%), and 1,2,4,5-benzenetetracarboxylic acid
(96%) were obtained from Thermo Fisher Scientific. 1,2,4,5-
Benzenetetracarboxylic dianhydride (>98.0%) was purchased
from TCI. Triethanolamine (TEOA, 99.0%) was purchased
from Spectrum Chemical MFG Corp. All reagents were used
without further purification.

Catalyst Synthesis. Modified carbon nitride materials
were synthesized by the pyrolysis of urea in the presence of
different dopants. In a typical synthesis, 20 g of urea was placed
in a ceramic crucible with 20 mg of the dopant and ground
until well mixed. The crucible was covered with aluminum foil
and calcined in a muffle furnace for 4 h at 600 °C with a ramp
rate of 5 °C/min. Pristine C3N4 was synthesized in the same
way in the absence of any dopant. The resulting doped C3N4
was loaded with Co2+ via a microwave method. In particular,
100 mg of C3N4 was mixed with a certain amount (0.25−10
mg) of CoCl2 in 7.5 mL of acetonitrile in a capped reaction
vessel. The suspension was placed in a sonicator bath for 5
min, followed by 30 min of stirring. Then, 65 μL of TEA was
added, followed by an additional 30 min of stirring. The
suspension was placed in a CEM Discover single-mode
microwave reactor and was heated to 80 °C for 2 h. The
resulting material was recovered by centrifugation and washed
twice with chloroform, methanol, and acetonitrile. The final
material was left to dry at room temperature. The C3N4
materials synthesized in the presence of dextrose and 1,2,4,5-
benzenetetracarboxylic dianhydride are denoted as “C-C3N4”
and “DA-C3N4”, respectively.

Figure 1. CO produced in the photocatalytic CO2 reduction using 5 mg of Co SACs on C3N4 prepared in the absence (no dopant) and presence of
different dopants (left to right: dextrose, phthalic anhydride, succinic anhydride, 1,2,4-benzenetricarboxylic acid, 1,2,4,5-benzenetetracarboxylic
acid, 1,2,4-benzenetricarboxylic anhydride, and 1,2,4,5-benzenetetracarboxylic dianhydride). The Co SACs were prepared using 1 mg of CoCl2 and
100 mg of C3N4. Loadings of Co in the samples were determined to be (from left to right) 0.043, 0.046, 0.036, 0.079, 0.058, 0.056, 0.050, and 0.064
μmol per mg of powder sample, respectively.
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Material Characterization. UV−visible spectra were
obtained on a Cary 50 Bio spectrophotometer with a Barrelino
diffuse reflectance attachment using BaSO4 as a background.
Photoluminescence spectra were obtained on a Cary Eclipse
fluorimeter with a solid sample holder, where emission spectra
were recorded at a 355 nm excitation wavelength. Powder X-
ray diffraction (XRD) patterns were obtained on a LabX XRD-
6100 diffractometer using a Cu Kα source (λ = 0.154 nm).
Scanning electron microscopy (SEM) images were taken on a
Lyra3 GMU FIB SEM. Transmission electron microscopy
(TEM) images and energy-dispersive X-ray spectroscopy
(EDS) were acquired using a Talos F200X (Thermo Fisher
Scientific) STEM operated at 200 kV and an electron probe of
72 pA and a 10.5 mrad convergence semiangle. The EDS
quantification was performed using Velox software v1.4.2
(Thermo Fisher Scientific). Elemental analysis was conducted
by acid extraction of the cobalt-loaded-doped C3N4 materials
and subsequent cobalt quantization on an Agilent 4210
microwave plasma atomic emission spectroscopy (MP-AES).
Diffuse reflectance infrared Fourier transform spectra
(DRIFTS) were obtained using a Harrick Praying Mantis
diffuse reflectance IR cell attached to a Thermo Nicolet 6700
FT-IR spectrometer.

X-ray Absorption Spectroscopy (XAS). X-ray absorption
spectra at the Co K-edge were taken at the 7-BM QAS
beamline of NSLS-II at Brookhaven National Laboratory.
Si(111) double crystal was used as a monochromator. 15 cm
long ion chambers, filled with 100% N2, were used for the
detection of incident and transmitted beams, and a passivated
implanted planar silicon detector with a Fe filter (with the
thickness corresponding to 6 absorption lengths at Co K-edge
energy) was used for the detection of fluorescence. Measure-
ments were performed in an ambient atmosphere at room
temperature. Cobalt on DA-C3N4, C-C3N4, and C3N4 at all
loadings and conditions was measured in the fluorescence
mode. Cobalt on other doped C3N4 was measured in
transmission mode.

Photocatalytic Testing. In the photocatalytic CO2
reduction, 1 mg of a synthesized catalyst was dispersed in 4
mL of a mixture of acetonitrile (ACN) and triethanolamine
(TEOA) (ACN/TEOA = 4:1 (v/v)) in a quartz test tube. The
sealed test tube was bubbled with CO2 in the dark with stirring
for 20 min. The vessel was then irradiated with a halogen lamp
with a water filter at an intensity of 200 mW/cm2. Each 30
min, the headspace was sampled and analyzed using an Agilent
7820 GC with a TCD detector and a 60/80 Carboxen-1000
packed column. Initial screening results (Figure 1) were
obtained using 5 mg of the catalyst.

■ RESULTS AND DISCUSSION
Several doped C3N4 materials have been synthesized via the
pyrolysis of urea at 600 °C in the presence of supplemental
carbon dopants, including dextrose, phthalic anhydride,
succinic anhydride, 1,2,4-benzenetricarboxylic acid, 1,2,4,5-
benzenetetracarboxylic acid, 1,2,4-benzenetricarboxylic anhy-
dride, and 1,2,4,5-benzenetetracarboxylic dianhydride. Follow-
ing our established procedure,31 Co SACs were prepared by
depositing Co2+ on the synthesized C3N4 materials. The
synthesized C3N4 materials and Co SACs were characterized
by a variety of techniques, including UV−vis, XRD, SEM, XAS,
DRIFTS, and photoluminescence spectroscopy. In the photo-
catalytic CO2 reduction, a Co SAC on C3N4 prepared in the
presence of 1,2,4,5-benzenetetracarboxylic dianhydride, de-

noted “Co2+@DA-C3N4”, showed the highest activity among
all of the synthesized Co SACs (Figure 1).
While it is unclear how these supplemental carbon dopants

modified the C3N4 structure at the molecular level, it is evident
that 1,2,4,5-benzenetetracarboxylic dianhydride is the most
efficient dopant to incorporate aromatic moieties in C3N4 and
introduce other structural changes, as will be discussed further.
Three Co SACs, Co2+@DA-C3N4, Co2+@C-C3N4 (Co SAC on
C-C3N4), and Co2+@C3N4 (Co SAC on pristine C3N4), are
selected for further investigation in order to explore structural
characteristics responsible for enhanced activity in photo-
catalysis. Figure 2 describes the relative activity of these three

selected Co SACs in the photocatalytic CO2 reduction. Under
the experimental conditions employed in this study, Co2+@
C3N4 showed negligible activity, while turnover numbers
(TONs) for CO production of 43 and 23 were obtained after
photocatalysis for 2 h using Co2+@DA-C3N4 and Co2+@C-
C3N4, respectively. In order to confirm the source of CO
produced in photocatalysis, isotope labeling studies were
conducted using 13CO2 instead of the regular 12CO2.

53,54

Under experimental conditions employed in this study, only
13CO was detected in the photocatalytic 13CO2 reduction, as
can be seen from the infrared spectrum of the headspace gases
above the reaction solution (see Figure S1).
The synthesized Co SACs were characterized by X-ray

absorption spectroscopy (XAS), including an X-ray absorption
near-edge structure (XANES) and extended X-ray absorption
fine structure (EXAFS). At relatively low loadings of cobalt,
XANES and EXAFS data of Co2+@DA-C3N4 clearly show
single-site characteristics.55−57 For instance, its XANES
spectral shape is different from those of CoO and Co3O4
(Figure 3), likely due to the coordination of isolated Co2+ with
the N atoms in DA-C3N4. In its EXAFS spectrum shown in
Figure 4, a peak around 1.55 Å (uncorrected for the
photoelectron phase shift) is present, and no Co−O−Co
contribution can be detected, indicating the coordination of
Co2+ with N atoms. Therefore, cobalt species in this sample

Figure 2. CO production during the photocatalytic CO2 reduction
under light irradiation with a light intensity of 200 mW cm−2. Error
bars were obtained from triplicate data points using three different
samples measured under the same conditions. The Co SACs were
prepared using 0.25 mg of CoCl2 and 100 mg of C3N4. Loadings of
Co were determined to be 0.022, 0.019, and 0.019 μmol per mg of
C3N4, C-C3N4, and DA-C3N4, respectively.
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exist as single Co2+ sites. In comparison, a peak at around 2.7 Å
corresponding to the Co−O−Co bond in the CoO structure is
present in the EXAFS spectrum of Co2+@DA-C3N4 at a
relatively high cobalt loading (Figure S2). Electron microscopy
studies further confirmed the presence of CoO nanoparticles in
Co2+@DA-C3N4 at this high cobalt loading (Figure S3).
Similar to our previous observation,26 such CoO nanoparticles
are inactive in the photocatalytic CO2 reduction since Co2+@
DA-C3N4 at relatively high loadings, when NPs are more likely
formed, are much less active than those at lower cobalt
loadings (Figure S4). Additional EXAFS results (Figure S5)
indicate that Co SACs in Co2+@DA-C3N4 remained atomically
dispersed after photocatalysis under the experimental con-
ditions employed in this study.
The EXAFS spectra shown in Figure 4 were further analyzed

to extract structural information including the coordination
geometry of the Co SACs. The fitting results indicate a
negligible difference among the coordination geometry of
Co2+@C3N4, Co2+@C-C3N4, and Co2+@DA-C3N4 (Figures S6
and S7 and Table S1). For example, the coordination numbers
of the Co center were ∼ 6 for the three Co SACs, while the
average Co−N/Co−O bond lengths were between 2.05 and
2.07 Å.
The synthesized C3N4 materials were characterized by

additional techniques in order to help understand the

comparison shown in Figure 2. In particular, powder X-ray
diffraction (XRD) patterns of DA-C3N4, C-C3N4, and pristine
C3N4 were collected to provide information regarding their
crystal structure. A prominent peak at around 2θ = 27.7° is
seen in the XRD patterns of the three samples (Figure 5).

Close examination indicates that this peak for DA-C3N4 is
broader and is shifted to a smaller 2θ value, compared to those
for C-C3N4 and C3N4 (Figure 5, inset). Such a comparison
suggests that the dopant for DA-C3N4 (1,2,4,5-benzenete-
tracarboxylic dianhydride) caused more significant disruption
to the C3N4 framework structure than the dopant for C-C3N4
(dextrose). Furthermore, the observed peak shift indicates a
slightly larger interlayer space for DA-C3N4 relative to C-C3N4
and DA-C3N4.
Scanning electron microscopy (SEM) images were collected

to compare the morphology of the three samples. While C3N4
and C-C3N4 have similar morphology, DA-C3N4 appears to
have a more fibrous structure (Figure 6). This comparison in
morphology suggests that using the dianhydride dopant may
lead to more controlled self-assembly during polymerization.
Subsequently, DA-C3N4 has a slightly higher surface area
(101.2 m2/g) than C-C3N4 (94.7 m2/g) and pristine C3N4
(86.4 m2/g).
The results shown in Figures 5 and 6 indicate that DA-C3N4

has a different microstructure than C-C3N4 and pristine C3N4,
although the infrared spectra of the three samples are almost
identical (Figure S8). Such a difference could partially
contribute to the relatively higher activity of Co2+@DA-C3N4
than Co2+@C3N4 and Co2+@C-C3N4 (Figure 2). We also
examined the light absorption ability of these materials.
Pristine C3N4 has a band gap of around 2.7 eV and can
harvest photons with a wavelength of up to 460 nm.5,58 It has
been shown that appropriate carbon doping can improve its
photoresponse in the visible region (400−800 nm).29,59 In our
study, both DA-C3N4 and C-C3N4 have significant photo-
response in the visible region, compared to pristine C3N4
(Figure 7). However, DA-C3N4 and C-C3N4 share similar
absorption features in the visible region. It is unlikely that their
light absorption ability contributed significantly to the
observed difference in the photocatalytic activity, as shown
in Figure 2. A similar photoresponse in the visible region was

Figure 3. Normalized Co K-edge XANES spectra of Co2+@DA-C3N4
(cobalt loading 0.019 μmol/mg), and CoO and Co3O4 as references.

Figure 4. Fourier transform magnitudes of k2-weighted Co K-edge
EXAFS spectra of Co2+@DA-C3N4 (cobalt loading 0.019 μmol/mg),
and CoO and Co3O4 as references.

Figure 5. Powder X-ray diffraction patterns of C3N4, C-C3N4, and
DA-C3N4. Inset: close-up view of the diffraction patterns in the range
of 28−30°.
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also observed in the spectra of other doped C3N4 samples
(Figures S9 and S10), except for the one doped with phthalic
anhydride (Figure S9a).
Incorporation of aromatic moieties into the C3N4 matrix has

been reported to result in extended π-conjugation, which alters
the optical absorption and improves charge separation.60−62

We characterized the photophysical properties of the
synthesized C3N4 samples with photoluminescence spectros-
copy. In the spectrum of pristine C3N4, an intense and broad
emission band in the range between 400 and 600 nm is
present, indicating significant charge recombination from the
photoexcited state (Figure 8). This band is much less intense
in the spectra of DA-C3N4 and C-C3N4. Furthermore, the
emission features in the spectrum of DA-C3N4 are less intense
than those of C-C3N4. It has been reported that C doping

improves photoinduced charge separation in C3N4.
63−67 In this

study, the addition of Co SACs to the C3N4 samples led to
negligible changes in their emission spectra (Figure S11). The
comparison in the photocatalytic activity shown in Figure 2
correlates well with charge separation, as inferred from the
quenching of the emission band shown in Figure 8. Therefore,
the higher photocatalytic activity of Co2+@DA-C3N4 com-
pared to that of Co2+@C-C3N4 is at least partly due to the
improved charge separation of the former.
It should be noted that several of the synthesized doped

C3N4 materials, in particular, those doped with succinic
anhydride, 1,2,4-benzenetricarboxylic acid and 1,2,4,5-benze-
netetracarboxylic acid, demonstrated enhanced charge separa-
tion as evidenced by the low intensity of their emission spectra
(Figure S12). However, Co SACs on these doped C3N4
materials were shown to be less active than Co2+@C-C3N4
in photocatalysis (Figure 1). We are mindful that comparing
the photoluminescence intensity only provides indirect
information regarding the efficiency of photoinduced charge
separation in the C3N4 materials. Additional experimental
analysis, such as time-resolved spectroscopic studies, would be
more convincing in evaluating the charge separation efficiency.
We are currently working toward this goal and hope to report
such results in a future communication.
One drawback of the synthesized Co SACs is their stability

under photochemical conditions. In our study, elemental
analysis was conducted to evaluate the robustness of Co SACs.
Partial loss of the coordinated Co2+ ions was observed for the
Co SACs. According to our elemental analysis results, 44, 51,
and 66% of Co2+ ions remained coordinated to C3N4, C-C3N4,
and DA-C3N4, respectively, after photocatalysis for 2 h using
the corresponding Co SACs. Subsequently, the Co SACs
appeared to be less active after repeated use in photocatalysis,
likely due to the loss of coordinated Co2+ ions (Figure S13).

■ CONCLUSIONS
In summary, we have synthesized a variety of doped C3N4 as a
support for Co SACs. The Co SAC on a dianhydride-doped
C3N4 showed the highest activity in the photocatalytic CO2
reduction. Selected C3N4 and SACs are characterized by
different techniques to explore the origin of the observed
enhancement in photocatalytic activity. The dianhydride-
doped C3N4 possesses unique microstructural features,
including a large interlayer space and fibrous morphology,
that could contribute to enhanced photocatalytic activity.
Improved charge separation, inferred from photoluminescence
spectroscopy, was also observed using the dianhydride-doped
C3N4. Our work contributes to the development of innovative
photocatalytic materials by correlating the synthesis of SACs as
photocatalysts with their structural and functional properties.

Figure 6. SEM images of (a) pristine C3N4, (b) C-C3N4, and (c) DA-C3N4.

Figure 7. Diffuse reflectance UV−vis spectra of C3N4, C-C3N4, and
DA-C3N4.

Figure 8. Photoluminescence spectra of C3N4, C-C3N4, and DA-
C3N4.
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